Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem8 Structured version   Visualization version   GIF version

Theorem lcmineqlem8 42075
Description: Derivative of (1-x)^(N-M). (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
lcmineqlem8.1 (𝜑𝑀 ∈ ℕ)
lcmineqlem8.2 (𝜑𝑁 ∈ ℕ)
lcmineqlem8.3 (𝜑𝑀 < 𝑁)
Assertion
Ref Expression
lcmineqlem8 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁𝑀)))) = (𝑥 ∈ ℂ ↦ (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥

Proof of Theorem lcmineqlem8
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnelprrecn 11099 . . . 4 ℂ ∈ {ℝ, ℂ}
21a1i 11 . . 3 (𝜑 → ℂ ∈ {ℝ, ℂ})
3 1cnd 11107 . . . 4 ((𝜑𝑥 ∈ ℂ) → 1 ∈ ℂ)
4 simpr 484 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
53, 4subcld 11472 . . 3 ((𝜑𝑥 ∈ ℂ) → (1 − 𝑥) ∈ ℂ)
6 neg1cn 12110 . . . 4 -1 ∈ ℂ
76a1i 11 . . 3 ((𝜑𝑥 ∈ ℂ) → -1 ∈ ℂ)
8 simpr 484 . . . 4 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
9 lcmineqlem8.3 . . . . . . 7 (𝜑𝑀 < 𝑁)
10 lcmineqlem8.1 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
1110nnzd 12495 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
12 lcmineqlem8.2 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
1312nnzd 12495 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
14 znnsub 12518 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
1511, 13, 14syl2anc 584 . . . . . . 7 (𝜑 → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
169, 15mpbid 232 . . . . . 6 (𝜑 → (𝑁𝑀) ∈ ℕ)
1716nnnn0d 12442 . . . . 5 (𝜑 → (𝑁𝑀) ∈ ℕ0)
1817adantr 480 . . . 4 ((𝜑𝑦 ∈ ℂ) → (𝑁𝑀) ∈ ℕ0)
198, 18expcld 14053 . . 3 ((𝜑𝑦 ∈ ℂ) → (𝑦↑(𝑁𝑀)) ∈ ℂ)
2012nncnd 12141 . . . . . 6 (𝜑𝑁 ∈ ℂ)
2120adantr 480 . . . . 5 ((𝜑𝑦 ∈ ℂ) → 𝑁 ∈ ℂ)
2210nncnd 12141 . . . . . 6 (𝜑𝑀 ∈ ℂ)
2322adantr 480 . . . . 5 ((𝜑𝑦 ∈ ℂ) → 𝑀 ∈ ℂ)
2421, 23subcld 11472 . . . 4 ((𝜑𝑦 ∈ ℂ) → (𝑁𝑀) ∈ ℂ)
25 nnm1nn0 12422 . . . . . . 7 ((𝑁𝑀) ∈ ℕ → ((𝑁𝑀) − 1) ∈ ℕ0)
2616, 25syl 17 . . . . . 6 (𝜑 → ((𝑁𝑀) − 1) ∈ ℕ0)
2726adantr 480 . . . . 5 ((𝜑𝑦 ∈ ℂ) → ((𝑁𝑀) − 1) ∈ ℕ0)
28 expcl 13986 . . . . 5 ((𝑦 ∈ ℂ ∧ ((𝑁𝑀) − 1) ∈ ℕ0) → (𝑦↑((𝑁𝑀) − 1)) ∈ ℂ)
298, 27, 28syl2anc 584 . . . 4 ((𝜑𝑦 ∈ ℂ) → (𝑦↑((𝑁𝑀) − 1)) ∈ ℂ)
3024, 29mulcld 11132 . . 3 ((𝜑𝑦 ∈ ℂ) → ((𝑁𝑀) · (𝑦↑((𝑁𝑀) − 1))) ∈ ℂ)
31 lcmineqlem7 42074 . . . 4 (ℂ D (𝑥 ∈ ℂ ↦ (1 − 𝑥))) = (𝑥 ∈ ℂ ↦ -1)
3231a1i 11 . . 3 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (1 − 𝑥))) = (𝑥 ∈ ℂ ↦ -1))
33 dvexp 25885 . . . 4 ((𝑁𝑀) ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑(𝑁𝑀)))) = (𝑦 ∈ ℂ ↦ ((𝑁𝑀) · (𝑦↑((𝑁𝑀) − 1)))))
3416, 33syl 17 . . 3 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑(𝑁𝑀)))) = (𝑦 ∈ ℂ ↦ ((𝑁𝑀) · (𝑦↑((𝑁𝑀) − 1)))))
35 oveq1 7353 . . 3 (𝑦 = (1 − 𝑥) → (𝑦↑(𝑁𝑀)) = ((1 − 𝑥)↑(𝑁𝑀)))
36 oveq1 7353 . . . 4 (𝑦 = (1 − 𝑥) → (𝑦↑((𝑁𝑀) − 1)) = ((1 − 𝑥)↑((𝑁𝑀) − 1)))
3736oveq2d 7362 . . 3 (𝑦 = (1 − 𝑥) → ((𝑁𝑀) · (𝑦↑((𝑁𝑀) − 1))) = ((𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
