Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvsinexp Structured version   Visualization version   GIF version

Theorem dvsinexp 43127
Description: The derivative of sin^N . (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
dvsinexp.5 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
dvsinexp (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))) = (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
Distinct variable groups:   𝑥,𝑁   𝜑,𝑥

Proof of Theorem dvsinexp
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnelprrecn 10822 . . 3 ℂ ∈ {ℝ, ℂ}
21a1i 11 . 2 (𝜑 → ℂ ∈ {ℝ, ℂ})
3 sinf 15685 . . . 4 sin:ℂ⟶ℂ
43a1i 11 . . 3 (𝜑 → sin:ℂ⟶ℂ)
54ffvelrnda 6904 . 2 ((𝜑𝑥 ∈ ℂ) → (sin‘𝑥) ∈ ℂ)
6 cosf 15686 . . . 4 cos:ℂ⟶ℂ
76a1i 11 . . 3 (𝜑 → cos:ℂ⟶ℂ)
87ffvelrnda 6904 . 2 ((𝜑𝑥 ∈ ℂ) → (cos‘𝑥) ∈ ℂ)
9 simpr 488 . . 3 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
10 dvsinexp.5 . . . . 5 (𝜑𝑁 ∈ ℕ)
1110nnnn0d 12150 . . . 4 (𝜑𝑁 ∈ ℕ0)
1211adantr 484 . . 3 ((𝜑𝑦 ∈ ℂ) → 𝑁 ∈ ℕ0)
139, 12expcld 13716 . 2 ((𝜑𝑦 ∈ ℂ) → (𝑦𝑁) ∈ ℂ)
1410nncnd 11846 . . . 4 (𝜑𝑁 ∈ ℂ)
1514adantr 484 . . 3 ((𝜑𝑦 ∈ ℂ) → 𝑁 ∈ ℂ)
16 nnm1nn0 12131 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1710, 16syl 17 . . . . 5 (𝜑 → (𝑁 − 1) ∈ ℕ0)
1817adantr 484 . . . 4 ((𝜑𝑦 ∈ ℂ) → (𝑁 − 1) ∈ ℕ0)
199, 18expcld 13716 . . 3 ((𝜑𝑦 ∈ ℂ) → (𝑦↑(𝑁 − 1)) ∈ ℂ)
2015, 19mulcld 10853 . 2 ((𝜑𝑦 ∈ ℂ) → (𝑁 · (𝑦↑(𝑁 − 1))) ∈ ℂ)
21 dvsin 24879 . . 3 (ℂ D sin) = cos
224feqmptd 6780 . . . 4 (𝜑 → sin = (𝑥 ∈ ℂ ↦ (sin‘𝑥)))
2322oveq2d 7229 . . 3 (𝜑 → (ℂ D sin) = (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))))
247feqmptd 6780 . . 3 (𝜑 → cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
2521, 23, 243eqtr3a 2802 . 2 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))) = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
26 dvexp 24850 . . 3 (𝑁 ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑁))) = (𝑦 ∈ ℂ ↦ (𝑁 · (𝑦↑(𝑁 − 1)))))
2710, 26syl 17 . 2 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑁))) = (𝑦 ∈ ℂ ↦ (𝑁 · (𝑦↑(𝑁 − 1)))))
28 oveq1 7220 . 2 (𝑦 = (sin‘𝑥) → (𝑦𝑁) = ((sin‘𝑥)↑𝑁))
29 oveq1 7220 . . 3 (𝑦 = (sin‘𝑥) → (𝑦↑(𝑁 − 1)) = ((sin‘𝑥)↑(𝑁 − 1)))
3029oveq2d 7229 . 2 (𝑦 = (sin‘𝑥) → (𝑁 · (𝑦↑(𝑁 − 1))) = (𝑁 · ((sin‘𝑥)↑(𝑁 − 1))))
312, 2, 5, 8, 13, 20, 25, 27, 28, 30dvmptco 24869 1 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))) = (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  {cpr 4543  cmpt 5135  wf 6376  cfv 6380  (class class class)co 7213  cc 10727  cr 10728  1c1 10730   · cmul 10734  cmin 11062  cn 11830  0cn0 12090  cexp 13635  sincsin 15625  cosccos 15626   D cdv 24760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-shft 14630  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-sum 15250  df-ef 15629  df-sin 15631  df-cos 15632  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-limc 24763  df-dv 24764
This theorem is referenced by:  itgsinexplem1  43170
  Copyright terms: Public domain W3C validator