MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulmlem2 Structured version   Visualization version   GIF version

Theorem lgamgulmlem2 26179
Description: Lemma for lgamgulm 26184. (Contributed by Mario Carneiro, 3-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.n (𝜑𝑁 ∈ ℕ)
lgamgulm.a (𝜑𝐴𝑈)
lgamgulm.l (𝜑 → (2 · 𝑅) ≤ 𝑁)
Assertion
Ref Expression
lgamgulmlem2 (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑘,𝑅   𝐴,𝑘,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝑈(𝑥,𝑘)   𝑁(𝑘)

Proof of Theorem lgamgulmlem2
Dummy variables 𝑦 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1elunit 13202 . . 3 1 ∈ (0[,]1)
2 0elunit 13201 . . 3 0 ∈ (0[,]1)
3 0red 10978 . . . 4 (𝜑 → 0 ∈ ℝ)
4 1red 10976 . . . 4 (𝜑 → 1 ∈ ℝ)
5 eqid 2738 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
65subcn 24029 . . . . . 6 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
76a1i 11 . . . . 5 (𝜑 → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
8 lgamgulm.r . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ)
9 lgamgulm.u . . . . . . . . . . 11 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
108, 9lgamgulmlem1 26178 . . . . . . . . . 10 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
11 lgamgulm.a . . . . . . . . . 10 (𝜑𝐴𝑈)
1210, 11sseldd 3922 . . . . . . . . 9 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
1312eldifad 3899 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
14 lgamgulm.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
1514nnred 11988 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
1615recnd 11003 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
1714nnne0d 12023 . . . . . . . 8 (𝜑𝑁 ≠ 0)
1813, 16, 17divcld 11751 . . . . . . 7 (𝜑 → (𝐴 / 𝑁) ∈ ℂ)
19 unitssre 13231 . . . . . . . . 9 (0[,]1) ⊆ ℝ
20 ax-resscn 10928 . . . . . . . . 9 ℝ ⊆ ℂ
2119, 20sstri 3930 . . . . . . . 8 (0[,]1) ⊆ ℂ
2221a1i 11 . . . . . . 7 (𝜑 → (0[,]1) ⊆ ℂ)
23 ssidd 3944 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
24 cncfmptc 24075 . . . . . . 7 (((𝐴 / 𝑁) ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ (𝐴 / 𝑁)) ∈ ((0[,]1)–cn→ℂ))
2518, 22, 23, 24syl3anc 1370 . . . . . 6 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (𝐴 / 𝑁)) ∈ ((0[,]1)–cn→ℂ))
26 cncfmptid 24076 . . . . . . 7 (((0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ))
2721, 23, 26sylancr 587 . . . . . 6 (𝜑 → (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ))
2825, 27mulcncf 24610 . . . . 5 (𝜑 → (𝑡 ∈ (0[,]1) ↦ ((𝐴 / 𝑁) · 𝑡)) ∈ ((0[,]1)–cn→ℂ))
29 eqid 2738 . . . . . . . . . . 11 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
3029logcn 25802 . . . . . . . . . 10 (log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ)
3130a1i 11 . . . . . . . . 9 (𝜑 → (log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ))
32 cncff 24056 . . . . . . . . 9 ((log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ) → (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ)
3331, 32syl 17 . . . . . . . 8 (𝜑 → (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ)
3418adantr 481 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0[,]1)) → (𝐴 / 𝑁) ∈ ℂ)
35 simpr 485 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0[,]1)) → 𝑡 ∈ (0[,]1))
3619, 35sselid 3919 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℝ)
3736recnd 11003 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℂ)
3834, 37mulcld 10995 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0[,]1)) → ((𝐴 / 𝑁) · 𝑡) ∈ ℂ)
39 1cnd 10970 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0[,]1)) → 1 ∈ ℂ)
4038, 39addcld 10994 . . . . . . . . 9 ((𝜑𝑡 ∈ (0[,]1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℂ)
41 rere 14833 . . . . . . . . . . . 12 ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (((𝐴 / 𝑁) · 𝑡) + 1))
4241adantl 482 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (0[,]1)) ∧ (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (((𝐴 / 𝑁) · 𝑡) + 1))
4340recld 14905 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℝ)
4438recld 14905 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘((𝐴 / 𝑁) · 𝑡)) ∈ ℝ)
4544recnd 11003 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘((𝐴 / 𝑁) · 𝑡)) ∈ ℂ)
4645abscld 15148 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘(ℜ‘((𝐴 / 𝑁) · 𝑡))) ∈ ℝ)
4738abscld 15148 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) ∈ ℝ)
48 1red 10976 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0[,]1)) → 1 ∈ ℝ)
49 absrele 15020 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 / 𝑁) · 𝑡) ∈ ℂ → (abs‘(ℜ‘((𝐴 / 𝑁) · 𝑡))) ≤ (abs‘((𝐴 / 𝑁) · 𝑡)))
5038, 49syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘(ℜ‘((𝐴 / 𝑁) · 𝑡))) ≤ (abs‘((𝐴 / 𝑁) · 𝑡)))
5148rehalfcld 12220 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0[,]1)) → (1 / 2) ∈ ℝ)
528nnred 11988 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑅 ∈ ℝ)
5352adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ (0[,]1)) → 𝑅 ∈ ℝ)