382, 2, 5, 7, 19, 30, 32, 34, 35, 37dvmptco 25904 . 2 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁𝑀)))) = (𝑥 ∈ ℂ ↦ (((𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) · -1)))
3920adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → 𝑁 ∈ ℂ)
4022adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → 𝑀 ∈ ℂ)
4139, 40subcld 11472 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (𝑁𝑀) ∈ ℂ)
42 ax-1cn 11064 . . . . . . . 8 1 ∈ ℂ
43 subcl 11359 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 − 𝑥) ∈ ℂ)
4442, 43mpan 690 . . . . . . 7 (𝑥 ∈ ℂ → (1 − 𝑥) ∈ ℂ)
45 expcl 13986 . . . . . . 7 (((1 − 𝑥) ∈ ℂ ∧ ((𝑁𝑀) − 1) ∈ ℕ0) → ((1 − 𝑥)↑((𝑁𝑀) − 1)) ∈ ℂ)
4644, 26, 45syl2anr 597 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑((𝑁𝑀) − 1)) ∈ ℂ)
4741, 46, 7mul32d 11323 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (((𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) · -1) = (((𝑁𝑀) · -1) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
4820, 22subcld 11472 . . . . . . . 8 (𝜑 → (𝑁𝑀) ∈ ℂ)
496a1i 11 . . . . . . . 8 (𝜑 → -1 ∈ ℂ)
5048, 49mulcomd 11133 . . . . . . 7 (𝜑 → ((𝑁𝑀) · -1) = (-1 · (𝑁𝑀)))
5150oveq1d 7361 . . . . . 6 (𝜑 → (((𝑁𝑀) · -1) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) = ((-1 · (𝑁𝑀)) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
5251adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (((𝑁𝑀) · -1) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) = ((-1 · (𝑁𝑀)) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
5347, 52eqtrd 2766 . . . 4 ((𝜑𝑥 ∈ ℂ) → (((𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) · -1) = ((-1 · (𝑁𝑀)) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
5448mulm1d 11569 . . . . . 6 (𝜑 → (-1 · (𝑁𝑀)) = -(𝑁𝑀))
5554adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (-1 · (𝑁𝑀)) = -(𝑁𝑀))
5655oveq1d 7361 . . . 4 ((𝜑𝑥 ∈ ℂ) → ((-1 · (𝑁𝑀)) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) = (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
5753, 56eqtrd 2766 . . 3 ((𝜑𝑥 ∈ ℂ) → (((𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) · -1) = (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
5857mpteq2dva 5184 . 2 (𝜑 → (𝑥 ∈ ℂ ↦ (((𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) · -1)) = (𝑥 ∈ ℂ ↦ (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))))
5938, 58eqtrd 2766 1 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁𝑀)))) = (𝑥 ∈ ℂ ↦ (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {cpr 4578   class class class wbr 5091  cmpt 5172  (class class class)co 7346  cc 11004  cr 11005  1c1 11007   · cmul 11011   < clt 11146  cmin 11344  -cneg 11345  cn 12125  0cn0 12381  cz 12468  cexp 13968   D cdv 25792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19230  df-cmn 19695  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-mopn 21288  df-fbas 21289  df-fg 21290  df-cnfld 21293  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796
This theorem is referenced by:  lcmineqlem10  42077
  Copyright terms: Public domain W3C validator