MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcncxp1 Structured version   Visualization version   GIF version

Theorem dvcncxp1 26803
Description: Derivative of complex power with respect to first argument on the complex plane. (Contributed by Brendan Leahy, 18-Dec-2018.)
Hypothesis
Ref Expression
dvcncxp1.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
dvcncxp1 (𝐴 ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (𝑥𝑐𝐴))) = (𝑥𝐷 ↦ (𝐴 · (𝑥𝑐(𝐴 − 1)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷

Proof of Theorem dvcncxp1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnelprrecn 11277 . . . 4 ℂ ∈ {ℝ, ℂ}
21a1i 11 . . 3 (𝐴 ∈ ℂ → ℂ ∈ {ℝ, ℂ})
3 dvcncxp1.d . . . . . . 7 𝐷 = (ℂ ∖ (-∞(,]0))
4 difss 4159 . . . . . . 7 (ℂ ∖ (-∞(,]0)) ⊆ ℂ
53, 4eqsstri 4043 . . . . . 6 𝐷 ⊆ ℂ
65sseli 4004 . . . . 5 (𝑥𝐷𝑥 ∈ ℂ)
73logdmn0 26700 . . . . 5 (𝑥𝐷𝑥 ≠ 0)
86, 7logcld 26630 . . . 4 (𝑥𝐷 → (log‘𝑥) ∈ ℂ)
98adantl 481 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (log‘𝑥) ∈ ℂ)
106, 7reccld 12063 . . . 4 (𝑥𝐷 → (1 / 𝑥) ∈ ℂ)
1110adantl 481 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (1 / 𝑥) ∈ ℂ)
12 mulcl 11268 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
13 efcl 16130 . . . 4 ((𝐴 · 𝑦) ∈ ℂ → (exp‘(𝐴 · 𝑦)) ∈ ℂ)
1412, 13syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (exp‘(𝐴 · 𝑦)) ∈ ℂ)
15 ovexd 7483 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((exp‘(𝐴 · 𝑦)) · 𝐴) ∈ V)
163logcn 26707 . . . . . . . 8 (log ↾ 𝐷) ∈ (𝐷cn→ℂ)
17 cncff 24938 . . . . . . . 8 ((log ↾ 𝐷) ∈ (𝐷cn→ℂ) → (log ↾ 𝐷):𝐷⟶ℂ)
1816, 17mp1i 13 . . . . . . 7 (𝐴 ∈ ℂ → (log ↾ 𝐷):𝐷⟶ℂ)
1918feqmptd 6990 . . . . . 6 (𝐴 ∈ ℂ → (log ↾ 𝐷) = (𝑥𝐷 ↦ ((log ↾ 𝐷)‘𝑥)))
20 fvres 6939 . . . . . . 7 (𝑥𝐷 → ((log ↾ 𝐷)‘𝑥) = (log‘𝑥))
2120mpteq2ia 5269 . . . . . 6 (𝑥𝐷 ↦ ((log ↾ 𝐷)‘𝑥)) = (𝑥𝐷 ↦ (log‘𝑥))
2219, 21eqtrdi 2796 . . . . 5 (𝐴 ∈ ℂ → (log ↾ 𝐷) = (𝑥𝐷 ↦ (log‘𝑥)))
2322oveq2d 7464 . . . 4 (𝐴 ∈ ℂ → (ℂ D (log ↾ 𝐷)) = (ℂ D (𝑥𝐷 ↦ (log‘𝑥))))
243dvlog 26711 . . . 4 (ℂ D (log ↾ 𝐷)) = (𝑥𝐷 ↦ (1 / 𝑥))
2523, 24eqtr3di 2795 . . 3 (𝐴 ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (log‘𝑥))) = (𝑥𝐷 ↦ (1 / 𝑥)))
26 simpl 482 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
27 efcl 16130 . . . . 5 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
2827adantl 481 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (exp‘𝑥) ∈ ℂ)
29 simpr 484 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
30 1cnd 11285 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 1 ∈ ℂ)
312dvmptid 26015 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1))
32 id 22 . . . . . 6 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
332, 29, 30, 31, 32dvmptcmul 26022 . . . . 5 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · 1)))
34 mulrid 11288 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
3534mpteq2dv 5268 . . . . 5 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 1)) = (𝑦 ∈ ℂ ↦ 𝐴))
3633, 35eqtrd 2780 . . . 4 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ 𝐴))
37 dvef 26038 . . . . 5 (ℂ D exp) = exp
38 eff 16129 . . . . . . . 8 exp:ℂ⟶ℂ
3938a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → exp:ℂ⟶ℂ)
4039feqmptd 6990 . . . . . 6 (𝐴 ∈ ℂ → exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
4140oveq2d 7464 . . . . 5 (𝐴 ∈ ℂ → (ℂ D exp) = (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥))))
4237, 41, 403eqtr3a 2804 . . . 4 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥))) = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
