Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem8 Structured version   Visualization version   GIF version

Theorem lcmineqlem8 40493
Description: Derivative of (1-x)^(N-M). (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
lcmineqlem8.1 (𝜑𝑀 ∈ ℕ)
lcmineqlem8.2 (𝜑𝑁 ∈ ℕ)
lcmineqlem8.3 (𝜑𝑀 < 𝑁)
Assertion
Ref Expression
lcmineqlem8 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁𝑀)))) = (𝑥 ∈ ℂ ↦ (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥

Proof of Theorem lcmineqlem8
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnelprrecn 11144 . . . 4 ℂ ∈ {ℝ, ℂ}
21a1i 11 . . 3 (𝜑 → ℂ ∈ {ℝ, ℂ})
3 1cnd 11150 . . . 4 ((𝜑𝑥 ∈ ℂ) → 1 ∈ ℂ)
4 simpr 485 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
53, 4subcld 11512 . . 3 ((𝜑𝑥 ∈ ℂ) → (1 − 𝑥) ∈ ℂ)
6 neg1cn 12267 . . . 4 -1 ∈ ℂ
76a1i 11 . . 3 ((𝜑𝑥 ∈ ℂ) → -1 ∈ ℂ)
8 simpr 485 . . . 4 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
9 lcmineqlem8.3 . . . . . . 7 (𝜑𝑀 < 𝑁)
10 lcmineqlem8.1 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
1110nnzd 12526 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
12 lcmineqlem8.2 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
1312nnzd 12526 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
14 znnsub 12549 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
1511, 13, 14syl2anc 584 . . . . . . 7 (𝜑 → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
169, 15mpbid 231 . . . . . 6 (𝜑 → (𝑁𝑀) ∈ ℕ)
1716nnnn0d 12473 . . . . 5 (𝜑 → (𝑁𝑀) ∈ ℕ0)
1817adantr 481 . . . 4 ((𝜑𝑦 ∈ ℂ) → (𝑁𝑀) ∈ ℕ0)
198, 18expcld 14051 . . 3 ((𝜑𝑦 ∈ ℂ) → (𝑦↑(𝑁𝑀)) ∈ ℂ)
2012nncnd 12169 . . . . . 6 (𝜑𝑁 ∈ ℂ)
2120adantr 481 . . . . 5 ((𝜑𝑦 ∈ ℂ) → 𝑁 ∈ ℂ)
2210nncnd 12169 . . . . . 6 (𝜑𝑀 ∈ ℂ)
2322adantr 481 . . . . 5 ((𝜑𝑦 ∈ ℂ) → 𝑀 ∈ ℂ)
2421, 23subcld 11512 . . . 4 ((𝜑𝑦 ∈ ℂ) → (𝑁𝑀) ∈ ℂ)
25 nnm1nn0 12454 . . . . . . 7 ((𝑁𝑀) ∈ ℕ → ((𝑁𝑀) − 1) ∈ ℕ0)
2616, 25syl 17 . . . . . 6 (𝜑 → ((𝑁𝑀) − 1) ∈ ℕ0)
2726adantr 481 . . . . 5 ((𝜑𝑦 ∈ ℂ) → ((𝑁𝑀) − 1) ∈ ℕ0)
28 expcl 13985 . . . . 5 ((𝑦 ∈ ℂ ∧ ((𝑁𝑀) − 1) ∈ ℕ0) → (𝑦↑((𝑁𝑀) − 1)) ∈ ℂ)
298, 27, 28syl2anc 584 . . . 4 ((𝜑𝑦 ∈ ℂ) → (𝑦↑((𝑁𝑀) − 1)) ∈ ℂ)
3024, 29mulcld 11175 . . 3 ((𝜑𝑦 ∈ ℂ) → ((𝑁𝑀) · (𝑦↑((𝑁𝑀) − 1))) ∈ ℂ)
31 lcmineqlem7 40492 . . . 4 (ℂ D (𝑥 ∈ ℂ ↦ (1 − 𝑥))) = (𝑥 ∈ ℂ ↦ -1)
3231a1i 11 . . 3 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (1 − 𝑥))) = (𝑥 ∈ ℂ ↦ -1))
33 dvexp 25317 . . . 4 ((𝑁𝑀) ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑(𝑁𝑀)))) = (𝑦 ∈ ℂ ↦ ((𝑁𝑀) · (𝑦↑((𝑁𝑀) − 1)))))
3416, 33syl 17 . . 3 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑(𝑁𝑀)))) = (𝑦 ∈ ℂ ↦ ((𝑁𝑀) · (𝑦↑((𝑁𝑀) − 1)))))
35 oveq1 7364 . . 3 (𝑦 = (1 − 𝑥) → (𝑦↑(𝑁𝑀)) = ((1 − 𝑥)↑(𝑁𝑀)))
36 oveq1 7364 . . . 4 (𝑦 = (1 − 𝑥) → (𝑦↑((𝑁𝑀) − 1)) = ((1 − 𝑥)↑((𝑁𝑀) − 1)))
3736oveq2d 7373 . . 3 (𝑦 = (1 − 𝑥) → ((𝑁𝑀) · (𝑦↑((𝑁𝑀) − 1))) = ((𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
