Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem8 Structured version   Visualization version   GIF version

Theorem lcmineqlem8 42150
Description: Derivative of (1-x)^(N-M). (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
lcmineqlem8.1 (𝜑𝑀 ∈ ℕ)
lcmineqlem8.2 (𝜑𝑁 ∈ ℕ)
lcmineqlem8.3 (𝜑𝑀 < 𝑁)
Assertion
Ref Expression
lcmineqlem8 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁𝑀)))) = (𝑥 ∈ ℂ ↦ (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥

Proof of Theorem lcmineqlem8
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnelprrecn 11106 . . . 4 ℂ ∈ {ℝ, ℂ}
21a1i 11 . . 3 (𝜑 → ℂ ∈ {ℝ, ℂ})
3 1cnd 11114 . . . 4 ((𝜑𝑥 ∈ ℂ) → 1 ∈ ℂ)
4 simpr 484 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
53, 4subcld 11479 . . 3 ((𝜑𝑥 ∈ ℂ) → (1 − 𝑥) ∈ ℂ)
6 neg1cn 12117 . . . 4 -1 ∈ ℂ
76a1i 11 . . 3 ((𝜑𝑥 ∈ ℂ) → -1 ∈ ℂ)
8 simpr 484 . . . 4 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
9 lcmineqlem8.3 . . . . . . 7 (𝜑𝑀 < 𝑁)
10 lcmineqlem8.1 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
1110nnzd 12501 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
12 lcmineqlem8.2 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
1312nnzd 12501 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
14 znnsub 12524 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
1511, 13, 14syl2anc 584 . . . . . . 7 (𝜑 → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
169, 15mpbid 232 . . . . . 6 (𝜑 → (𝑁𝑀) ∈ ℕ)
1716nnnn0d 12449 . . . . 5 (𝜑 → (𝑁𝑀) ∈ ℕ0)
1817adantr 480 . . . 4 ((𝜑𝑦 ∈ ℂ) → (𝑁𝑀) ∈ ℕ0)
198, 18expcld 14055 . . 3 ((𝜑𝑦 ∈ ℂ) → (𝑦↑(𝑁𝑀)) ∈ ℂ)
2012nncnd 12148 . . . . . 6 (𝜑𝑁 ∈ ℂ)
2120adantr 480 . . . . 5 ((𝜑𝑦 ∈ ℂ) → 𝑁 ∈ ℂ)
2210nncnd 12148 . . . . . 6 (𝜑𝑀 ∈ ℂ)
2322adantr 480 . . . . 5 ((𝜑𝑦 ∈ ℂ) → 𝑀 ∈ ℂ)
2421, 23subcld 11479 . . . 4 ((𝜑𝑦 ∈ ℂ) → (𝑁𝑀) ∈ ℂ)
25 nnm1nn0 12429 . . . . . . 7 ((𝑁𝑀) ∈ ℕ → ((𝑁𝑀) − 1) ∈ ℕ0)
2616, 25syl 17 . . . . . 6 (𝜑 → ((𝑁𝑀) − 1) ∈ ℕ0)
2726adantr 480 . . . . 5 ((𝜑𝑦 ∈ ℂ) → ((𝑁𝑀) − 1) ∈ ℕ0)
28 expcl 13988 . . . . 5 ((𝑦 ∈ ℂ ∧ ((𝑁𝑀) − 1) ∈ ℕ0) → (𝑦↑((𝑁𝑀) − 1)) ∈ ℂ)
298, 27, 28syl2anc 584 . . . 4 ((𝜑𝑦 ∈ ℂ) → (𝑦↑((𝑁𝑀) − 1)) ∈ ℂ)
3024, 29mulcld 11139 . . 3 ((𝜑𝑦 ∈ ℂ) → ((𝑁𝑀) · (𝑦↑((𝑁𝑀) − 1))) ∈ ℂ)
31 lcmineqlem7 42149 . . . 4 (ℂ D (𝑥 ∈ ℂ ↦ (1 − 𝑥))) = (𝑥 ∈ ℂ ↦ -1)
3231a1i 11 . . 3 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (1 − 𝑥))) = (𝑥 ∈ ℂ ↦ -1))
33 dvexp 25885 . . . 4 ((𝑁𝑀) ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑(𝑁𝑀)))) = (𝑦 ∈ ℂ ↦ ((𝑁𝑀) · (𝑦↑((𝑁𝑀) − 1)))))
3416, 33syl 17 . . 3 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑(𝑁𝑀)))) = (𝑦 ∈ ℂ ↦ ((𝑁𝑀) · (𝑦↑((𝑁𝑀) − 1)))))
35 oveq1 7359 . . 3 (𝑦 = (1 − 𝑥) → (𝑦↑(𝑁𝑀)) = ((1 − 𝑥)↑(𝑁𝑀)))
36 oveq1 7359 . . . 4 (𝑦 = (1 − 𝑥) → (𝑦↑((𝑁𝑀) − 1)) = ((1 − 𝑥)↑((𝑁𝑀) − 1)))
3736oveq2d 7368 . . 3 (𝑦 = (1 − 𝑥) → ((𝑁𝑀) · (𝑦↑((𝑁𝑀) − 1))) = ((𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