43 fveq2 6920 . . . 4 (𝑥 = (𝐴 · 𝑦) → (exp‘𝑥) = (exp‘(𝐴 · 𝑦)))
442, 2, 12, 26, 28, 28, 36, 42, 43, 43dvmptco 26030 . . 3 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((exp‘(𝐴 · 𝑦)) · 𝐴)))
45 oveq2 7456 . . . 4 (𝑦 = (log‘𝑥) → (𝐴 · 𝑦) = (𝐴 · (log‘𝑥)))
4645fveq2d 6924 . . 3 (𝑦 = (log‘𝑥) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · (log‘𝑥))))
4746oveq1d 7463 . . 3 (𝑦 = (log‘𝑥) → ((exp‘(𝐴 · 𝑦)) · 𝐴) = ((exp‘(𝐴 · (log‘𝑥))) · 𝐴))
482, 2, 9, 11, 14, 15, 25, 44, 46, 47dvmptco 26030 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (exp‘(𝐴 · (log‘𝑥))))) = (𝑥𝐷 ↦ (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥))))
496adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → 𝑥 ∈ ℂ)
507adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → 𝑥 ≠ 0)
51 simpl 482 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → 𝐴 ∈ ℂ)
5249, 50, 51cxpefd 26772 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝑥𝑐𝐴) = (exp‘(𝐴 · (log‘𝑥))))
5352mpteq2dva 5266 . . 3 (𝐴 ∈ ℂ → (𝑥𝐷 ↦ (𝑥𝑐𝐴)) = (𝑥𝐷 ↦ (exp‘(𝐴 · (log‘𝑥)))))
5453oveq2d 7464 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (𝑥𝑐𝐴))) = (ℂ D (𝑥𝐷 ↦ (exp‘(𝐴 · (log‘𝑥))))))
55 1cnd 11285 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → 1 ∈ ℂ)
5649, 50, 51, 55cxpsubd 26778 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝑥𝑐(𝐴 − 1)) = ((𝑥𝑐𝐴) / (𝑥𝑐1)))
5749cxp1d 26766 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝑥𝑐1) = 𝑥)
5857oveq2d 7464 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → ((𝑥𝑐𝐴) / (𝑥𝑐1)) = ((𝑥𝑐𝐴) / 𝑥))
5949, 51cxpcld 26768 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝑥𝑐𝐴) ∈ ℂ)
6059, 49, 50divrecd 12073 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → ((𝑥𝑐𝐴) / 𝑥) = ((𝑥𝑐𝐴) · (1 / 𝑥)))
6156, 58, 603eqtrd 2784 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝑥𝑐(𝐴 − 1)) = ((𝑥𝑐𝐴) · (1 / 𝑥)))
6261oveq2d 7464 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝐴 · (𝑥𝑐(𝐴 − 1))) = (𝐴 · ((𝑥𝑐𝐴) · (1 / 𝑥))))
6351, 59, 11mul12d 11499 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝐴 · ((𝑥𝑐𝐴) · (1 / 𝑥))) = ((𝑥𝑐𝐴) · (𝐴 · (1 / 𝑥))))
6459, 51, 11mulassd 11313 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (((𝑥𝑐𝐴) · 𝐴) · (1 / 𝑥)) = ((𝑥𝑐𝐴) · (𝐴 · (1 / 𝑥))))
6563, 64eqtr4d 2783 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝐴 · ((𝑥𝑐𝐴) · (1 / 𝑥))) = (((𝑥𝑐𝐴) · 𝐴) · (1 / 𝑥)))
6652oveq1d 7463 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → ((𝑥𝑐𝐴) · 𝐴) = ((exp‘(𝐴 · (log‘𝑥))) · 𝐴))
6766oveq1d 7463 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (((𝑥𝑐𝐴) · 𝐴) · (1 / 𝑥)) = (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥)))
6862, 65, 673eqtrd 2784 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝐴 · (𝑥𝑐(𝐴 − 1))) = (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥)))
6968mpteq2dva 5266 . 2 (𝐴 ∈ ℂ → (𝑥𝐷 ↦ (𝐴 · (𝑥𝑐(𝐴 − 1)))) = (𝑥𝐷 ↦ (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥))))
7048, 54, 693eqtr4d 2790 1 (𝐴 ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (𝑥𝑐𝐴))) = (𝑥𝐷 ↦ (𝐴 · (𝑥𝑐(𝐴 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  cdif 3973  {cpr 4650  cmpt 5249  cres 5702  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   · cmul 11189  -∞cmnf 11322  cmin 11520   / cdiv 11947  (,]cioc 13408  expce 16109  cnccncf 24921   D cdv 25918  logclog 26614  𝑐ccxp 26615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-tan 16119  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-cxp 26617
This theorem is referenced by:  dvcnsqrt  26804  binomcxplemdvbinom  44322
  Copyright terms: Public domain W3C validator