| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cnelprrecn 11248 | . . . 4
⊢ ℂ
∈ {ℝ, ℂ} | 
| 2 | 1 | a1i 11 | . . 3
⊢ (𝐴 ∈ ℂ → ℂ
∈ {ℝ, ℂ}) | 
| 3 |  | dvcncxp1.d | . . . . . . 7
⊢ 𝐷 = (ℂ ∖
(-∞(,]0)) | 
| 4 |  | difss 4136 | . . . . . . 7
⊢ (ℂ
∖ (-∞(,]0)) ⊆ ℂ | 
| 5 | 3, 4 | eqsstri 4030 | . . . . . 6
⊢ 𝐷 ⊆
ℂ | 
| 6 | 5 | sseli 3979 | . . . . 5
⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ) | 
| 7 | 3 | logdmn0 26682 | . . . . 5
⊢ (𝑥 ∈ 𝐷 → 𝑥 ≠ 0) | 
| 8 | 6, 7 | logcld 26612 | . . . 4
⊢ (𝑥 ∈ 𝐷 → (log‘𝑥) ∈ ℂ) | 
| 9 | 8 | adantl 481 | . . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → (log‘𝑥) ∈ ℂ) | 
| 10 | 6, 7 | reccld 12036 | . . . 4
⊢ (𝑥 ∈ 𝐷 → (1 / 𝑥) ∈ ℂ) | 
| 11 | 10 | adantl 481 | . . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → (1 / 𝑥) ∈ ℂ) | 
| 12 |  | mulcl 11239 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ) | 
| 13 |  | efcl 16118 | . . . 4
⊢ ((𝐴 · 𝑦) ∈ ℂ → (exp‘(𝐴 · 𝑦)) ∈ ℂ) | 
| 14 | 12, 13 | syl 17 | . . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) →
(exp‘(𝐴 ·
𝑦)) ∈
ℂ) | 
| 15 |  | ovexd 7466 | . . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) →
((exp‘(𝐴 ·
𝑦)) · 𝐴) ∈ V) | 
| 16 | 3 | logcn 26689 | . . . . . . . 8
⊢ (log
↾ 𝐷) ∈ (𝐷–cn→ℂ) | 
| 17 |  | cncff 24919 | . . . . . . . 8
⊢ ((log
↾ 𝐷) ∈ (𝐷–cn→ℂ) → (log ↾ 𝐷):𝐷⟶ℂ) | 
| 18 | 16, 17 | mp1i 13 | . . . . . . 7
⊢ (𝐴 ∈ ℂ → (log
↾ 𝐷):𝐷⟶ℂ) | 
| 19 | 18 | feqmptd 6977 | . . . . . 6
⊢ (𝐴 ∈ ℂ → (log
↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ ((log ↾ 𝐷)‘𝑥))) | 
| 20 |  | fvres 6925 | . . . . . . 7
⊢ (𝑥 ∈ 𝐷 → ((log ↾ 𝐷)‘𝑥) = (log‘𝑥)) | 
| 21 | 20 | mpteq2ia 5245 | . . . . . 6
⊢ (𝑥 ∈ 𝐷 ↦ ((log ↾ 𝐷)‘𝑥)) = (𝑥 ∈ 𝐷 ↦ (log‘𝑥)) | 
| 22 | 19, 21 | eqtrdi 2793 | . . . . 5
⊢ (𝐴 ∈ ℂ → (log
↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ (log‘𝑥))) | 
| 23 | 22 | oveq2d 7447 | . . . 4
⊢ (𝐴 ∈ ℂ → (ℂ
D (log ↾ 𝐷)) =
(ℂ D (𝑥 ∈ 𝐷 ↦ (log‘𝑥)))) | 
| 24 | 3 | dvlog 26693 | . . . 4
⊢ (ℂ
D (log ↾ 𝐷)) = (𝑥 ∈ 𝐷 ↦ (1 / 𝑥)) | 
| 25 | 23, 24 | eqtr3di 2792 | . . 3
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑥 ∈ 𝐷 ↦ (log‘𝑥))) = (𝑥 ∈ 𝐷 ↦ (1 / 𝑥))) | 
| 26 |  | simpl 482 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝐴 ∈
ℂ) | 
| 27 |  | efcl 16118 | . . . . 5
⊢ (𝑥 ∈ ℂ →
(exp‘𝑥) ∈
ℂ) | 
| 28 | 27 | adantl 481 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) →
(exp‘𝑥) ∈
ℂ) | 
| 29 |  | simpr 484 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈
ℂ) | 
| 30 |  | 1cnd 11256 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 1 ∈
ℂ) | 
| 31 | 2 | dvmptid 25995 | . . . . . 6
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑦 ∈ ℂ ↦
𝑦)) = (𝑦 ∈ ℂ ↦ 1)) | 
| 32 |  | id 22 | . . . . . 6
⊢ (𝐴 ∈ ℂ → 𝐴 ∈
ℂ) | 
| 33 | 2, 29, 30, 31, 32 | dvmptcmul 26002 | . . . . 5
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑦 ∈ ℂ ↦
(𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · 1))) | 
| 34 |  | mulrid 11259 | . . . . . 6
⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | 
| 35 | 34 | mpteq2dv 5244 | . . . . 5
⊢ (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 1)) = (𝑦 ∈ ℂ ↦ 𝐴)) | 
| 36 | 33, 35 | eqtrd 2777 | . . . 4
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑦 ∈ ℂ ↦
(𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ 𝐴)) | 
| 37 |  | dvef 26018 | . . . . 5
⊢ (ℂ
D exp) = exp | 
| 38 |  | eff 16117 | . . . . . . . 8
⊢
exp:ℂ⟶ℂ | 
| 39 | 38 | a1i 11 | . . . . . . 7
⊢ (𝐴 ∈ ℂ →
exp:ℂ⟶ℂ) | 
| 40 | 39 | feqmptd 6977 | . . . . . 6
⊢ (𝐴 ∈ ℂ → exp =
(𝑥 ∈ ℂ ↦
(exp‘𝑥))) | 
| 41 | 40 | oveq2d 7447 | . . . . 5
⊢ (𝐴 ∈ ℂ → (ℂ
D exp) = (ℂ D (𝑥
∈ ℂ ↦ (exp‘𝑥)))) | 
| 42 | 37, 41, 40 | 3eqtr3a 2801 | . . . 4
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑥 ∈ ℂ ↦
(exp‘𝑥))) = (𝑥 ∈ ℂ ↦
(exp‘𝑥))) | 
| 43 |  | fveq2 6906 | . . . 4
⊢ (𝑥 = (𝐴 · 𝑦) → (exp‘𝑥) = (exp‘(𝐴 · 𝑦))) | 
| 44 | 2, 2, 12, 26, 28, 28, 36, 42, 43, 43 | dvmptco 26010 | . . 3
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑦 ∈ ℂ ↦
(exp‘(𝐴 ·
𝑦)))) = (𝑦 ∈ ℂ ↦ ((exp‘(𝐴 · 𝑦)) · 𝐴))) | 
| 45 |  | oveq2 7439 | . . . 4
⊢ (𝑦 = (log‘𝑥) → (𝐴 · 𝑦) = (𝐴 · (log‘𝑥))) | 
| 46 | 45 | fveq2d 6910 | . . 3
⊢ (𝑦 = (log‘𝑥) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · (log‘𝑥)))) | 
| 47 | 46 | oveq1d 7446 | . . 3
⊢ (𝑦 = (log‘𝑥) → ((exp‘(𝐴 · 𝑦)) · 𝐴) = ((exp‘(𝐴 · (log‘𝑥))) · 𝐴)) | 
| 48 | 2, 2, 9, 11, 14, 15, 25, 44, 46, 47 | dvmptco 26010 | . 2
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑥 ∈ 𝐷 ↦ (exp‘(𝐴 · (log‘𝑥))))) = (𝑥 ∈ 𝐷 ↦ (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥)))) | 
| 49 | 6 | adantl 481 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ ℂ) | 
| 50 | 7 | adantl 481 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → 𝑥 ≠ 0) | 
| 51 |  | simpl 482 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ ℂ) | 
| 52 | 49, 50, 51 | cxpefd 26754 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → (𝑥↑𝑐𝐴) = (exp‘(𝐴 · (log‘𝑥)))) | 