5414adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ (0[,]1)) → 𝑁 ∈ ℕ)
5553, 54nndivred 12027 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ (0[,]1)) → (𝑅 / 𝑁) ∈ ℝ)
5618abscld 15148 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (abs‘(𝐴 / 𝑁)) ∈ ℝ)
5756adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘(𝐴 / 𝑁)) ∈ ℝ)
5834absge0d 15156 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → 0 ≤ (abs‘(𝐴 / 𝑁)))
59 elicc01 13198 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
6059simp2bi 1145 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ (0[,]1) → 0 ≤ 𝑡)
6160adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → 0 ≤ 𝑡)
6213, 16, 17absdivd 15167 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (abs‘(𝐴 / 𝑁)) = ((abs‘𝐴) / (abs‘𝑁)))
6314nnrpd 12770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑁 ∈ ℝ+)
6463rpge0d 12776 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → 0 ≤ 𝑁)
6515, 64absidd 15134 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (abs‘𝑁) = 𝑁)
6665oveq2d 7291 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((abs‘𝐴) / (abs‘𝑁)) = ((abs‘𝐴) / 𝑁))
6762, 66eqtr2d 2779 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((abs‘𝐴) / 𝑁) = (abs‘(𝐴 / 𝑁)))
6813abscld 15148 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (abs‘𝐴) ∈ ℝ)
69 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = 𝐴 → (abs‘𝑥) = (abs‘𝐴))
7069breq1d 5084 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 = 𝐴 → ((abs‘𝑥) ≤ 𝑅 ↔ (abs‘𝐴) ≤ 𝑅))
71 fvoveq1 7298 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 = 𝐴 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝐴 + 𝑘)))
7271breq2d 5086 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = 𝐴 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7372ralbidv 3112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 = 𝐴 → (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7470, 73anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 = 𝐴 → (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘)))))
7574, 9elrab2 3627 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐴𝑈 ↔ (𝐴 ∈ ℂ ∧ ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘)))))
7675simprbi 497 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴𝑈 → ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7711, 76syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7877simpld 495 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (abs‘𝐴) ≤ 𝑅)
7968, 52, 63, 78lediv1dd 12830 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((abs‘𝐴) / 𝑁) ≤ (𝑅 / 𝑁))
8067, 79eqbrtrrd 5098 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (abs‘(𝐴 / 𝑁)) ≤ (𝑅 / 𝑁))
8180adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘(𝐴 / 𝑁)) ≤ (𝑅 / 𝑁))
8259simp3bi 1146 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ (0[,]1) → 𝑡 ≤ 1)
8382adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → 𝑡 ≤ 1)
8457, 55, 36, 48, 58, 61, 81, 83lemul12ad 11917 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ (0[,]1)) → ((abs‘(𝐴 / 𝑁)) · 𝑡) ≤ ((𝑅 / 𝑁) · 1))
8534, 37absmuld 15166 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) = ((abs‘(𝐴 / 𝑁)) · (abs‘𝑡)))
8636, 61absidd 15134 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘𝑡) = 𝑡)
8786oveq2d 7291 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → ((abs‘(𝐴 / 𝑁)) · (abs‘𝑡)) = ((abs‘(𝐴 / 𝑁)) · 𝑡))
8885, 87eqtr2d 2779 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ (0[,]1)) → ((abs‘(𝐴 / 𝑁)) · 𝑡) = (abs‘((𝐴 / 𝑁) · 𝑡)))
8955recnd 11003 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → (𝑅 / 𝑁) ∈ ℂ)
9089mulid1d 10992 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ (0[,]1)) → ((𝑅 / 𝑁) · 1) = (𝑅 / 𝑁))
9184, 88, 903brtr3d 5105 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) ≤ (𝑅 / 𝑁))
92 lgamgulm.l . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (2 · 𝑅) ≤ 𝑁)
93 2rp 12735 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℝ+
9493a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → 2 ∈ ℝ+)
9552, 15, 94lemuldiv2d 12822 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((2 · 𝑅) ≤ 𝑁𝑅 ≤ (𝑁 / 2)))
9692, 95mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑅 ≤ (𝑁 / 2))
97 2cnd 12051 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 2 ∈ ℂ)
98 2ne0 12077 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ≠ 0
9998a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 2 ≠ 0)
10016, 97, 99divrecd 11754 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑁 / 2) = (𝑁 · (1 / 2)))
10196, 100breqtrd 5100 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑅 ≤ (𝑁 · (1 / 2)))
1024rehalfcld 12220 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (1 / 2) ∈ ℝ)
10352, 102, 63ledivmuld 12825 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑅 / 𝑁) ≤ (1 / 2) ↔ 𝑅 ≤ (𝑁 · (1 / 2))))
104101, 103mpbird 256 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑅 / 𝑁) ≤ (1 / 2))
105104adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ (0[,]1)) → (𝑅 / 𝑁) ≤ (1 / 2))
