Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvsinexp | Structured version Visualization version GIF version |
Description: The derivative of sin^N . (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
dvsinexp.5 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Ref | Expression |
---|---|
dvsinexp | ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))) = (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnelprrecn 11066 | . . 3 ⊢ ℂ ∈ {ℝ, ℂ} | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ℂ ∈ {ℝ, ℂ}) |
3 | sinf 15933 | . . . 4 ⊢ sin:ℂ⟶ℂ | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → sin:ℂ⟶ℂ) |
5 | 4 | ffvelcdmda 7018 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (sin‘𝑥) ∈ ℂ) |
6 | cosf 15934 | . . . 4 ⊢ cos:ℂ⟶ℂ | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → cos:ℂ⟶ℂ) |
8 | 7 | ffvelcdmda 7018 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (cos‘𝑥) ∈ ℂ) |
9 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ) | |
10 | dvsinexp.5 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
11 | 10 | nnnn0d 12395 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
12 | 11 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑁 ∈ ℕ0) |
13 | 9, 12 | expcld 13966 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑦↑𝑁) ∈ ℂ) |
14 | 10 | nncnd 12091 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
15 | 14 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑁 ∈ ℂ) |
16 | nnm1nn0 12376 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
17 | 10, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑁 − 1) ∈ ℕ0) |
18 | 17 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑁 − 1) ∈ ℕ0) |
19 | 9, 18 | expcld 13966 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑦↑(𝑁 − 1)) ∈ ℂ) |
20 | 15, 19 | mulcld 11097 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑁 · (𝑦↑(𝑁 − 1))) ∈ ℂ) |
21 | dvsin 25253 | . . 3 ⊢ (ℂ D sin) = cos | |
22 | 4 | feqmptd 6894 | . . . 4 ⊢ (𝜑 → sin = (𝑥 ∈ ℂ ↦ (sin‘𝑥))) |
23 | 22 | oveq2d 7354 | . . 3 ⊢ (𝜑 → (ℂ D sin) = (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥)))) |
24 | 7 | feqmptd 6894 | . . 3 ⊢ (𝜑 → cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥))) |
25 | 21, 23, 24 | 3eqtr3a 2800 | . 2 ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))) = (𝑥 ∈ ℂ ↦ (cos‘𝑥))) |
26 | dvexp 25224 | . . 3 ⊢ (𝑁 ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑𝑁))) = (𝑦 ∈ ℂ ↦ (𝑁 · (𝑦↑(𝑁 − 1))))) | |
27 | 10, 26 | syl 17 | . 2 ⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑𝑁))) = (𝑦 ∈ ℂ ↦ (𝑁 · (𝑦↑(𝑁 − 1))))) |
28 | oveq1 7345 | . 2 ⊢ (𝑦 = (sin‘𝑥) → (𝑦↑𝑁) = ((sin‘𝑥)↑𝑁)) | |
29 | oveq1 7345 | . . 3 ⊢ (𝑦 = (sin‘𝑥) → (𝑦↑(𝑁 − 1)) = ((sin‘𝑥)↑(𝑁 − 1))) | |
30 | 29 | oveq2d 7354 | . 2 ⊢ (𝑦 = (sin‘𝑥) → (𝑁 · (𝑦↑(𝑁 − 1))) = (𝑁 · ((sin‘𝑥)↑(𝑁 − 1)))) |
31 | 2, 2, 5, 8, 13, 20, 25, 27, 28, 30 | dvmptco 25243 | 1 ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))) = (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {cpr 4576 ↦ cmpt 5176 ⟶wf 6476 ‘cfv 6480 (class class class)co 7338 ℂcc 10971 ℝcr 10972 1c1 10974 · cmul 10978 − cmin 11307 ℕcn 12075 ℕ0cn0 12335 ↑cexp 13884 sincsin 15873 cosccos 15874 D cdv 25134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-inf2 9499 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 ax-pre-sup 11051 ax-addf 11052 ax-mulf 11053 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4854 df-int 4896 df-iun 4944 df-iin 4945 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-se 5577 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-isom 6489 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-of 7596 df-om 7782 df-1st 7900 df-2nd 7901 df-supp 8049 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-2o 8369 df-er 8570 df-map 8689 df-pm 8690 df-ixp 8758 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-fsupp 9228 df-fi 9269 df-sup 9300 df-inf 9301 df-oi 9368 df-card 9797 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-div 11735 df-nn 12076 df-2 12138 df-3 12139 df-4 12140 df-5 12141 df-6 12142 df-7 12143 df-8 12144 df-9 12145 df-n0 12336 df-z 12422 df-dec 12540 df-uz 12685 df-q 12791 df-rp 12833 df-xneg 12950 df-xadd 12951 df-xmul 12952 df-ico 13187 df-icc 13188 df-fz 13342 df-fzo 13485 df-fl 13614 df-seq 13824 df-exp 13885 df-fac 14090 df-bc 14119 df-hash 14147 df-shft 14878 df-cj 14910 df-re 14911 df-im 14912 df-sqrt 15046 df-abs 15047 df-limsup 15280 df-clim 15297 df-rlim 15298 df-sum 15498 df-ef 15877 df-sin 15879 df-cos 15880 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-starv 17075 df-sca 17076 df-vsca 17077 df-ip 17078 df-tset 17079 df-ple 17080 df-ds 17082 df-unif 17083 df-hom 17084 df-cco 17085 df-rest 17231 df-topn 17232 df-0g 17250 df-gsum 17251 df-topgen 17252 df-pt 17253 df-prds 17256 df-xrs 17311 df-qtop 17316 df-imas 17317 df-xps 17319 df-mre 17393 df-mrc 17394 df-acs 17396 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-submnd 18529 df-mulg 18798 df-cntz 19020 df-cmn 19484 df-psmet 20696 df-xmet 20697 df-met 20698 df-bl 20699 df-mopn 20700 df-fbas 20701 df-fg 20702 df-cnfld 20705 df-top 22150 df-topon 22167 df-topsp 22189 df-bases 22203 df-cld 22277 df-ntr 22278 df-cls 22279 df-nei 22356 df-lp 22394 df-perf 22395 df-cn 22485 df-cnp 22486 df-haus 22573 df-tx 22820 df-hmeo 23013 df-fil 23104 df-fm 23196 df-flim 23197 df-flf 23198 df-xms 23580 df-ms 23581 df-tms 23582 df-cncf 24148 df-limc 25137 df-dv 25138 |
This theorem is referenced by: itgsinexplem1 43883 |
Copyright terms: Public domain | W3C validator |