Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmineqlem8 | Structured version Visualization version GIF version |
Description: Derivative of (1-x)^(N-M). (Contributed by metakunt, 12-May-2024.) |
Ref | Expression |
---|---|
lcmineqlem8.1 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
lcmineqlem8.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
lcmineqlem8.3 | ⊢ (𝜑 → 𝑀 < 𝑁) |
Ref | Expression |
---|---|
lcmineqlem8 | ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 𝑀)))) = (𝑥 ∈ ℂ ↦ (-(𝑁 − 𝑀) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnelprrecn 10964 | . . . 4 ⊢ ℂ ∈ {ℝ, ℂ} | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → ℂ ∈ {ℝ, ℂ}) |
3 | 1cnd 10970 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ) | |
4 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) | |
5 | 3, 4 | subcld 11332 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (1 − 𝑥) ∈ ℂ) |
6 | neg1cn 12087 | . . . 4 ⊢ -1 ∈ ℂ | |
7 | 6 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → -1 ∈ ℂ) |
8 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ) | |
9 | lcmineqlem8.3 | . . . . . . 7 ⊢ (𝜑 → 𝑀 < 𝑁) | |
10 | lcmineqlem8.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
11 | 10 | nnzd 12425 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
12 | lcmineqlem8.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
13 | 12 | nnzd 12425 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
14 | znnsub 12366 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) | |
15 | 11, 13, 14 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) |
16 | 9, 15 | mpbid 231 | . . . . . 6 ⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℕ) |
17 | 16 | nnnn0d 12293 | . . . . 5 ⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℕ0) |
18 | 17 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑁 − 𝑀) ∈ ℕ0) |
19 | 8, 18 | expcld 13864 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑦↑(𝑁 − 𝑀)) ∈ ℂ) |
20 | 12 | nncnd 11989 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
21 | 20 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑁 ∈ ℂ) |
22 | 10 | nncnd 11989 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
23 | 22 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑀 ∈ ℂ) |
24 | 21, 23 | subcld 11332 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑁 − 𝑀) ∈ ℂ) |
25 | nnm1nn0 12274 | . . . . . . 7 ⊢ ((𝑁 − 𝑀) ∈ ℕ → ((𝑁 − 𝑀) − 1) ∈ ℕ0) | |
26 | 16, 25 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝑁 − 𝑀) − 1) ∈ ℕ0) |
27 | 26 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ((𝑁 − 𝑀) − 1) ∈ ℕ0) |
28 | expcl 13800 | . . . . 5 ⊢ ((𝑦 ∈ ℂ ∧ ((𝑁 − 𝑀) − 1) ∈ ℕ0) → (𝑦↑((𝑁 − 𝑀) − 1)) ∈ ℂ) | |
29 | 8, 27, 28 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑦↑((𝑁 − 𝑀) − 1)) ∈ ℂ) |
30 | 24, 29 | mulcld 10995 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ((𝑁 − 𝑀) · (𝑦↑((𝑁 − 𝑀) − 1))) ∈ ℂ) |
31 | lcmineqlem7 40043 | . . . 4 ⊢ (ℂ D (𝑥 ∈ ℂ ↦ (1 − 𝑥))) = (𝑥 ∈ ℂ ↦ -1) | |
32 | 31 | a1i 11 | . . 3 ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (1 − 𝑥))) = (𝑥 ∈ ℂ ↦ -1)) |
33 | dvexp 25117 | . . . 4 ⊢ ((𝑁 − 𝑀) ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑(𝑁 − 𝑀)))) = (𝑦 ∈ ℂ ↦ ((𝑁 − 𝑀) · (𝑦↑((𝑁 − 𝑀) − 1))))) | |
34 | 16, 33 | syl 17 | . . 3 ⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑(𝑁 − 𝑀)))) = (𝑦 ∈ ℂ ↦ ((𝑁 − 𝑀) · (𝑦↑((𝑁 − 𝑀) − 1))))) |
35 | oveq1 7282 | . . 3 ⊢ (𝑦 = (1 − 𝑥) → (𝑦↑(𝑁 − 𝑀)) = ((1 − 𝑥)↑(𝑁 − 𝑀))) | |
36 | oveq1 7282 | . . . 4 ⊢ (𝑦 = (1 − 𝑥) → (𝑦↑((𝑁 − 𝑀) − 1)) = ((1 − 𝑥)↑((𝑁 − 𝑀) − 1))) | |
37 | 36 | oveq2d 7291 | . . 3 ⊢ (𝑦 = (1 − 𝑥) → ((𝑁 − 𝑀) · (𝑦↑((𝑁 − 𝑀) − 1))) = ((𝑁 − 𝑀) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1)))) |
38 | 2, 2, 5, 7, 19, 30, 32, 34, 35, 37 | dvmptco 25136 | . 2 ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 𝑀)))) = (𝑥 ∈ ℂ ↦ (((𝑁 − 𝑀) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1))) · -1))) |