10647, 55, 51, 91, 105letrd 11132 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) ≤ (1 / 2))
107 halflt1 12191 . . . . . . . . . . . . . . . . . . . . 21 (1 / 2) < 1
108107a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0[,]1)) → (1 / 2) < 1)
10947, 51, 48, 106, 108lelttrd 11133 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) < 1)
11046, 47, 48, 50, 109lelttrd 11133 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘(ℜ‘((𝐴 / 𝑁) · 𝑡))) < 1)
11144, 48absltd 15141 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0[,]1)) → ((abs‘(ℜ‘((𝐴 / 𝑁) · 𝑡))) < 1 ↔ (-1 < (ℜ‘((𝐴 / 𝑁) · 𝑡)) ∧ (ℜ‘((𝐴 / 𝑁) · 𝑡)) < 1)))
112110, 111mpbid 231 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0[,]1)) → (-1 < (ℜ‘((𝐴 / 𝑁) · 𝑡)) ∧ (ℜ‘((𝐴 / 𝑁) · 𝑡)) < 1))
113112simpld 495 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0[,]1)) → -1 < (ℜ‘((𝐴 / 𝑁) · 𝑡)))
11448renegcld 11402 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0[,]1)) → -1 ∈ ℝ)
115114, 44posdifd 11562 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0[,]1)) → (-1 < (ℜ‘((𝐴 / 𝑁) · 𝑡)) ↔ 0 < ((ℜ‘((𝐴 / 𝑁) · 𝑡)) − -1)))
116113, 115mpbid 231 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0[,]1)) → 0 < ((ℜ‘((𝐴 / 𝑁) · 𝑡)) − -1))
11745, 39subnegd 11339 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0[,]1)) → ((ℜ‘((𝐴 / 𝑁) · 𝑡)) − -1) = ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + 1))
118116, 117breqtrd 5100 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0[,]1)) → 0 < ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + 1))
11938, 39readdd 14925 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) = ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + (ℜ‘1)))
120 re1 14865 . . . . . . . . . . . . . . . 16 (ℜ‘1) = 1
121120oveq2i 7286 . . . . . . . . . . . . . . 15 ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + (ℜ‘1)) = ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + 1)
122119, 121eqtrdi 2794 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) = ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + 1))
123118, 122breqtrrd 5102 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0[,]1)) → 0 < (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)))
12443, 123elrpd 12769 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℝ+)
125124adantr 481 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (0[,]1)) ∧ (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℝ+)
12642, 125eqeltrrd 2840 . . . . . . . . . 10 (((𝜑𝑡 ∈ (0[,]1)) ∧ (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ+)
127126ex 413 . . . . . . . . 9 ((𝜑𝑡 ∈ (0[,]1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ+))
12829ellogdm 25794 . . . . . . . . 9 ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ (ℂ ∖ (-∞(,]0)) ↔ ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℂ ∧ ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ+)))
12940, 127, 128sylanbrc 583 . . . . . . . 8 ((𝜑𝑡 ∈ (0[,]1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ (ℂ ∖ (-∞(,]0)))
13033, 129cofmpt 7004 . . . . . . 7 (𝜑 → ((log ↾ (ℂ ∖ (-∞(,]0))) ∘ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ (0[,]1) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘(((𝐴 / 𝑁) · 𝑡) + 1))))
131129fvresd 6794 . . . . . . . 8 ((𝜑𝑡 ∈ (0[,]1)) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))
132131mpteq2dva 5174 . . . . . . 7 (𝜑 → (𝑡 ∈ (0[,]1) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘(((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ (0[,]1) ↦ (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))
133130, 132eqtrd 2778 . . . . . 6 (𝜑 → ((log ↾ (ℂ ∖ (-∞(,]0))) ∘ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ (0[,]1) ↦ (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))
134129fmpttd 6989 . . . . . . . 8 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)):(0[,]1)⟶(ℂ ∖ (-∞(,]0)))
135 difss 4066 . . . . . . . . 9 (ℂ ∖ (-∞(,]0)) ⊆ ℂ
1365addcn 24028 . . . . . . . . . . 11 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
137136a1i 11 . . . . . . . . . 10 (𝜑 → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
138 1cnd 10970 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
139 cncfmptc 24075 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 1) ∈ ((0[,]1)–cn→ℂ))
140138, 22, 23, 139syl3anc 1370 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (0[,]1) ↦ 1) ∈ ((0[,]1)–cn→ℂ))
1415, 137, 28, 140cncfmpt2f 24078 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ((0[,]1)–cn→ℂ))
142 cncffvrn 24061 . . . . . . . . 9 (((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ((0[,]1)–cn→ℂ)) → ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ((0[,]1)–cn→(ℂ ∖ (-∞(,]0))) ↔ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)):(0[,]1)⟶(ℂ ∖ (-∞(,]0))))
143135, 141, 142sylancr 587 . . . . . . . 8 (𝜑 → ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ((0[,]1)–cn→(ℂ ∖ (-∞(,]0))) ↔ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)):(0[,]1)⟶(ℂ ∖ (-∞(,]0))))
