| Step | Hyp | Ref
| Expression |
| 1 | | cnelprrecn 11227 |
. . . 4
⊢ ℂ
∈ {ℝ, ℂ} |
| 2 | 1 | a1i 11 |
. . 3
⊢ (𝐴 ∈ ℂ → ℂ
∈ {ℝ, ℂ}) |
| 3 | | dvcncxp1.d |
. . . . . . 7
⊢ 𝐷 = (ℂ ∖
(-∞(,]0)) |
| 4 | | difss 4116 |
. . . . . . 7
⊢ (ℂ
∖ (-∞(,]0)) ⊆ ℂ |
| 5 | 3, 4 | eqsstri 4010 |
. . . . . 6
⊢ 𝐷 ⊆
ℂ |
| 6 | 5 | sseli 3959 |
. . . . 5
⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ) |
| 7 | 3 | logdmn0 26606 |
. . . . 5
⊢ (𝑥 ∈ 𝐷 → 𝑥 ≠ 0) |
| 8 | 6, 7 | logcld 26536 |
. . . 4
⊢ (𝑥 ∈ 𝐷 → (log‘𝑥) ∈ ℂ) |
| 9 | 8 | adantl 481 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → (log‘𝑥) ∈ ℂ) |
| 10 | 6, 7 | reccld 12015 |
. . . 4
⊢ (𝑥 ∈ 𝐷 → (1 / 𝑥) ∈ ℂ) |
| 11 | 10 | adantl 481 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → (1 / 𝑥) ∈ ℂ) |
| 12 | | mulcl 11218 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ) |
| 13 | | efcl 16103 |
. . . 4
⊢ ((𝐴 · 𝑦) ∈ ℂ → (exp‘(𝐴 · 𝑦)) ∈ ℂ) |
| 14 | 12, 13 | syl 17 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) →
(exp‘(𝐴 ·
𝑦)) ∈
ℂ) |
| 15 | | ovexd 7445 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) →
((exp‘(𝐴 ·
𝑦)) · 𝐴) ∈ V) |
| 16 | 3 | logcn 26613 |
. . . . . . . 8
⊢ (log
↾ 𝐷) ∈ (𝐷–cn→ℂ) |
| 17 | | cncff 24842 |
. . . . . . . 8
⊢ ((log
↾ 𝐷) ∈ (𝐷–cn→ℂ) → (log ↾ 𝐷):𝐷⟶ℂ) |
| 18 | 16, 17 | mp1i 13 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (log
↾ 𝐷):𝐷⟶ℂ) |
| 19 | 18 | feqmptd 6952 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (log
↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ ((log ↾ 𝐷)‘𝑥))) |
| 20 | | fvres 6900 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → ((log ↾ 𝐷)‘𝑥) = (log‘𝑥)) |
| 21 | 20 | mpteq2ia 5221 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 ↦ ((log ↾ 𝐷)‘𝑥)) = (𝑥 ∈ 𝐷 ↦ (log‘𝑥)) |
| 22 | 19, 21 | eqtrdi 2787 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (log
↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ (log‘𝑥))) |
| 23 | 22 | oveq2d 7426 |
. . . 4
⊢ (𝐴 ∈ ℂ → (ℂ
D (log ↾ 𝐷)) =
(ℂ D (𝑥 ∈ 𝐷 ↦ (log‘𝑥)))) |
| 24 | 3 | dvlog 26617 |
. . . 4
⊢ (ℂ
D (log ↾ 𝐷)) = (𝑥 ∈ 𝐷 ↦ (1 / 𝑥)) |
| 25 | 23, 24 | eqtr3di 2786 |
. . 3
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑥 ∈ 𝐷 ↦ (log‘𝑥))) = (𝑥 ∈ 𝐷 ↦ (1 / 𝑥))) |
| 26 | | simpl 482 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝐴 ∈
ℂ) |
| 27 | | efcl 16103 |
. . . . 5
⊢ (𝑥 ∈ ℂ →
(exp‘𝑥) ∈
ℂ) |
| 28 | 27 | adantl 481 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) →
(exp‘𝑥) ∈
ℂ) |
| 29 | | simpr 484 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈
ℂ) |
| 30 | | 1cnd 11235 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 1 ∈
ℂ) |
| 31 | 2 | dvmptid 25918 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑦 ∈ ℂ ↦
𝑦)) = (𝑦 ∈ ℂ ↦ 1)) |
| 32 | | id 22 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → 𝐴 ∈
ℂ) |
| 33 | 2, 29, 30, 31, 32 | dvmptcmul 25925 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑦 ∈ ℂ ↦
(𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · 1))) |
| 34 | | mulrid 11238 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) |
| 35 | 34 | mpteq2dv 5220 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 1)) = (𝑦 ∈ ℂ ↦ 𝐴)) |
| 36 | 33, 35 | eqtrd 2771 |
. . . 4
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑦 ∈ ℂ ↦
(𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ 𝐴)) |
| 37 | | dvef 25941 |
. . . . 5
⊢ (ℂ
D exp) = exp |
| 38 | | eff 16102 |
. . . . . . . 8
⊢
exp:ℂ⟶ℂ |
| 39 | 38 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ →
exp:ℂ⟶ℂ) |
| 40 | 39 | feqmptd 6952 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → exp =
(𝑥 ∈ ℂ ↦
(exp‘𝑥))) |
| 41 | 40 | oveq2d 7426 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (ℂ
D exp) = (ℂ D (𝑥
