Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem8 Structured version   Visualization version   GIF version

Theorem lcmineqlem8 41737
Description: Derivative of (1-x)^(N-M). (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
lcmineqlem8.1 (𝜑𝑀 ∈ ℕ)
lcmineqlem8.2 (𝜑𝑁 ∈ ℕ)
lcmineqlem8.3 (𝜑𝑀 < 𝑁)
Assertion
Ref Expression
lcmineqlem8 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁𝑀)))) = (𝑥 ∈ ℂ ↦ (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥

Proof of Theorem lcmineqlem8
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnelprrecn 11253 . . . 4 ℂ ∈ {ℝ, ℂ}
21a1i 11 . . 3 (𝜑 → ℂ ∈ {ℝ, ℂ})
3 1cnd 11261 . . . 4 ((𝜑𝑥 ∈ ℂ) → 1 ∈ ℂ)
4 simpr 483 . . . 4 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
53, 4subcld 11623 . . 3 ((𝜑𝑥 ∈ ℂ) → (1 − 𝑥) ∈ ℂ)
6 neg1cn 12380 . . . 4 -1 ∈ ℂ
76a1i 11 . . 3 ((𝜑𝑥 ∈ ℂ) → -1 ∈ ℂ)
8 simpr 483 . . . 4 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
9 lcmineqlem8.3 . . . . . . 7 (𝜑𝑀 < 𝑁)
10 lcmineqlem8.1 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
1110nnzd 12639 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
12 lcmineqlem8.2 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
1312nnzd 12639 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
14 znnsub 12662 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
1511, 13, 14syl2anc 582 . . . . . . 7 (𝜑 → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
169, 15mpbid 231 . . . . . 6 (𝜑 → (𝑁𝑀) ∈ ℕ)
1716nnnn0d 12586 . . . . 5 (𝜑 → (𝑁𝑀) ∈ ℕ0)
1817adantr 479 . . . 4 ((𝜑𝑦 ∈ ℂ) → (𝑁𝑀) ∈ ℕ0)
198, 18expcld 14167 . . 3 ((𝜑𝑦 ∈ ℂ) → (𝑦↑(𝑁𝑀)) ∈ ℂ)
2012nncnd 12282 . . . . . 6 (𝜑𝑁 ∈ ℂ)
2120adantr 479 . . . . 5 ((𝜑𝑦 ∈ ℂ) → 𝑁 ∈ ℂ)
2210nncnd 12282 . . . . . 6 (𝜑𝑀 ∈ ℂ)
2322adantr 479 . . . . 5 ((𝜑𝑦 ∈ ℂ) → 𝑀 ∈ ℂ)
2421, 23subcld 11623 . . . 4 ((𝜑𝑦 ∈ ℂ) → (𝑁𝑀) ∈ ℂ)
25 nnm1nn0 12567 . . . . . . 7 ((𝑁𝑀) ∈ ℕ → ((𝑁𝑀) − 1) ∈ ℕ0)
2616, 25syl 17 . . . . . 6 (𝜑 → ((𝑁𝑀) − 1) ∈ ℕ0)
2726adantr 479 . . . . 5 ((𝜑𝑦 ∈ ℂ) → ((𝑁𝑀) − 1) ∈ ℕ0)
28 expcl 14101 . . . . 5 ((𝑦 ∈ ℂ ∧ ((𝑁𝑀) − 1) ∈ ℕ0) → (𝑦↑((𝑁𝑀) − 1)) ∈ ℂ)
298, 27, 28syl2anc 582 . . . 4 ((𝜑𝑦 ∈ ℂ) → (𝑦↑((𝑁𝑀) − 1)) ∈ ℂ)
3024, 29mulcld 11286 . . 3 ((𝜑𝑦 ∈ ℂ) → ((𝑁𝑀) · (𝑦↑((𝑁𝑀) − 1))) ∈ ℂ)
31 lcmineqlem7 41736 . . . 4 (ℂ D (𝑥 ∈ ℂ ↦ (1 − 𝑥))) = (𝑥 ∈ ℂ ↦ -1)
3231a1i 11 . . 3 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (1 − 𝑥))) = (𝑥 ∈ ℂ ↦ -1))
33 dvexp 25979 . . . 4 ((𝑁𝑀) ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑(𝑁𝑀)))) = (𝑦 ∈ ℂ ↦ ((𝑁𝑀) · (𝑦↑((𝑁𝑀) − 1)))))
3416, 33syl 17 . . 3 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑(𝑁𝑀)))) = (𝑦 ∈ ℂ ↦ ((𝑁𝑀) · (𝑦↑((𝑁𝑀) − 1)))))
35 oveq1 7433 . . 3 (𝑦 = (1 − 𝑥) → (𝑦↑(𝑁𝑀)) = ((1 − 𝑥)↑(𝑁𝑀)))
36 oveq1 7433 . . . 4 (𝑦 = (1 − 𝑥) → (𝑦↑((𝑁𝑀) − 1)) = ((1 − 𝑥)↑((𝑁𝑀) − 1)))
3736oveq2d 7442 . . 3 (𝑦 = (1 − 𝑥) → ((𝑁𝑀) · (𝑦↑((𝑁𝑀) − 1))) = ((𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
382, 2, 5, 7, 19, 30, 32, 34, 35, 37dvmptco 25998 . 2 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁𝑀)))) = (𝑥 ∈ ℂ ↦ (((𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) · -1)))
3920adantr 479 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → 𝑁 ∈ ℂ)
4022adantr 479 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → 𝑀 ∈ ℂ)
4139, 40subcld 11623 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (𝑁𝑀) ∈ ℂ)
42 ax-1cn 11218 . . . . . . . 8 1 ∈ ℂ
43 subcl 11511 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1 − 𝑥) ∈ ℂ)
4442, 43mpan 688 . . . . . . 7 (𝑥 ∈ ℂ → (1 − 𝑥) ∈ ℂ)
45 expcl 14101 . . . . . . 7 (((1 − 𝑥) ∈ ℂ ∧ ((𝑁𝑀) − 1) ∈ ℕ0) → ((1 − 𝑥)↑((𝑁𝑀) − 1)) ∈ ℂ)
4644, 26, 45syl2anr 595 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑((𝑁𝑀) − 1)) ∈ ℂ)
4741, 46, 7mul32d 11476 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (((𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) · -1) = (((𝑁𝑀) · -1) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
4820, 22subcld 11623 . . . . . . . 8 (𝜑 → (𝑁𝑀) ∈ ℂ)
