MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcncxp1 Structured version   Visualization version   GIF version

Theorem dvcncxp1 25884
Description: Derivative of complex power with respect to first argument on the complex plane. (Contributed by Brendan Leahy, 18-Dec-2018.)
Hypothesis
Ref Expression
dvcncxp1.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
dvcncxp1 (𝐴 ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (𝑥𝑐𝐴))) = (𝑥𝐷 ↦ (𝐴 · (𝑥𝑐(𝐴 − 1)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷

Proof of Theorem dvcncxp1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnelprrecn 10952 . . . 4 ℂ ∈ {ℝ, ℂ}
21a1i 11 . . 3 (𝐴 ∈ ℂ → ℂ ∈ {ℝ, ℂ})
3 dvcncxp1.d . . . . . . 7 𝐷 = (ℂ ∖ (-∞(,]0))
4 difss 4066 . . . . . . 7 (ℂ ∖ (-∞(,]0)) ⊆ ℂ
53, 4eqsstri 3955 . . . . . 6 𝐷 ⊆ ℂ
65sseli 3917 . . . . 5 (𝑥𝐷𝑥 ∈ ℂ)
73logdmn0 25783 . . . . 5 (𝑥𝐷𝑥 ≠ 0)
86, 7logcld 25714 . . . 4 (𝑥𝐷 → (log‘𝑥) ∈ ℂ)
98adantl 482 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (log‘𝑥) ∈ ℂ)
106, 7reccld 11732 . . . 4 (𝑥𝐷 → (1 / 𝑥) ∈ ℂ)
1110adantl 482 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (1 / 𝑥) ∈ ℂ)
12 mulcl 10943 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
13 efcl 15780 . . . 4 ((𝐴 · 𝑦) ∈ ℂ → (exp‘(𝐴 · 𝑦)) ∈ ℂ)
1412, 13syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (exp‘(𝐴 · 𝑦)) ∈ ℂ)
15 ovexd 7303 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((exp‘(𝐴 · 𝑦)) · 𝐴) ∈ V)
163logcn 25790 . . . . . . . 8 (log ↾ 𝐷) ∈ (𝐷cn→ℂ)
17 cncff 24044 . . . . . . . 8 ((log ↾ 𝐷) ∈ (𝐷cn→ℂ) → (log ↾ 𝐷):𝐷⟶ℂ)
1816, 17mp1i 13 . . . . . . 7 (𝐴 ∈ ℂ → (log ↾ 𝐷):𝐷⟶ℂ)
1918feqmptd 6830 . . . . . 6 (𝐴 ∈ ℂ → (log ↾ 𝐷) = (𝑥𝐷 ↦ ((log ↾ 𝐷)‘𝑥)))
20 fvres 6786 . . . . . . 7 (𝑥𝐷 → ((log ↾ 𝐷)‘𝑥) = (log‘𝑥))
2120mpteq2ia 5177 . . . . . 6 (𝑥𝐷 ↦ ((log ↾ 𝐷)‘𝑥)) = (𝑥𝐷 ↦ (log‘𝑥))
2219, 21eqtrdi 2794 . . . . 5 (𝐴 ∈ ℂ → (log ↾ 𝐷) = (𝑥𝐷 ↦ (log‘𝑥)))
2322oveq2d 7284 . . . 4 (𝐴 ∈ ℂ → (ℂ D (log ↾ 𝐷)) = (ℂ D (𝑥𝐷 ↦ (log‘𝑥))))
243dvlog 25794 . . . 4 (ℂ D (log ↾ 𝐷)) = (𝑥𝐷 ↦ (1 / 𝑥))
2523, 24eqtr3di 2793 . . 3 (𝐴 ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (log‘𝑥))) = (𝑥𝐷 ↦ (1 / 𝑥)))
26 simpl 483 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
27 efcl 15780 . . . . 5 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
2827adantl 482 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (exp‘𝑥) ∈ ℂ)
29 simpr 485 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
30 1cnd 10958 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 1 ∈ ℂ)
312dvmptid 25109 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1))
32 id 22 . . . . . 6 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
332, 29, 30, 31, 32dvmptcmul 25116 . . . . 5 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · 1)))
34 mulid1 10961 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
3534mpteq2dv 5176 . . . . 5 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 1)) = (𝑦 ∈ ℂ ↦ 𝐴))
3633, 35eqtrd 2778 . . . 4 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ 𝐴))
37 dvef 25132 . . . . 5 (ℂ D exp) = exp
38 eff 15779 . . . . . . . 8 exp:ℂ⟶ℂ
3938a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → exp:ℂ⟶ℂ)
