MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcncxp1 Structured version   Visualization version   GIF version

Theorem dvcncxp1 26785
Description: Derivative of complex power with respect to first argument on the complex plane. (Contributed by Brendan Leahy, 18-Dec-2018.)
Hypothesis
Ref Expression
dvcncxp1.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
dvcncxp1 (𝐴 ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (𝑥𝑐𝐴))) = (𝑥𝐷 ↦ (𝐴 · (𝑥𝑐(𝐴 − 1)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷

Proof of Theorem dvcncxp1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnelprrecn 11248 . . . 4 ℂ ∈ {ℝ, ℂ}
21a1i 11 . . 3 (𝐴 ∈ ℂ → ℂ ∈ {ℝ, ℂ})
3 dvcncxp1.d . . . . . . 7 𝐷 = (ℂ ∖ (-∞(,]0))
4 difss 4136 . . . . . . 7 (ℂ ∖ (-∞(,]0)) ⊆ ℂ
53, 4eqsstri 4030 . . . . . 6 𝐷 ⊆ ℂ
65sseli 3979 . . . . 5 (𝑥𝐷𝑥 ∈ ℂ)
73logdmn0 26682 . . . . 5 (𝑥𝐷𝑥 ≠ 0)
86, 7logcld 26612 . . . 4 (𝑥𝐷 → (log‘𝑥) ∈ ℂ)
98adantl 481 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (log‘𝑥) ∈ ℂ)
106, 7reccld 12036 . . . 4 (𝑥𝐷 → (1 / 𝑥) ∈ ℂ)
1110adantl 481 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (1 / 𝑥) ∈ ℂ)
12 mulcl 11239 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
13 efcl 16118 . . . 4 ((𝐴 · 𝑦) ∈ ℂ → (exp‘(𝐴 · 𝑦)) ∈ ℂ)
1412, 13syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (exp‘(𝐴 · 𝑦)) ∈ ℂ)
15 ovexd 7466 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((exp‘(𝐴 · 𝑦)) · 𝐴) ∈ V)
163logcn 26689 . . . . . . . 8 (log ↾ 𝐷) ∈ (𝐷cn→ℂ)
17 cncff 24919 . . . . . . . 8 ((log ↾ 𝐷) ∈ (𝐷cn→ℂ) → (log ↾ 𝐷):𝐷⟶ℂ)
1816, 17mp1i 13 . . . . . . 7 (𝐴 ∈ ℂ → (log ↾ 𝐷):𝐷⟶ℂ)
1918feqmptd 6977 . . . . . 6 (𝐴 ∈ ℂ → (log ↾ 𝐷) = (𝑥𝐷 ↦ ((log ↾ 𝐷)‘𝑥)))
20 fvres 6925 . . . . . . 7 (𝑥𝐷 → ((log ↾ 𝐷)‘𝑥) = (log‘𝑥))
2120mpteq2ia 5245 . . . . . 6 (𝑥𝐷 ↦ ((log ↾ 𝐷)‘𝑥)) = (𝑥𝐷 ↦ (log‘𝑥))
2219, 21eqtrdi 2793 . . . . 5 (𝐴 ∈ ℂ → (log ↾ 𝐷) = (𝑥𝐷 ↦ (log‘𝑥)))
2322oveq2d 7447 . . . 4 (𝐴 ∈ ℂ → (ℂ D (log ↾ 𝐷)) = (ℂ D (𝑥𝐷 ↦ (log‘𝑥))))
243dvlog 26693 . . . 4 (ℂ D (log ↾ 𝐷)) = (𝑥𝐷 ↦ (1 / 𝑥))
2523, 24eqtr3di 2792 . . 3 (𝐴 ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (log‘𝑥))) = (𝑥𝐷 ↦ (1 / 𝑥)))
26 simpl 482 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
27 efcl 16118 . . . . 5 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
2827adantl 481 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (exp‘𝑥) ∈ ℂ)
29 simpr 484 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
30 1cnd 11256 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 1 ∈ ℂ)
312dvmptid 25995 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1))
32 id 22 . . . . . 6 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
332, 29, 30, 31, 32dvmptcmul 26002 . . . . 5 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · 1)))
34 mulrid 11259 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
3534mpteq2dv 5244 . . . . 5 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 1)) = (𝑦 ∈ ℂ ↦ 𝐴))
3633, 35eqtrd 2777 . . . 4 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ 𝐴))
37 dvef 26018 . . . . 5 (ℂ D exp) = exp
38 eff 16117 . . . . . . . 8 exp:ℂ⟶ℂ
3938a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → exp:ℂ⟶ℂ)
4039feqmptd 6977 . . . . . 6 (𝐴 ∈ ℂ → exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
4140oveq2d 7447 . . . . 5 (𝐴 ∈ ℂ → (ℂ D exp) = (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥))))
4237, 41, 403eqtr3a 2801 . . . 4 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥))) = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
43 fveq2 6906 . . . 4 (𝑥 = (𝐴 · 𝑦) → (exp‘𝑥) = (exp‘(𝐴 · 𝑦)))