382, 2, 5, 7, 19, 30, 32, 34, 35, 37dvmptco 25336 . 2 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁𝑀)))) = (𝑥 ∈ ℂ ↦ (((𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) · -1)))
3920adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → 𝑁 ∈ ℂ)
4022adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → 𝑀 ∈ ℂ)
4139, 40subcld 11512 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (𝑁𝑀) ∈ ℂ)
42 ax-1cn 11109 . . . . . . . 8 1 ∈ ℂ
43 subcl 11400 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 − 𝑥) ∈ ℂ)
4442, 43mpan 688 . . . . . . 7 (𝑥 ∈ ℂ → (1 − 𝑥) ∈ ℂ)
45 expcl 13985 . . . . . . 7 (((1 − 𝑥) ∈ ℂ ∧ ((𝑁𝑀) − 1) ∈ ℕ0) → ((1 − 𝑥)↑((𝑁𝑀) − 1)) ∈ ℂ)
4644, 26, 45syl2anr 597 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑((𝑁𝑀) − 1)) ∈ ℂ)
4741, 46, 7mul32d 11365 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (((𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) · -1) = (((𝑁𝑀) · -1) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
4820, 22subcld 11512 . . . . . . . 8 (𝜑 → (𝑁𝑀) ∈ ℂ)
496a1i 11 . . . . . . . 8 (𝜑 → -1 ∈ ℂ)
5048, 49mulcomd 11176 . . . . . . 7 (𝜑 → ((𝑁𝑀) · -1) = (-1 · (𝑁𝑀)))
5150oveq1d 7372 . . . . . 6 (𝜑 → (((𝑁𝑀) · -1) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) = ((-1 · (𝑁𝑀)) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
5251adantr 481 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (((𝑁𝑀) · -1) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) = ((-1 · (𝑁𝑀)) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
5347, 52eqtrd 2776 . . . 4 ((𝜑𝑥 ∈ ℂ) → (((𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) · -1) = ((-1 · (𝑁𝑀)) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
5448mulm1d 11607 . . . . . 6 (𝜑 → (-1 · (𝑁𝑀)) = -(𝑁𝑀))
5554adantr 481 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (-1 · (𝑁𝑀)) = -(𝑁𝑀))
5655oveq1d 7372 . . . 4 ((𝜑𝑥 ∈ ℂ) → ((-1 · (𝑁𝑀)) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) = (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
5753, 56eqtrd 2776 . . 3 ((𝜑𝑥 ∈ ℂ) → (((𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) · -1) = (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
5857mpteq2dva 5205 . 2 (𝜑 → (𝑥 ∈ ℂ ↦ (((𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) · -1)) = (𝑥 ∈ ℂ ↦ (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))))
5938, 58eqtrd 2776 1 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁𝑀)))) = (𝑥 ∈ ℂ ↦ (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {cpr 4588   class class class wbr 5105  cmpt 5188  (class class class)co 7357  cc 11049  cr 11050  1c1 11052   · cmul 11056   < clt 11189  cmin 11385  -cneg 11386  cn 12153  0cn0 12413  cz 12499  cexp 13967   D cdv 25227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231
This theorem is referenced by:  lcmineqlem10  40495
  Copyright terms: Public domain W3C validator