∈ ℂ ↦ (exp‘𝑥)))) |
| 42 | 37, 41, 40 | 3eqtr3a 2795 |
. . . 4
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑥 ∈ ℂ ↦
(exp‘𝑥))) = (𝑥 ∈ ℂ ↦
(exp‘𝑥))) |
| 43 | | fveq2 6881 |
. . . 4
⊢ (𝑥 = (𝐴 · 𝑦) → (exp‘𝑥) = (exp‘(𝐴 · 𝑦))) |
| 44 | 2, 2, 12, 26, 28, 28, 36, 42, 43, 43 | dvmptco 25933 |
. . 3
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑦 ∈ ℂ ↦
(exp‘(𝐴 ·
𝑦)))) = (𝑦 ∈ ℂ ↦ ((exp‘(𝐴 · 𝑦)) · 𝐴))) |
| 45 | | oveq2 7418 |
. . . 4
⊢ (𝑦 = (log‘𝑥) → (𝐴 · 𝑦) = (𝐴 · (log‘𝑥))) |
| 46 | 45 | fveq2d 6885 |
. . 3
⊢ (𝑦 = (log‘𝑥) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · (log‘𝑥)))) |
| 47 | 46 | oveq1d 7425 |
. . 3
⊢ (𝑦 = (log‘𝑥) → ((exp‘(𝐴 · 𝑦)) · 𝐴) = ((exp‘(𝐴 · (log‘𝑥))) · 𝐴)) |
| 48 | 2, 2, 9, 11, 14, 15, 25, 44, 46, 47 | dvmptco 25933 |
. 2
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑥 ∈ 𝐷 ↦ (exp‘(𝐴 · (log‘𝑥))))) = (𝑥 ∈ 𝐷 ↦ (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥)))) |
| 49 | 6 | adantl 481 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ ℂ) |
| 50 | 7 | adantl 481 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → 𝑥 ≠ 0) |
| 51 | | simpl 482 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ ℂ) |
| 52 | 49, 50, 51 | cxpefd 26678 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → (𝑥↑𝑐𝐴) = (exp‘(𝐴 · (log‘𝑥)))) |
| 53 | 52 | mpteq2dva 5219 |
. . 3
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐𝐴)) = (𝑥 ∈ 𝐷 ↦ (exp‘(𝐴 · (log‘𝑥))))) |
| 54 | 53 | oveq2d 7426 |
. 2
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐𝐴))) = (ℂ D (𝑥 ∈ 𝐷 ↦ (exp‘(𝐴 · (log‘𝑥)))))) |
| 55 | | 1cnd 11235 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → 1 ∈ ℂ) |
| 56 | 49, 50, 51, 55 | cxpsubd 26684 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → (𝑥↑𝑐(𝐴 − 1)) = ((𝑥↑𝑐𝐴) / (𝑥↑𝑐1))) |
| 57 | 49 | cxp1d 26672 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → (𝑥↑𝑐1) = 𝑥) |
| 58 | 57 | oveq2d 7426 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → ((𝑥↑𝑐𝐴) / (𝑥↑𝑐1)) = ((𝑥↑𝑐𝐴) / 𝑥)) |
| 59 | 49, 51 | cxpcld 26674 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → (𝑥↑𝑐𝐴) ∈ ℂ) |
| 60 | 59, 49, 50 | divrecd 12025 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → ((𝑥↑𝑐𝐴) / 𝑥) = ((𝑥↑𝑐𝐴) · (1 / 𝑥))) |
| 61 | 56, 58, 60 | 3eqtrd 2775 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → (𝑥↑𝑐(𝐴 − 1)) = ((𝑥↑𝑐𝐴) · (1 / 𝑥))) |
| 62 | 61 | oveq2d 7426 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → (𝐴 · (𝑥↑𝑐(𝐴 − 1))) = (𝐴 · ((𝑥↑𝑐𝐴) · (1 / 𝑥)))) |
| 63 | 51, 59, 11 | mul12d 11449 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → (𝐴 · ((𝑥↑𝑐𝐴) · (1 / 𝑥))) = ((𝑥↑𝑐𝐴) · (𝐴 · (1 / 𝑥)))) |
| 64 | 59, 51, 11 | mulassd 11263 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → (((𝑥↑𝑐𝐴) · 𝐴) · (1 / 𝑥)) = ((𝑥↑𝑐𝐴) · (𝐴 · (1 / 𝑥)))) |
| 65 | 63, 64 | eqtr4d 2774 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → (𝐴 · ((𝑥↑𝑐𝐴) · (1 / 𝑥))) = (((𝑥↑𝑐𝐴) · 𝐴) · (1 / 𝑥))) |
| 66 | 52 | oveq1d 7425 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → ((𝑥↑𝑐𝐴) · 𝐴) = ((exp‘(𝐴 · (log‘𝑥))) · 𝐴)) |
| 67 | 66 | oveq1d 7425 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → (((𝑥↑𝑐𝐴) · 𝐴) · (1 / 𝑥)) = (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥))) |
| 68 | 62, 65, 67 | 3eqtrd 2775 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝐷) → (𝐴 · (𝑥↑𝑐(𝐴 − 1))) = (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥))) |
| 69 | 68 | mpteq2dva 5219 |
. 2
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ 𝐷 ↦ (𝐴 · (𝑥↑𝑐(𝐴 − 1)))) = (𝑥 ∈ 𝐷 ↦ (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥)))) |
| 70 | 48, 54, 69 | 3eqtr4d 2781 |
1
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐𝐴))) = (𝑥 ∈ 𝐷 ↦ (𝐴 · (𝑥↑𝑐(𝐴 − 1))))) |