144134, 143mpbird 256 . . . . . . 7 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ((0[,]1)–cn→(ℂ ∖ (-∞(,]0))))
145144, 31cncfco 24070 . . . . . 6 (𝜑 → ((log ↾ (ℂ ∖ (-∞(,]0))) ∘ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) ∈ ((0[,]1)–cn→ℂ))
146133, 145eqeltrrd 2840 . . . . 5 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (log‘(((𝐴 / 𝑁) · 𝑡) + 1))) ∈ ((0[,]1)–cn→ℂ))
1475, 7, 28, 146cncfmpt2f 24078 . . . 4 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))) ∈ ((0[,]1)–cn→ℂ))
14820a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
14919a1i 11 . . . . . . . 8 (𝜑 → (0[,]1) ⊆ ℝ)
15029logdmn0 25795 . . . . . . . . . . 11 ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ (ℂ ∖ (-∞(,]0)) → (((𝐴 / 𝑁) · 𝑡) + 1) ≠ 0)
151129, 150syl 17 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0[,]1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ≠ 0)
15240, 151logcld 25726 . . . . . . . . 9 ((𝜑𝑡 ∈ (0[,]1)) → (log‘(((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℂ)
15338, 152subcld 11332 . . . . . . . 8 ((𝜑𝑡 ∈ (0[,]1)) → (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))) ∈ ℂ)
1545tgioo2 23966 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
155 0re 10977 . . . . . . . . 9 0 ∈ ℝ
156 iccntr 23984 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(0[,]1)) = (0(,)1))
157155, 4, 156sylancr 587 . . . . . . . 8 (𝜑 → ((int‘(topGen‘ran (,)))‘(0[,]1)) = (0(,)1))
158148, 149, 153, 154, 5, 157dvmptntr 25135 . . . . . . 7 (𝜑 → (ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))) = (ℝ D (𝑡 ∈ (0(,)1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))))
159 reelprrecn 10963 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
160159a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ {ℝ, ℂ})
16113adantr 481 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 𝐴 ∈ ℂ)
16216adantr 481 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 𝑁 ∈ ℂ)
16317adantr 481 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 𝑁 ≠ 0)
164161, 162, 163divcld 11751 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (𝐴 / 𝑁) ∈ ℂ)
165 ioossicc 13165 . . . . . . . . . . 11 (0(,)1) ⊆ (0[,]1)
166165sseli 3917 . . . . . . . . . 10 (𝑡 ∈ (0(,)1) → 𝑡 ∈ (0[,]1))
167166, 37sylan2 593 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ)
168164, 167mulcld 10995 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) · 𝑡) ∈ ℂ)
16913adantr 481 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ) → 𝐴 ∈ ℂ)
17016adantr 481 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ) → 𝑁 ∈ ℂ)
17117adantr 481 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ) → 𝑁 ≠ 0)
172169, 170, 171divcld 11751 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → (𝐴 / 𝑁) ∈ ℂ)
173148sselda 3921 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
174172, 173mulcld 10995 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → ((𝐴 / 𝑁) · 𝑡) ∈ ℂ)
175 1cnd 10970 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ) → 1 ∈ ℂ)
176160dvmptid 25121 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ 𝑡)) = (𝑡 ∈ ℝ ↦ 1))
177160, 173, 175, 176, 18dvmptcmul 25128 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) · 𝑡))) = (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) · 1)))
17818mulid1d 10992 . . . . . . . . . . 11 (𝜑 → ((𝐴 / 𝑁) · 1) = (𝐴 / 𝑁))
179178mpteq2dv 5176 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) · 1)) = (𝑡 ∈ ℝ ↦ (𝐴 / 𝑁)))
180177, 179eqtrd 2778 . . . . . . . . 9 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) · 𝑡))) = (𝑡 ∈ ℝ ↦ (𝐴 / 𝑁)))
181165, 149sstrid 3932 . . . . . . . . 9 (𝜑 → (0(,)1) ⊆ ℝ)
182 retop 23925 . . . . . . . . . . 11 (topGen‘ran (,)) ∈ Top
183 iooretop 23929 . . . . . . . . . . 11 (0(,)1) ∈ (topGen‘ran (,))
184 isopn3i 22233 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ (0(,)1) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(0(,)1)) = (0(,)1))
185182, 183, 184mp2an 689 . . . . . . . . . 10 ((int‘(topGen‘ran (,)))‘(0(,)1)) = (0(,)1)
186185a1i 11 . . . . . . . . 9 (𝜑 → ((int‘(topGen‘ran (,)))‘(0(,)1)) = (0(,)1))
187160, 174, 172, 180, 181, 154, 5, 186dvmptres2 25126 . . . . . . . 8 (𝜑 → (ℝ D (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) · 𝑡))) = (𝑡 ∈ (0(,)1) ↦ (𝐴 / 𝑁)))
188166, 152sylan2 593 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (log‘(((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℂ)
189 1cnd 10970 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → 1 ∈ ℂ)
190168, 189addcld 10994 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℂ)
191166, 151sylan2 593 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ≠ 0)
192190, 191reccld 11744 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℂ)
193192, 164mulcld 10995 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)) ∈ ℂ)
194 cnelprrecn 10964 . . . . . . . . . 10 ℂ ∈ {ℝ, ℂ}
195194a1i 11 . . . . . . . . 9 (𝜑 → ℂ ∈ {ℝ, ℂ})
196166, 129sylan2 593 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ (ℂ ∖ (-∞(,]0)))