442, 2, 12, 26, 28, 28, 36, 42, 43, 43dvmptco 26010 . . 3 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((exp‘(𝐴 · 𝑦)) · 𝐴)))
45 oveq2 7439 . . . 4 (𝑦 = (log‘𝑥) → (𝐴 · 𝑦) = (𝐴 · (log‘𝑥)))
4645fveq2d 6910 . . 3 (𝑦 = (log‘𝑥) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · (log‘𝑥))))
4746oveq1d 7446 . . 3 (𝑦 = (log‘𝑥) → ((exp‘(𝐴 · 𝑦)) · 𝐴) = ((exp‘(𝐴 · (log‘𝑥))) · 𝐴))
482, 2, 9, 11, 14, 15, 25, 44, 46, 47dvmptco 26010 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (exp‘(𝐴 · (log‘𝑥))))) = (𝑥𝐷 ↦ (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥))))
496adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → 𝑥 ∈ ℂ)
507adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → 𝑥 ≠ 0)
51 simpl 482 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → 𝐴 ∈ ℂ)
5249, 50, 51cxpefd 26754 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝑥𝑐𝐴) = (exp‘(𝐴 · (log‘𝑥))))
5352mpteq2dva 5242 . . 3 (𝐴 ∈ ℂ → (𝑥𝐷 ↦ (𝑥𝑐𝐴)) = (𝑥𝐷 ↦ (exp‘(𝐴 · (log‘𝑥)))))
5453oveq2d 7447 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (𝑥𝑐𝐴))) = (ℂ D (𝑥𝐷 ↦ (exp‘(𝐴 · (log‘𝑥))))))
55 1cnd 11256 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → 1 ∈ ℂ)
5649, 50, 51, 55cxpsubd 26760 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝑥𝑐(𝐴 − 1)) = ((𝑥𝑐𝐴) / (𝑥𝑐1)))
5749cxp1d 26748 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝑥𝑐1) = 𝑥)
5857oveq2d 7447 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → ((𝑥𝑐𝐴) / (𝑥𝑐1)) = ((𝑥𝑐𝐴) / 𝑥))
5949, 51cxpcld 26750 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝑥𝑐𝐴) ∈ ℂ)
6059, 49, 50divrecd 12046 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → ((𝑥𝑐𝐴) / 𝑥) = ((𝑥𝑐𝐴) · (1 / 𝑥)))
6156, 58, 603eqtrd 2781 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝑥𝑐(𝐴 − 1)) = ((𝑥𝑐𝐴) · (1 / 𝑥)))
6261oveq2d 7447 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝐴 · (𝑥𝑐(𝐴 − 1))) = (𝐴 · ((𝑥𝑐𝐴) · (1 / 𝑥))))
6351, 59, 11mul12d 11470 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝐴 · ((𝑥𝑐𝐴) · (1 / 𝑥))) = ((𝑥𝑐𝐴) · (𝐴 · (1 / 𝑥))))
6459, 51, 11mulassd 11284 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (((𝑥𝑐𝐴) · 𝐴) · (1 / 𝑥)) = ((𝑥𝑐𝐴) · (𝐴 · (1 / 𝑥))))
6563, 64eqtr4d 2780 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝐴 · ((𝑥𝑐𝐴) · (1 / 𝑥))) = (((𝑥𝑐𝐴) · 𝐴) · (1 / 𝑥)))
6652oveq1d 7446 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → ((𝑥𝑐𝐴) · 𝐴) = ((exp‘(𝐴 · (log‘𝑥))) · 𝐴))
6766oveq1d 7446 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (((𝑥𝑐𝐴) · 𝐴) · (1 / 𝑥)) = (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥)))
6862, 65, 673eqtrd 2781 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥𝐷) → (𝐴 · (𝑥𝑐(𝐴 − 1))) = (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥)))
6968mpteq2dva 5242 . 2 (𝐴 ∈ ℂ → (𝑥𝐷 ↦ (𝐴 · (𝑥𝑐(𝐴 − 1)))) = (𝑥𝐷 ↦ (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥))))
7048, 54, 693eqtr4d 2787 1 (𝐴 ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (𝑥𝑐𝐴))) = (𝑥𝐷 ↦ (𝐴 · (𝑥𝑐(𝐴 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  Vcvv 3480  cdif 3948  {cpr 4628  cmpt 5225  cres 5687  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   · cmul 11160  -∞cmnf 11293  cmin 11492   / cdiv 11920  (,]cioc 13388  expce 16097  cnccncf 24902   D cdv 25898  logclog 26596  𝑐ccxp 26597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-tan 16107  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-cxp 26599
This theorem is referenced by:  dvcnsqrt  26786  binomcxplemdvbinom  44372
  Copyright terms: Public domain W3C validator