![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmineqlem8 | Structured version Visualization version GIF version |
Description: Derivative of (1-x)^(N-M). (Contributed by metakunt, 12-May-2024.) |
Ref | Expression |
---|---|
lcmineqlem8.1 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
lcmineqlem8.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
lcmineqlem8.3 | ⊢ (𝜑 → 𝑀 < 𝑁) |
Ref | Expression |
---|---|
lcmineqlem8 | ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 𝑀)))) = (𝑥 ∈ ℂ ↦ (-(𝑁 − 𝑀) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnelprrecn 11246 | . . . 4 ⊢ ℂ ∈ {ℝ, ℂ} | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → ℂ ∈ {ℝ, ℂ}) |
3 | 1cnd 11254 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ) | |
4 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) | |
5 | 3, 4 | subcld 11618 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (1 − 𝑥) ∈ ℂ) |
6 | neg1cn 12378 | . . . 4 ⊢ -1 ∈ ℂ | |
7 | 6 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → -1 ∈ ℂ) |
8 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ) | |
9 | lcmineqlem8.3 | . . . . . . 7 ⊢ (𝜑 → 𝑀 < 𝑁) | |
10 | lcmineqlem8.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
11 | 10 | nnzd 12638 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
12 | lcmineqlem8.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
13 | 12 | nnzd 12638 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
14 | znnsub 12661 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) | |
15 | 11, 13, 14 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) |
16 | 9, 15 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℕ) |
17 | 16 | nnnn0d 12585 | . . . . 5 ⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℕ0) |
18 | 17 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑁 − 𝑀) ∈ ℕ0) |
19 | 8, 18 | expcld 14183 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑦↑(𝑁 − 𝑀)) ∈ ℂ) |
20 | 12 | nncnd 12280 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑁 ∈ ℂ) |
22 | 10 | nncnd 12280 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
23 | 22 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑀 ∈ ℂ) |
24 | 21, 23 | subcld 11618 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑁 − 𝑀) ∈ ℂ) |
25 | nnm1nn0 12565 | . . . . . . 7 ⊢ ((𝑁 − 𝑀) ∈ ℕ → ((𝑁 − 𝑀) − 1) ∈ ℕ0) | |
26 | 16, 25 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝑁 − 𝑀) − 1) ∈ ℕ0) |
27 | 26 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ((𝑁 − 𝑀) − 1) ∈ ℕ0) |
28 | expcl 14117 | . . . . 5 ⊢ ((𝑦 ∈ ℂ ∧ ((𝑁 − 𝑀) − 1) ∈ ℕ0) → (𝑦↑((𝑁 − 𝑀) − 1)) ∈ ℂ) | |
29 | 8, 27, 28 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑦↑((𝑁 − 𝑀) − 1)) ∈ ℂ) |
30 | 24, 29 | mulcld 11279 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ((𝑁 − 𝑀) · (𝑦↑((𝑁 − 𝑀) − 1))) ∈ ℂ) |
31 | lcmineqlem7 42017 | . . . 4 ⊢ (ℂ D (𝑥 ∈ ℂ ↦ (1 − 𝑥))) = (𝑥 ∈ ℂ ↦ -1) | |
32 | 31 | a1i 11 | . . 3 ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (1 − 𝑥))) = (𝑥 ∈ ℂ ↦ -1)) |
33 | dvexp 26006 | . . . 4 ⊢ ((𝑁 − 𝑀) ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑(𝑁 − 𝑀)))) = (𝑦 ∈ ℂ ↦ ((𝑁 − 𝑀) · (𝑦↑((𝑁 − 𝑀) − 1))))) | |
34 | 16, 33 | syl 17 | . . 3 ⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑(𝑁 − 𝑀)))) = (𝑦 ∈ ℂ ↦ ((𝑁 − 𝑀) · (𝑦↑((𝑁 − 𝑀) − 1))))) |
35 | oveq1 7438 | . . 3 ⊢ (𝑦 = (1 − 𝑥) → (𝑦↑(𝑁 − 𝑀)) = ((1 − 𝑥)↑(𝑁 − 𝑀))) | |
36 | oveq1 7438 | . . . 4 ⊢ (𝑦 = (1 − 𝑥) → (𝑦↑((𝑁 − 𝑀) − 1)) = ((1 − 𝑥)↑((𝑁 − 𝑀) − 1))) | |
37 | 36 | oveq2d 7447 | . . 3 ⊢ (𝑦 = (1 − 𝑥) → ((𝑁 − 𝑀) · (𝑦↑((𝑁 − 𝑀) − 1))) = ((𝑁 − 𝑀) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1)))) |
38 | 2, 2, 5, 7, 19, 30, 32, 34, 35, 37 | dvmptco 26025 | . 2 ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 𝑀)))) = (𝑥 ∈ ℂ ↦ (((𝑁 − 𝑀) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1))) · -1))) |
