MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcncxp1 Structured version   Visualization version   GIF version

Theorem dvcncxp1 26709
Description: Derivative of complex power with respect to first argument on the complex plane. (Contributed by Brendan Leahy, 18-Dec-2018.)
Hypothesis
Ref Expression
dvcncxp1.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
dvcncxp1 (𝐴 ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (𝑥𝑐𝐴))) = (𝑥𝐷 ↦ (𝐴 · (𝑥𝑐(𝐴 − 1)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷

Proof of Theorem dvcncxp1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnelprrecn 11227 . . . 4 ℂ ∈ {ℝ, ℂ}
21a1i 11 . . 3 (𝐴 ∈ ℂ → ℂ ∈ {ℝ, ℂ})
3 dvcncxp1.d . . . . . . 7 𝐷 = (ℂ ∖ (-∞(,]0))
4 difss 4116 . . . . . . 7 (ℂ ∖ (-∞(,]0)) ⊆ ℂ
53, 4eqsstri 4010 . . . . . 6 𝐷 ⊆ ℂ
65sseli 3959 . . . . 5 (𝑥𝐷𝑥 ∈ ℂ)
73logdmn0 26606 . . . . 5 (𝑥𝐷𝑥 ≠ 0)
86, 7logcld 26536 . . . 4 (𝑥𝐷 → (log‘𝑥) ∈ ℂ)
98adantl 481 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (log‘𝑥) ∈ ℂ)
106, 7reccld 12015 . . . 4 (𝑥𝐷 → (1 / 𝑥) ∈ ℂ)
1110adantl 481 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (1 / 𝑥) ∈ ℂ)
12 mulcl 11218 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
13 efcl 16103 . . . 4 ((𝐴 · 𝑦) ∈ ℂ → (exp‘(𝐴 · 𝑦)) ∈ ℂ)
1412, 13syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (exp‘(𝐴 · 𝑦)) ∈ ℂ)
15 ovexd 7445 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((exp‘(𝐴 · 𝑦)) · 𝐴) ∈ V)
163logcn 26613 . . . . . . . 8 (log ↾ 𝐷) ∈ (𝐷cn→ℂ)
17 cncff 24842 . . . . . . . 8 ((log ↾ 𝐷) ∈ (𝐷cn→ℂ) → (log ↾ 𝐷):𝐷⟶ℂ)
1816, 17mp1i 13 . . . . . . 7 (𝐴 ∈ ℂ → (log ↾ 𝐷):𝐷⟶ℂ)
1918feqmptd 6952 . . . . . 6 (𝐴 ∈ ℂ → (log ↾ 𝐷) = (𝑥𝐷 ↦ ((log ↾ 𝐷)‘𝑥)))
20 fvres 6900 . . . . . . 7 (𝑥𝐷 → ((log ↾ 𝐷)‘𝑥) = (log‘𝑥))
2120mpteq2ia 5221 . . . . . 6 (𝑥𝐷 ↦ ((log ↾ 𝐷)‘𝑥)) = (𝑥𝐷 ↦ (log‘𝑥))
2219, 21eqtrdi 2787 . . . . 5 (𝐴 ∈ ℂ → (log ↾ 𝐷) = (𝑥𝐷 ↦ (log‘𝑥)))
2322oveq2d 7426 . . . 4 (𝐴 ∈ ℂ → (ℂ D (log ↾ 𝐷)) = (ℂ D (𝑥𝐷 ↦ (log‘𝑥))))
243dvlog 26617 . . . 4 (ℂ D (log ↾ 𝐷)) = (𝑥𝐷 ↦ (1 / 𝑥))
2523, 24eqtr3di 2786 . . 3 (𝐴 ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (log‘𝑥))) = (𝑥𝐷 ↦ (1 / 𝑥)))
26 simpl 482 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
27 efcl 16103 . . . . 5 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
2827adantl 481 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (exp‘𝑥) ∈ ℂ)
29 simpr 484 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
30 1cnd 11235 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 1 ∈ ℂ)
312dvmptid 25918 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1))
32 id 22 . . . . . 6 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
332, 29, 30, 31, 32dvmptcmul 25925 . . . . 5 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · 1)))
34 mulrid 11238 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
3534mpteq2dv 5220 . . . . 5 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 1)) = (𝑦 ∈ ℂ ↦ 𝐴))
3633, 35eqtrd 2771 . . . 4 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ 𝐴))
37 dvef 25941 . . . . 5 (ℂ D exp) = exp
38 eff 16102 . . . . . . . 8 exp:ℂ⟶ℂ
3938a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → exp:ℂ⟶ℂ)
4039feqmptd 6952 . . . . . 6 (𝐴 ∈ ℂ → exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
4140oveq2d 7426 . . . . 5 (𝐴 ∈ ℂ → (ℂ D exp) = (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥))))
4237, 41, 403eqtr3a 2795 . . . 4 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥))) = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
43 fveq2 6881 . . . 4 (𝑥 = (𝐴 · 𝑦) → (exp‘𝑥) = (exp‘(𝐴 · 𝑦)))