4039feqmptd 6830 . . . . . 6 (𝐴 ∈ ℂ → exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
4140oveq2d 7284 . . . . 5 (𝐴 ∈ ℂ → (ℂ D exp) = (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥))))
4237, 41, 403eqtr3a 2802 . . . 4 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥))) = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
43 fveq2 6767 . . . 4 (𝑥 = (𝐴 · 𝑦) → (exp‘𝑥) = (exp‘(𝐴 · 𝑦)))
442, 2, 12, 26, 28, 28, 36, 42, 43, 43dvmptco 25124 . . 3 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((exp‘(𝐴 · 𝑦)) · 𝐴)))
45 oveq2 7276 . . . 4 (𝑦 = (log‘𝑥) → (𝐴 · 𝑦) = (𝐴 · (log‘𝑥)))
4645fveq2d 6771 . . 3 (𝑦 = (log‘𝑥) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · (log‘𝑥))))
4746oveq1d 7283 . . 3 (𝑦 = (log‘𝑥) → ((exp‘(𝐴 · 𝑦)) · 𝐴) = ((exp‘(𝐴 · (log‘𝑥))) · 𝐴))
482, 2, 9, 11, 14, 15, 25, 44, 46, 47dvmptco 25124 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (exp‘(𝐴 · (log‘𝑥))))) = (𝑥𝐷 ↦ (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥))))
496adantl 482 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → 𝑥 ∈ ℂ)
507adantl 482 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → 𝑥 ≠ 0)
51 simpl 483 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → 𝐴 ∈ ℂ)
5249, 50, 51cxpefd 25855 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝑥𝑐𝐴) = (exp‘(𝐴 · (log‘𝑥))))
5352mpteq2dva 5174 . . 3 (𝐴 ∈ ℂ → (𝑥𝐷 ↦ (𝑥𝑐𝐴)) = (𝑥𝐷 ↦ (exp‘(𝐴 · (log‘𝑥)))))
5453oveq2d 7284 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (𝑥𝑐𝐴))) = (ℂ D (𝑥𝐷 ↦ (exp‘(𝐴 · (log‘𝑥))))))
55 1cnd 10958 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → 1 ∈ ℂ)
5649, 50, 51, 55cxpsubd 25861 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝑥𝑐(𝐴 − 1)) = ((𝑥𝑐𝐴) / (𝑥𝑐1)))
5749cxp1d 25849 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝑥𝑐1) = 𝑥)
5857oveq2d 7284 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → ((𝑥𝑐𝐴) / (𝑥𝑐1)) = ((𝑥𝑐𝐴) / 𝑥))
5949, 51cxpcld 25851 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝑥𝑐𝐴) ∈ ℂ)
6059, 49, 50divrecd 11742 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → ((𝑥𝑐𝐴) / 𝑥) = ((𝑥𝑐𝐴) · (1 / 𝑥)))
6156, 58, 603eqtrd 2782 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝑥𝑐(𝐴 − 1)) = ((𝑥𝑐𝐴) · (1 / 𝑥)))
6261oveq2d 7284 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝐴 · (𝑥𝑐(𝐴 − 1))) = (𝐴 · ((𝑥𝑐𝐴) · (1 / 𝑥))))
6351, 59, 11mul12d 11172 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝐴 · ((𝑥𝑐𝐴) · (1 / 𝑥))) = ((𝑥𝑐𝐴) · (𝐴 · (1 / 𝑥))))
6459, 51, 11mulassd 10986 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (((𝑥𝑐𝐴) · 𝐴) · (1 / 𝑥)) = ((𝑥𝑐𝐴) · (𝐴 · (1 / 𝑥))))
6563, 64eqtr4d 2781 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝐴 · ((𝑥𝑐𝐴) · (1 / 𝑥))) = (((𝑥𝑐𝐴) · 𝐴) · (1 / 𝑥)))
6652oveq1d 7283 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → ((𝑥𝑐𝐴) · 𝐴) = ((exp‘(𝐴 · (log‘𝑥))) · 𝐴))
6766oveq1d 7283 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (((𝑥𝑐𝐴) · 𝐴) · (1 / 𝑥)) = (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥)))
6862, 65, 673eqtrd 2782 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝐴 · (𝑥𝑐(𝐴 − 1))) = (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥)))