382, 2, 5, 7, 19, 30, 32, 34, 35, 37dvmptco 25904 . 2 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁𝑀)))) = (𝑥 ∈ ℂ ↦ (((𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) · -1)))
3920adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → 𝑁 ∈ ℂ)
4022adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → 𝑀 ∈ ℂ)
4139, 40subcld 11479 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (𝑁𝑀) ∈ ℂ)
42 ax-1cn 11071 . . . . . . . 8 1 ∈ ℂ
43 subcl 11366 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 − 𝑥) ∈ ℂ)
4442, 43mpan 690 . . . . . . 7 (𝑥 ∈ ℂ → (1 − 𝑥) ∈ ℂ)
45 expcl 13988 . . . . . . 7 (((1 − 𝑥) ∈ ℂ ∧ ((𝑁𝑀) − 1) ∈ ℕ0) → ((1 − 𝑥)↑((𝑁𝑀) − 1)) ∈ ℂ)
4644, 26, 45syl2anr 597 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑((𝑁𝑀) − 1)) ∈ ℂ)
4741, 46, 7mul32d 11330 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (((𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) · -1) = (((𝑁𝑀) · -1) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
4820, 22subcld 11479 . . . . . . . 8 (𝜑 → (𝑁𝑀) ∈ ℂ)
496a1i 11 . . . . . . . 8 (𝜑 → -1 ∈ ℂ)
5048, 49mulcomd 11140 . . . . . . 7 (𝜑 → ((𝑁𝑀) · -1) = (-1 · (𝑁𝑀)))
5150oveq1d 7367 . . . . . 6 (𝜑 → (((𝑁𝑀) · -1) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) = ((-1 · (𝑁𝑀)) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
5251adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (((𝑁𝑀) · -1) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) = ((-1 · (𝑁𝑀)) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
5347, 52eqtrd 2768 . . . 4 ((𝜑𝑥 ∈ ℂ) → (((𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) · -1) = ((-1 · (𝑁𝑀)) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
5448mulm1d 11576 . . . . . 6 (𝜑 → (-1 · (𝑁𝑀)) = -(𝑁𝑀))
5554adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (-1 · (𝑁𝑀)) = -(𝑁𝑀))
5655oveq1d 7367 . . . 4 ((𝜑𝑥 ∈ ℂ) → ((-1 · (𝑁𝑀)) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) = (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
5753, 56eqtrd 2768 . . 3 ((𝜑𝑥 ∈ ℂ) → (((𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) · -1) = (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
5857mpteq2dva 5186 . 2 (𝜑 → (𝑥 ∈ ℂ ↦ (((𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) · -1)) = (𝑥 ∈ ℂ ↦ (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))))
5938, 58eqtrd 2768 1 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁𝑀)))) = (𝑥 ∈ ℂ ↦ (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  {cpr 4577   class class class wbr 5093  cmpt 5174  (class class class)co 7352  cc 11011  cr 11012  1c1 11014   · cmul 11018   < clt 11153  cmin 11351  -cneg 11352  cn 12132  0cn0 12388  cz 12475  cexp 13970   D cdv 25792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-icc 13254  df-fz 13410  df-fzo 13557  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796
This theorem is referenced by:  lcmineqlem10  42152
  Copyright terms: Public domain W3C validator