39 | 20 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑁 ∈ ℂ) |
40 | 22 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑀 ∈ ℂ) |
41 | 39, 40 | subcld 11618 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑁 − 𝑀) ∈ ℂ) |
42 | ax-1cn 11211 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
43 | subcl 11505 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 − 𝑥) ∈ ℂ) | |
44 | 42, 43 | mpan 690 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ → (1 − 𝑥) ∈ ℂ) |
45 | expcl 14117 | . . . . . . 7 ⊢ (((1 − 𝑥) ∈ ℂ ∧ ((𝑁 − 𝑀) − 1) ∈ ℕ0) → ((1 − 𝑥)↑((𝑁 − 𝑀) − 1)) ∈ ℂ) | |
46 | 44, 26, 45 | syl2anr 597 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((1 − 𝑥)↑((𝑁 − 𝑀) − 1)) ∈ ℂ) |
47 | 41, 46, 7 | mul32d 11469 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (((𝑁 − 𝑀) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1))) · -1) = (((𝑁 − 𝑀) · -1) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1)))) |
48 | 20, 22 | subcld 11618 | . . . . . . . 8 ⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℂ) |
49 | 6 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → -1 ∈ ℂ) |
50 | 48, 49 | mulcomd 11280 | . . . . . . 7 ⊢ (𝜑 → ((𝑁 − 𝑀) · -1) = (-1 · (𝑁 − 𝑀))) |
51 | 50 | oveq1d 7446 | . . . . . 6 ⊢ (𝜑 → (((𝑁 − 𝑀) · -1) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1))) = ((-1 · (𝑁 − 𝑀)) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1)))) |
52 | 51 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (((𝑁 − 𝑀) · -1) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1))) = ((-1 · (𝑁 − 𝑀)) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1)))) |
53 | 47, 52 | eqtrd 2775 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (((𝑁 − 𝑀) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1))) · -1) = ((-1 · (𝑁 − 𝑀)) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1)))) |
54 | 48 | mulm1d 11713 | . . . . . 6 ⊢ (𝜑 → (-1 · (𝑁 − 𝑀)) = -(𝑁 − 𝑀)) |
55 | 54 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (-1 · (𝑁 − 𝑀)) = -(𝑁 − 𝑀)) |
56 | 55 | oveq1d 7446 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((-1 · (𝑁 − 𝑀)) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1))) = (-(𝑁 − 𝑀) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1)))) |
57 | 53, 56 | eqtrd 2775 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (((𝑁 − 𝑀) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1))) · -1) = (-(𝑁 − 𝑀) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1)))) |
58 | 57 | mpteq2dva 5248 | . 2 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (((𝑁 − 𝑀) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1))) · -1)) = (𝑥 ∈ ℂ ↦ (-(𝑁 − 𝑀) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1))))) |
59 | 38, 58 | eqtrd 2775 | 1 ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 𝑀)))) = (𝑥 ∈ ℂ ↦ (-(𝑁 − 𝑀) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cpr 4633 class class class wbr 5148 ↦ cmpt 5231 (class class class)co 7431 ℂcc 11151 ℝcr 11152 1c1 11154 · cmul 11158 < clt 11293 − cmin 11490 -cneg 11491 ℕcn 12264 ℕ0cn0 12524 ℤcz 12611 ↑cexp 14099 D cdv 25913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-icc 13391 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-mulg 19099 df-cntz 19348 df-cmn 19815 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-lp 23160 df-perf 23161 df-cn 23251 df-cnp 23252 df-haus 23339 df-tx 23586 df-hmeo 23779 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-xms 24346 df-ms 24347 df-tms 24348 df-cncf 24918 df-limc 25916 df-dv 25917 |
This theorem is referenced by: lcmineqlem10 42020 |
Copyright terms: Public domain | W3C validator |