197 eldifi 4061 . . . . . . . . . . 11 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → 𝑦 ∈ ℂ)
198197adantl 482 . . . . . . . . . 10 ((𝜑𝑦 ∈ (ℂ ∖ (-∞(,]0))) → 𝑦 ∈ ℂ)
19929logdmn0 25795 . . . . . . . . . . 11 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → 𝑦 ≠ 0)
200199adantl 482 . . . . . . . . . 10 ((𝜑𝑦 ∈ (ℂ ∖ (-∞(,]0))) → 𝑦 ≠ 0)
201198, 200logcld 25726 . . . . . . . . 9 ((𝜑𝑦 ∈ (ℂ ∖ (-∞(,]0))) → (log‘𝑦) ∈ ℂ)
202198, 200reccld 11744 . . . . . . . . 9 ((𝜑𝑦 ∈ (ℂ ∖ (-∞(,]0))) → (1 / 𝑦) ∈ ℂ)
203174, 175addcld 10994 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℂ)
204 0cnd 10968 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ) → 0 ∈ ℂ)
205160, 138dvmptc 25122 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ 1)) = (𝑡 ∈ ℝ ↦ 0))
206160, 174, 172, 180, 175, 204, 205dvmptadd 25124 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) + 0)))
20718addid1d 11175 . . . . . . . . . . . 12 (𝜑 → ((𝐴 / 𝑁) + 0) = (𝐴 / 𝑁))
208207mpteq2dv 5176 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) + 0)) = (𝑡 ∈ ℝ ↦ (𝐴 / 𝑁)))
209206, 208eqtrd 2778 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ ℝ ↦ (𝐴 / 𝑁)))
210160, 203, 172, 209, 181, 154, 5, 186dvmptres2 25126 . . . . . . . . 9 (𝜑 → (ℝ D (𝑡 ∈ (0(,)1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ (0(,)1) ↦ (𝐴 / 𝑁)))
21133feqmptd 6837 . . . . . . . . . . . 12 (𝜑 → (log ↾ (ℂ ∖ (-∞(,]0))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘𝑦)))
212 fvres 6793 . . . . . . . . . . . . 13 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘𝑦) = (log‘𝑦))
213212mpteq2ia 5177 . . . . . . . . . . . 12 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘𝑦)) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))
214211, 213eqtr2di 2795 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦)) = (log ↾ (ℂ ∖ (-∞(,]0))))
215214oveq2d 7291 . . . . . . . . . 10 (𝜑 → (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))) = (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))))
21629dvlog 25806 . . . . . . . . . 10 (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦))
217215, 216eqtrdi 2794 . . . . . . . . 9 (𝜑 → (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦)))
218 fveq2 6774 . . . . . . . . 9 (𝑦 = (((𝐴 / 𝑁) · 𝑡) + 1) → (log‘𝑦) = (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))
219 oveq2 7283 . . . . . . . . 9 (𝑦 = (((𝐴 / 𝑁) · 𝑡) + 1) → (1 / 𝑦) = (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))
220160, 195, 196, 164, 201, 202, 210, 217, 218, 219dvmptco 25136 . . . . . . . 8 (𝜑 → (ℝ D (𝑡 ∈ (0(,)1) ↦ (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))) = (𝑡 ∈ (0(,)1) ↦ ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))
221160, 168, 164, 187, 188, 193, 220dvmptsub 25131 . . . . . . 7 (𝜑 → (ℝ D (𝑡 ∈ (0(,)1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))) = (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))))
222158, 221eqtrd 2778 . . . . . 6 (𝜑 → (ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))) = (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))))
223222dmeqd 5814 . . . . 5 (𝜑 → dom (ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))) = dom (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))))
224 ovex 7308 . . . . . 6 ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))) ∈ V
225 eqid 2738 . . . . . 6 (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))) = (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))
226224, 225dmmpti 6577 . . . . 5 dom (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))) = (0(,)1)
227223, 226eqtrdi 2794 . . . 4 (𝜑 → dom (ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))) = (0(,)1))
228 2re 12047 . . . . . . . . . . 11 2 ∈ ℝ
229228a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ)
230229, 52remulcld 11005 . . . . . . . . 9 (𝜑 → (2 · 𝑅) ∈ ℝ)
2318nnrpd 12770 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℝ+)
23252, 231ltaddrpd 12805 . . . . . . . . . 10 (𝜑𝑅 < (𝑅 + 𝑅))
23352recnd 11003 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℂ)
2342332timesd 12216 . . . . . . . . . 10 (𝜑 → (2 · 𝑅) = (𝑅 + 𝑅))
235232, 234breqtrrd 5102 . . . . . . . . 9 (𝜑𝑅 < (2 · 𝑅))
23652, 230, 15, 235, 92ltletrd 11135 . . . . . . . 8 (𝜑𝑅 < 𝑁)
237 difrp 12768 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑅 < 𝑁 ↔ (𝑁𝑅) ∈ ℝ+))
23852, 15, 237syl2anc 584 . . . . . . . 8 (𝜑 → (𝑅 < 𝑁 ↔ (𝑁𝑅) ∈ ℝ+))
239236, 238mpbid 231 . . . . . . 7 (𝜑 → (𝑁𝑅) ∈ ℝ+)
240239rprecred 12783 . . . . . 6 (𝜑 → (1 / (𝑁𝑅)) ∈ ℝ)
24114nnrecred 12024 . . . . . 6 (𝜑 → (1 / 𝑁) ∈ ℝ)
242240, 241resubcld 11403 . . . . 5 (𝜑 → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℝ)
24352, 242remulcld 11005 . . . 4 (𝜑 → (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ∈ ℝ)
244222fveq1d 6776 . . . . . . 7 (𝜑 → ((ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))))‘𝑦) = ((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦))