442, 2, 12, 26, 28, 28, 36, 42, 43, 43dvmptco 25933 . . 3 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((exp‘(𝐴 · 𝑦)) · 𝐴)))
45 oveq2 7418 . . . 4 (𝑦 = (log‘𝑥) → (𝐴 · 𝑦) = (𝐴 · (log‘𝑥)))
4645fveq2d 6885 . . 3 (𝑦 = (log‘𝑥) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · (log‘𝑥))))
4746oveq1d 7425 . . 3 (𝑦 = (log‘𝑥) → ((exp‘(𝐴 · 𝑦)) · 𝐴) = ((exp‘(𝐴 · (log‘𝑥))) · 𝐴))
482, 2, 9, 11, 14, 15, 25, 44, 46, 47dvmptco 25933 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (exp‘(𝐴 · (log‘𝑥))))) = (𝑥𝐷 ↦ (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥))))
496adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → 𝑥 ∈ ℂ)
507adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → 𝑥 ≠ 0)
51 simpl 482 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → 𝐴 ∈ ℂ)
5249, 50, 51cxpefd 26678 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝑥𝑐𝐴) = (exp‘(𝐴 · (log‘𝑥))))
5352mpteq2dva 5219 . . 3 (𝐴 ∈ ℂ → (𝑥𝐷 ↦ (𝑥𝑐𝐴)) = (𝑥𝐷 ↦ (exp‘(𝐴 · (log‘𝑥)))))
5453oveq2d 7426 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (𝑥𝑐𝐴))) = (ℂ D (𝑥𝐷 ↦ (exp‘(𝐴 · (log‘𝑥))))))
55 1cnd 11235 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → 1 ∈ ℂ)
5649, 50, 51, 55cxpsubd 26684 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝑥𝑐(𝐴 − 1)) = ((𝑥𝑐𝐴) / (𝑥𝑐1)))
5749cxp1d 26672 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝑥𝑐1) = 𝑥)
5857oveq2d 7426 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → ((𝑥𝑐𝐴) / (𝑥𝑐1)) = ((𝑥𝑐𝐴) / 𝑥))
5949, 51cxpcld 26674 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝑥𝑐𝐴) ∈ ℂ)
6059, 49, 50divrecd 12025 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → ((𝑥𝑐𝐴) / 𝑥) = ((𝑥𝑐𝐴) · (1 / 𝑥)))
6156, 58, 603eqtrd 2775 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝑥𝑐(𝐴 − 1)) = ((𝑥𝑐𝐴) · (1 / 𝑥)))
6261oveq2d 7426 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝐴 · (𝑥𝑐(𝐴 − 1))) = (𝐴 · ((𝑥𝑐𝐴) · (1 / 𝑥))))
6351, 59, 11mul12d 11449 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝐴 · ((𝑥𝑐𝐴) · (1 / 𝑥))) = ((𝑥𝑐𝐴) · (𝐴 · (1 / 𝑥))))
6459, 51, 11mulassd 11263 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (((𝑥𝑐𝐴) · 𝐴) · (1 / 𝑥)) = ((𝑥𝑐𝐴) · (𝐴 · (1 / 𝑥))))
6563, 64eqtr4d 2774 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝐴 · ((𝑥𝑐𝐴) · (1 / 𝑥))) = (((𝑥𝑐𝐴) · 𝐴) · (1 / 𝑥)))
6652oveq1d 7425 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → ((𝑥𝑐𝐴) · 𝐴) = ((exp‘(𝐴 · (log‘𝑥))) · 𝐴))
6766oveq1d 7425 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (((𝑥𝑐𝐴) · 𝐴) · (1 / 𝑥)) = (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥)))
6862, 65, 673eqtrd 2775 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝐴 · (𝑥𝑐(𝐴 − 1))) = (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥)))
6968mpteq2dva 5219 . 2 (𝐴 ∈ ℂ → (𝑥𝐷 ↦ (𝐴 · (𝑥𝑐(𝐴 − 1)))) = (𝑥𝐷 ↦ (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥))))
7048, 54, 693eqtr4d 2781 1 (𝐴 ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (𝑥𝑐𝐴))) = (𝑥𝐷 ↦ (𝐴 · (𝑥𝑐(𝐴 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  Vcvv 3464  cdif 3928  {cpr 4608  cmpt 5206  cres 5661  wf 6532  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   · cmul 11139  -∞cmnf 11272  cmin 11471   / cdiv 11899  (,]cioc 13368  expce 16082  cnccncf 24825   D cdv 25821  logclog 26520  𝑐ccxp 26521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-tan 16092  df-pi 16093  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-log 26522  df-cxp 26523
This theorem is referenced by:  dvcnsqrt  26710  binomcxplemdvbinom  44344
  Copyright terms: Public domain W3C validator