496a1i 11 . . . . . . . 8 (𝜑 → -1 ∈ ℂ)
5048, 49mulcomd 11287 . . . . . . 7 (𝜑 → ((𝑁𝑀) · -1) = (-1 · (𝑁𝑀)))
5150oveq1d 7441 . . . . . 6 (𝜑 → (((𝑁𝑀) · -1) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) = ((-1 · (𝑁𝑀)) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
5251adantr 479 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (((𝑁𝑀) · -1) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) = ((-1 · (𝑁𝑀)) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
5347, 52eqtrd 2766 . . . 4 ((𝜑𝑥 ∈ ℂ) → (((𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) · -1) = ((-1 · (𝑁𝑀)) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
5448mulm1d 11718 . . . . . 6 (𝜑 → (-1 · (𝑁𝑀)) = -(𝑁𝑀))
5554adantr 479 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (-1 · (𝑁𝑀)) = -(𝑁𝑀))
5655oveq1d 7441 . . . 4 ((𝜑𝑥 ∈ ℂ) → ((-1 · (𝑁𝑀)) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) = (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
5753, 56eqtrd 2766 . . 3 ((𝜑𝑥 ∈ ℂ) → (((𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) · -1) = (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))))
5857mpteq2dva 5255 . 2 (𝜑 → (𝑥 ∈ ℂ ↦ (((𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1))) · -1)) = (𝑥 ∈ ℂ ↦ (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))))
5938, 58eqtrd 2766 1 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁𝑀)))) = (𝑥 ∈ ℂ ↦ (-(𝑁𝑀) · ((1 − 𝑥)↑((𝑁𝑀) − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  {cpr 4635   class class class wbr 5155  cmpt 5238  (class class class)co 7426  cc 11158  cr 11159  1c1 11161   · cmul 11165   < clt 11300  cmin 11496  -cneg 11497  cn 12266  0cn0 12526  cz 12612  cexp 14083   D cdv 25886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237  ax-pre-sup 11238  ax-addf 11239
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4916  df-int 4957  df-iun 5005  df-iin 5006  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-se 5640  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-isom 6565  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7692  df-om 7879  df-1st 8005  df-2nd 8006  df-supp 8177  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-1o 8498  df-2o 8499  df-er 8736  df-map 8859  df-pm 8860  df-ixp 8929  df-en 8977  df-dom 8978  df-sdom 8979  df-fin 8980  df-fsupp 9408  df-fi 9456  df-sup 9487  df-inf 9488  df-oi 9555  df-card 9984  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-div 11924  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12613  df-dec 12732  df-uz 12877  df-q 12987  df-rp 13031  df-xneg 13148  df-xadd 13149  df-xmul 13150  df-icc 13387  df-fz 13541  df-fzo 13684  df-seq 14024  df-exp 14084  df-hash 14350  df-cj 15106  df-re 15107  df-im 15108  df-sqrt 15242  df-abs 15243  df-struct 17151  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17216  df-ress 17245  df-plusg 17281  df-mulr 17282  df-starv 17283  df-sca 17284  df-vsca 17285  df-ip 17286  df-tset 17287  df-ple 17288  df-ds 17290  df-unif 17291  df-hom 17292  df-cco 17293  df-rest 17439  df-topn 17440  df-0g 17458  df-gsum 17459  df-topgen 17460  df-pt 17461  df-prds 17464  df-xrs 17519  df-qtop 17524  df-imas 17525  df-xps 17527  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18635  df-sgrp 18714  df-mnd 18730  df-submnd 18776  df-mulg 19064  df-cntz 19313  df-cmn 19782  df-psmet 21337  df-xmet 21338  df-met 21339  df-bl 21340  df-mopn 21341  df-fbas 21342  df-fg 21343  df-cnfld 21346  df-top 22890  df-topon 22907  df-topsp 22929  df-bases 22943  df-cld 23017  df-ntr 23018  df-cls 23019  df-nei 23096  df-lp 23134  df-perf 23135  df-cn 23225  df-cnp 23226  df-haus 23313  df-tx 23560  df-hmeo 23753  df-fil 23844  df-fm 23936  df-flim 23937  df-flf 23938  df-xms 24320  df-ms 24321  df-tms 24322  df-cncf 24892  df-limc 25889  df-dv 25890
This theorem is referenced by:  lcmineqlem10  41739
  Copyright terms: Public domain W3C validator