| 53 | 52 | mpteq2dva 5242 | . . 3
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐𝐴)) = (𝑥 ∈ 𝐷 ↦ (exp‘(𝐴 · (log‘𝑥))))) | 
| 54 | 53 | oveq2d 7447 | . 2
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐𝐴))) = (ℂ D (𝑥 ∈ 𝐷 ↦ (exp‘(𝐴 · (log‘𝑥)))))) | 
| 55 |  | 1cnd 11256 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → 1 ∈ ℂ) | 
| 56 | 49, 50, 51, 55 | cxpsubd 26760 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → (𝑥↑𝑐(𝐴 − 1)) = ((𝑥↑𝑐𝐴) / (𝑥↑𝑐1))) | 
| 57 | 49 | cxp1d 26748 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → (𝑥↑𝑐1) = 𝑥) | 
| 58 | 57 | oveq2d 7447 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → ((𝑥↑𝑐𝐴) / (𝑥↑𝑐1)) = ((𝑥↑𝑐𝐴) / 𝑥)) | 
| 59 | 49, 51 | cxpcld 26750 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → (𝑥↑𝑐𝐴) ∈ ℂ) | 
| 60 | 59, 49, 50 | divrecd 12046 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → ((𝑥↑𝑐𝐴) / 𝑥) = ((𝑥↑𝑐𝐴) · (1 / 𝑥))) | 
| 61 | 56, 58, 60 | 3eqtrd 2781 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → (𝑥↑𝑐(𝐴 − 1)) = ((𝑥↑𝑐𝐴) · (1 / 𝑥))) | 
| 62 | 61 | oveq2d 7447 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → (𝐴 · (𝑥↑𝑐(𝐴 − 1))) = (𝐴 · ((𝑥↑𝑐𝐴) · (1 / 𝑥)))) | 
| 63 | 51, 59, 11 | mul12d 11470 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → (𝐴 · ((𝑥↑𝑐𝐴) · (1 / 𝑥))) = ((𝑥↑𝑐𝐴) · (𝐴 · (1 / 𝑥)))) | 
| 64 | 59, 51, 11 | mulassd 11284 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → (((𝑥↑𝑐𝐴) · 𝐴) · (1 / 𝑥)) = ((𝑥↑𝑐𝐴) · (𝐴 · (1 / 𝑥)))) | 
| 65 | 63, 64 | eqtr4d 2780 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → (𝐴 · ((𝑥↑𝑐𝐴) · (1 / 𝑥))) = (((𝑥↑𝑐𝐴) · 𝐴) · (1 / 𝑥))) | 
| 66 | 52 | oveq1d 7446 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → ((𝑥↑𝑐𝐴) · 𝐴) = ((exp‘(𝐴 · (log‘𝑥))) · 𝐴)) | 
| 67 | 66 | oveq1d 7446 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → (((𝑥↑𝑐𝐴) · 𝐴) · (1 / 𝑥)) = (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥))) | 
| 68 | 62, 65, 67 | 3eqtrd 2781 | . . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → (𝐴 · (𝑥↑𝑐(𝐴 − 1))) = (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥))) | 
| 69 | 68 | mpteq2dva 5242 | . 2
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ 𝐷 ↦ (𝐴 · (𝑥↑𝑐(𝐴 − 1)))) = (𝑥 ∈ 𝐷 ↦ (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥)))) | 
| 70 | 48, 54, 69 | 3eqtr4d 2787 | 1
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐𝐴))) = (𝑥 ∈ 𝐷 ↦ (𝐴 · (𝑥↑𝑐(𝐴 − 1))))) |