245244fveq2d 6778 . . . . . 6 (𝜑 → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))))‘𝑦)) = (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)))
246245adantr 481 . . . . 5 ((𝜑𝑦 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))))‘𝑦)) = (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)))
247 nfv 1917 . . . . . . 7 𝑡(𝜑𝑦 ∈ (0(,)1))
248 nfcv 2907 . . . . . . . . 9 𝑡abs
249 nffvmpt1 6785 . . . . . . . . 9 𝑡((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)
250248, 249nffv 6784 . . . . . . . 8 𝑡(abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦))
251 nfcv 2907 . . . . . . . 8 𝑡
252 nfcv 2907 . . . . . . . 8 𝑡(𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))
253250, 251, 252nfbr 5121 . . . . . . 7 𝑡(abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))
254247, 253nfim 1899 . . . . . 6 𝑡((𝜑𝑦 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
255 eleq1w 2821 . . . . . . . 8 (𝑡 = 𝑦 → (𝑡 ∈ (0(,)1) ↔ 𝑦 ∈ (0(,)1)))
256255anbi2d 629 . . . . . . 7 (𝑡 = 𝑦 → ((𝜑𝑡 ∈ (0(,)1)) ↔ (𝜑𝑦 ∈ (0(,)1))))
257 2fveq3 6779 . . . . . . . 8 (𝑡 = 𝑦 → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) = (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)))
258257breq1d 5084 . . . . . . 7 (𝑡 = 𝑦 → ((abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ↔ (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
259256, 258imbi12d 345 . . . . . 6 (𝑡 = 𝑦 → (((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))) ↔ ((𝜑𝑦 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))))
260 simpr 485 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 𝑡 ∈ (0(,)1))
261225fvmpt2 6886 . . . . . . . . . 10 ((𝑡 ∈ (0(,)1) ∧ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))) ∈ V) → ((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡) = ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))
262260, 224, 261sylancl 586 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡) = ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))
263262fveq2d 6778 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) = (abs‘((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))))
264164, 189, 192subdid 11431 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) · (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) = (((𝐴 / 𝑁) · 1) − ((𝐴 / 𝑁) · (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))))
265164mulid1d 10992 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) · 1) = (𝐴 / 𝑁))
266164, 192mulcomd 10996 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) · (1 / (((𝐴 / 𝑁) · 𝑡) + 1))) = ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))
267265, 266oveq12d 7293 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (((𝐴 / 𝑁) · 1) − ((𝐴 / 𝑁) · (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) = ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))
268264, 267eqtr2d 2779 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))) = ((𝐴 / 𝑁) · (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))))
269268fveq2d 6778 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))) = (abs‘((𝐴 / 𝑁) · (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))))
270161, 162, 163absdivd 15167 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(𝐴 / 𝑁)) = ((abs‘𝐴) / (abs‘𝑁)))
27115adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → 𝑁 ∈ ℝ)
27264adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → 0 ≤ 𝑁)
273271, 272absidd 15134 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘𝑁) = 𝑁)
274273oveq2d 7291 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘𝐴) / (abs‘𝑁)) = ((abs‘𝐴) / 𝑁))
275270, 274eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(𝐴 / 𝑁)) = ((abs‘𝐴) / 𝑁))
276275oveq1d 7290 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘(𝐴 / 𝑁)) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) = (((abs‘𝐴) / 𝑁) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))))
277189, 192subcld 11332 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))) ∈ ℂ)
278164, 277absmuld 15166 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝐴 / 𝑁) · (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) = ((abs‘(𝐴 / 𝑁)) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))))
27968adantr 481 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘𝐴) ∈ ℝ)
280279recnd 11003 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘𝐴) ∈ ℂ)
281277abscld 15148 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) ∈ ℝ)
282281recnd 11003 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) ∈ ℂ)
283280, 282, 162, 163div23d 11788 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) / 𝑁) = (((abs‘𝐴) / 𝑁) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))))
284276, 278, 2833eqtr4d 2788 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝐴 / 𝑁) · (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) = (((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) / 𝑁))