6968mpteq2dva 5174 . 2 (𝐴 ∈ ℂ → (𝑥𝐷 ↦ (𝐴 · (𝑥𝑐(𝐴 − 1)))) = (𝑥𝐷 ↦ (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥))))
7048, 54, 693eqtr4d 2788 1 (𝐴 ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (𝑥𝑐𝐴))) = (𝑥𝐷 ↦ (𝐴 · (𝑥𝑐(𝐴 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  Vcvv 3430  cdif 3884  {cpr 4564  cmpt 5157  cres 5587  wf 6423  cfv 6427  (class class class)co 7268  cc 10857  cr 10858  0cc0 10859  1c1 10860   · cmul 10864  -∞cmnf 10995  cmin 11193   / cdiv 11620  (,]cioc 13068  expce 15759  cnccncf 24027   D cdv 25015  logclog 25698  𝑐ccxp 25699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-inf2 9387  ax-cnex 10915  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935  ax-pre-mulgt0 10936  ax-pre-sup 10937  ax-addf 10938  ax-mulf 10939
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-se 5541  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-isom 6436  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7704  df-1st 7821  df-2nd 7822  df-supp 7966  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-1o 8285  df-2o 8286  df-er 8486  df-map 8605  df-pm 8606  df-ixp 8674  df-en 8722  df-dom 8723  df-sdom 8724  df-fin 8725  df-fsupp 9117  df-fi 9158  df-sup 9189  df-inf 9190  df-oi 9257  df-card 9685  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196  df-div 11621  df-nn 11962  df-2 12024  df-3 12025  df-4 12026  df-5 12027  df-6 12028  df-7 12029  df-8 12030  df-9 12031  df-n0 12222  df-z 12308  df-dec 12426  df-uz 12571  df-q 12677  df-rp 12719  df-xneg 12836  df-xadd 12837  df-xmul 12838  df-ioo 13071  df-ioc 13072  df-ico 13073  df-icc 13074  df-fz 13228  df-fzo 13371  df-fl 13500  df-mod 13578  df-seq 13710  df-exp 13771  df-fac 13976  df-bc 14005  df-hash 14033  df-shft 14766  df-cj 14798  df-re 14799  df-im 14800  df-sqrt 14934  df-abs 14935  df-limsup 15168  df-clim 15185  df-rlim 15186  df-sum 15386  df-ef 15765  df-sin 15767  df-cos 15768  df-tan 15769  df-pi 15770  df-struct 16836  df-sets 16853  df-slot 16871  df-ndx 16883  df-base 16901  df-ress 16930  df-plusg 16963  df-mulr 16964  df-starv 16965  df-sca 16966  df-vsca 16967  df-ip 16968  df-tset 16969  df-ple 16970  df-ds 16972  df-unif 16973  df-hom 16974  df-cco 16975  df-rest 17121  df-topn 17122  df-0g 17140  df-gsum 17141  df-topgen 17142  df-pt 17143  df-prds 17146  df-xrs 17201  df-qtop 17206  df-imas 17207  df-xps 17209  df-mre 17283  df-mrc 17284  df-acs 17286  df-mgm 18314  df-sgrp 18363  df-mnd 18374  df-submnd 18419  df-mulg 18689  df-cntz 18911  df-cmn 19376  df-psmet 20577  df-xmet 20578  df-met 20579  df-bl 20580  df-mopn 20581  df-fbas 20582  df-fg 20583  df-cnfld 20586  df-top 22031  df-topon 22048  df-topsp 22070  df-bases 22084  df-cld 22158  df-ntr 22159  df-cls 22160  df-nei 22237  df-lp 22275  df-perf 22276  df-cn 22366  df-cnp 22367  df-haus 22454  df-cmp 22526  df-tx 22701  df-hmeo 22894  df-fil 22985  df-fm 23077  df-flim 23078  df-flf 23079  df-xms 23461  df-ms 23462  df-tms 23463  df-cncf 24029  df-limc 25018  df-dv 25019  df-log 25700  df-cxp 25701
This theorem is referenced by:  dvcnsqrt  25885  binomcxplemdvbinom  41930
  Copyright terms: Public domain W3C validator