39 | 20 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑁 ∈ ℂ) |
40 | 22 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑀 ∈ ℂ) |
41 | 39, 40 | subcld 11332 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑁 − 𝑀) ∈ ℂ) |
42 | ax-1cn 10929 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
43 | subcl 11220 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 − 𝑥) ∈ ℂ) | |
44 | 42, 43 | mpan 687 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ → (1 − 𝑥) ∈ ℂ) |
45 | expcl 13800 | . . . . . . 7 ⊢ (((1 − 𝑥) ∈ ℂ ∧ ((𝑁 − 𝑀) − 1) ∈ ℕ0) → ((1 − 𝑥)↑((𝑁 − 𝑀) − 1)) ∈ ℂ) | |
46 | 44, 26, 45 | syl2anr 597 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((1 − 𝑥)↑((𝑁 − 𝑀) − 1)) ∈ ℂ) |
47 | 41, 46, 7 | mul32d 11185 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (((𝑁 − 𝑀) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1))) · -1) = (((𝑁 − 𝑀) · -1) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1)))) |
48 | 20, 22 | subcld 11332 | . . . . . . . 8 ⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℂ) |
49 | 6 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → -1 ∈ ℂ) |
50 | 48, 49 | mulcomd 10996 | . . . . . . 7 ⊢ (𝜑 → ((𝑁 − 𝑀) · -1) = (-1 · (𝑁 − 𝑀))) |
51 | 50 | oveq1d 7290 | . . . . . 6 ⊢ (𝜑 → (((𝑁 − 𝑀) · -1) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1))) = ((-1 · (𝑁 − 𝑀)) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1)))) |
52 | 51 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (((𝑁 − 𝑀) · -1) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1))) = ((-1 · (𝑁 − 𝑀)) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1)))) |
53 | 47, 52 | eqtrd 2778 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (((𝑁 − 𝑀) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1))) · -1) = ((-1 · (𝑁 − 𝑀)) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1)))) |
54 | 48 | mulm1d 11427 | . . . . . 6 ⊢ (𝜑 → (-1 · (𝑁 − 𝑀)) = -(𝑁 − 𝑀)) |
55 | 54 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (-1 · (𝑁 − 𝑀)) = -(𝑁 − 𝑀)) |
56 | 55 | oveq1d 7290 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((-1 · (𝑁 − 𝑀)) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1))) = (-(𝑁 − 𝑀) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1)))) |
57 | 53, 56 | eqtrd 2778 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (((𝑁 − 𝑀) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1))) · -1) = (-(𝑁 − 𝑀) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1)))) |
58 | 57 | mpteq2dva 5174 | . 2 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (((𝑁 − 𝑀) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1))) · -1)) = (𝑥 ∈ ℂ ↦ (-(𝑁 − 𝑀) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1))))) |
59 | 38, 58 | eqtrd 2778 | 1 ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 𝑀)))) = (𝑥 ∈ ℂ ↦ (-(𝑁 − 𝑀) · ((1 − 𝑥)↑((𝑁 − 𝑀) − 1))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cpr 4563 class class class wbr 5074 ↦ cmpt 5157 (class class class)co 7275 ℂcc 10869 ℝcr 10870 1c1 10872 · cmul 10876 < clt 11009 − cmin 11205 -cneg 11206 ℕcn 11973 ℕ0cn0 12233 ℤcz 12319 ↑cexp 13782 D cdv 25027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-icc 13086 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-mulg 18701 df-cntz 18923 df-cmn 19388 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-fbas 20594 df-fg 20595 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-lp 22287 df-perf 22288 df-cn 22378 df-cnp 22379 df-haus 22466 df-tx 22713 df-hmeo 22906 df-fil 22997 df-fm 23089 df-flim 23090 df-flf 23091 df-xms 23473 df-ms 23474 df-tms 23475 df-cncf 24041 df-limc 25030 df-dv 25031 |
This theorem is referenced by: lcmineqlem10 40046 |
Copyright terms: Public domain | W3C validator |