285263, 269, 2843eqtrd 2782 . . . . . . 7 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) = (((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) / 𝑁))
28652adantr 481 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 𝑅 ∈ ℝ)
287240adantr 481 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (𝑁𝑅)) ∈ ℝ)
288241adantr 481 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (1 / 𝑁) ∈ ℝ)
289287, 288resubcld 11403 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℝ)
290271, 289remulcld 11005 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ∈ ℝ)
29113absge0d 15156 . . . . . . . . . . 11 (𝜑 → 0 ≤ (abs‘𝐴))
292291adantr 481 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 0 ≤ (abs‘𝐴))
293277absge0d 15156 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 0 ≤ (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))))
29478adantr 481 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘𝐴) ≤ 𝑅)
295239adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁𝑅) ∈ ℝ+)
296231adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → 𝑅 ∈ ℝ+)
297295, 296rpdivcld 12789 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) ∈ ℝ+)
29812dmgmn0 26175 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ≠ 0)
299298adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → 𝐴 ≠ 0)
300161, 162, 299, 163divne0d 11767 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → (𝐴 / 𝑁) ≠ 0)
301 eliooord 13138 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ (0(,)1) → (0 < 𝑡𝑡 < 1))
302301adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0(,)1)) → (0 < 𝑡𝑡 < 1))
303302simpld 495 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → 0 < 𝑡)
304303gt0ne0d 11539 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → 𝑡 ≠ 0)
305164, 167, 300, 304mulne0d 11627 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) · 𝑡) ≠ 0)
306168, 305reccld 11744 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (1 / ((𝐴 / 𝑁) · 𝑡)) ∈ ℂ)
307189, 306addcld 10994 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (1 + (1 / ((𝐴 / 𝑁) · 𝑡))) ∈ ℂ)
308168, 189, 168, 305divdird 11789 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) / ((𝐴 / 𝑁) · 𝑡)) = ((((𝐴 / 𝑁) · 𝑡) / ((𝐴 / 𝑁) · 𝑡)) + (1 / ((𝐴 / 𝑁) · 𝑡))))
309168, 305dividd 11749 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → (((𝐴 / 𝑁) · 𝑡) / ((𝐴 / 𝑁) · 𝑡)) = 1)
310309oveq1d 7290 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) / ((𝐴 / 𝑁) · 𝑡)) + (1 / ((𝐴 / 𝑁) · 𝑡))) = (1 + (1 / ((𝐴 / 𝑁) · 𝑡))))
311308, 310eqtrd 2778 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) / ((𝐴 / 𝑁) · 𝑡)) = (1 + (1 / ((𝐴 / 𝑁) · 𝑡))))
312190, 168, 191, 305divne0d 11767 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) / ((𝐴 / 𝑁) · 𝑡)) ≠ 0)
313311, 312eqnetrrd 3012 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (1 + (1 / ((𝐴 / 𝑁) · 𝑡))) ≠ 0)
314307, 313absrpcld 15160 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))) ∈ ℝ+)
315 1red 10976 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → 1 ∈ ℝ)
316 0le1 11498 . . . . . . . . . . . . . 14 0 ≤ 1
317316a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → 0 ≤ 1)
318297rpred 12772 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) ∈ ℝ)
319306negcld 11319 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → -(1 / ((𝐴 / 𝑁) · 𝑡)) ∈ ℂ)
320319abscld 15148 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) ∈ ℝ)
321320, 315resubcld 11403 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1) ∈ ℝ)
322307abscld 15148 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))) ∈ ℝ)
323233adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → 𝑅 ∈ ℂ)
324296rpne0d 12777 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → 𝑅 ≠ 0)
325162, 323, 323, 324divsubdird 11790 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) = ((𝑁 / 𝑅) − (𝑅 / 𝑅)))
326323, 324dividd 11749 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → (𝑅 / 𝑅) = 1)
327326oveq2d 7291 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 / 𝑅) − (𝑅 / 𝑅)) = ((𝑁 / 𝑅) − 1))
328325, 327eqtrd 2778 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) = ((𝑁 / 𝑅) − 1))
329271, 296rerpdivcld 12803 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 / 𝑅) ∈ ℝ)
330323, 162, 324, 163recdivd 11768 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (𝑅 / 𝑁)) = (𝑁 / 𝑅))
331166, 91sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) ≤ (𝑅 / 𝑁))
332168, 305absrpcld 15160 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) ∈ ℝ+)
33363adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ (0(,)1)) → 𝑁 ∈ ℝ+)
334296, 333rpdivcld 12789 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0(,)1)) → (𝑅 / 𝑁) ∈ ℝ+)
335332, 334lerecd 12791 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘((𝐴 / 𝑁) · 𝑡)) ≤ (𝑅 / 𝑁) ↔ (1 / (𝑅 / 𝑁)) ≤ (1 / (abs‘((𝐴 / 𝑁) · 𝑡)))))
336331, 335mpbid 231 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (𝑅 / 𝑁)) ≤ (1 / (abs‘((𝐴 / 𝑁) · 𝑡))))
337330, 336eqbrtrrd 5098 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 / 𝑅) ≤ (1 / (abs‘((𝐴 / 𝑁) · 𝑡))))
338306absnegd 15161 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) = (abs‘(1 / ((𝐴 / 𝑁) · 𝑡))))
339189, 168, 305absdivd 15167 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 / ((𝐴 / 𝑁) · 𝑡))) = ((abs‘1) / (abs‘((𝐴 / 𝑁) · 𝑡))))
340 abs1 15009 . . . . . . . . . . . . . . . . . . . 20 (abs‘1) = 1
341340oveq1i 7285 . . . . . . . . . . . . . . . . . . 19 ((abs‘1) / (abs‘((𝐴 / 𝑁) · 𝑡))) = (1 / (abs‘((𝐴 / 𝑁) · 𝑡)))
342339, 341eqtrdi 2794 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 / ((𝐴 / 𝑁) · 𝑡))) = (1 / (abs‘((𝐴 / 𝑁) · 𝑡))))
343338, 342eqtrd 2778 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) = (1 / (abs‘((𝐴 / 𝑁) · 𝑡))))
344337, 343breqtrrd 5102 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 / 𝑅) ≤ (abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))))
345329, 320, 315, 344lesub1dd 11591 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 / 𝑅) − 1) ≤ ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1))
346328, 345eqbrtrd 5096 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) ≤ ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1))
347340oveq2i 7286 . . . . . . . . . . . . . . . 16 ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − (abs‘1)) = ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1)
348319, 189abs2difd 15169 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − (abs‘1)) ≤ (abs‘(-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1)))
349347, 348eqbrtrrid 5110 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1) ≤ (abs‘(-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1)))
350189, 306addcomd 11177 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0(,)1)) → (1 + (1 / ((𝐴 / 𝑁) · 𝑡))) = ((1 / ((𝐴 / 𝑁) · 𝑡)) + 1))
351350negeqd 11215 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → -(1 + (1 / ((𝐴 / 𝑁) · 𝑡))) = -((1 / ((𝐴 / 𝑁) · 𝑡)) + 1))
352306, 189negdi2d 11346 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → -((1 / ((𝐴 / 𝑁) · 𝑡)) + 1) = (-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1))
353351, 352eqtrd 2778 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → -(1 + (1 / ((𝐴 / 𝑁) · 𝑡))) = (-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1))
354353fveq2d 6778 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘-(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))) = (abs‘(-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1)))
355307absnegd 15161 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘-(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))) = (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
356354, 355eqtr3d 2780 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1)) = (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
357349, 356breqtrd 5100 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1) ≤ (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
358318, 321, 322, 346, 357letrd 11132 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) ≤ (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
359297, 314, 315, 317, 358lediv2ad 12794 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))) ≤ (1 / ((𝑁𝑅) / 𝑅)))
36016, 233subcld 11332 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑅) ∈ ℂ)
361360adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁𝑅) ∈ ℂ)
36252, 236gtned 11110 . . . . . . . . . . . . . . . 16 (𝜑𝑁𝑅)
36316, 233, 362subne0d 11341 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑅) ≠ 0)
364363adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁𝑅) ≠ 0)
365361, 323, 364, 324recdivd 11768 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (1 / ((𝑁𝑅) / 𝑅)) = (𝑅 / (𝑁𝑅)))
366162, 323nncand 11337 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 − (𝑁𝑅)) = 𝑅)
367366oveq1d 7290 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 − (𝑁𝑅)) / (𝑁𝑅)) = (𝑅 / (𝑁𝑅)))
368162, 361, 361, 364divsubdird 11790 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 − (𝑁𝑅)) / (𝑁𝑅)) = ((𝑁 / (𝑁𝑅)) − ((𝑁𝑅) / (𝑁𝑅))))
369367, 368eqtr3d 2780 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (𝑅 / (𝑁𝑅)) = ((𝑁 / (𝑁𝑅)) − ((𝑁𝑅) / (𝑁𝑅))))
370361, 364dividd 11749 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / (𝑁𝑅)) = 1)
371370oveq2d 7291 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 / (𝑁𝑅)) − ((𝑁𝑅) / (𝑁𝑅))) = ((𝑁 / (𝑁𝑅)) − 1))
372365, 369, 3713eqtrd 2782 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (1 / ((𝑁𝑅) / 𝑅)) = ((𝑁 / (𝑁𝑅)) − 1))
373359, 372breqtrd 5100 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))) ≤ ((𝑁 / (𝑁𝑅)) − 1))
374190, 189, 190, 191divsubdird 11790 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (((((𝐴 / 𝑁) · 𝑡) + 1) − 1) / (((𝐴 / 𝑁) · 𝑡) + 1)) = (((((𝐴 / 𝑁) · 𝑡) + 1) / (((𝐴 / 𝑁) · 𝑡) + 1)) − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))
375168, 189pncand 11333 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) − 1) = ((𝐴 / 𝑁) · 𝑡))
376375oveq1d 7290 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (((((𝐴 / 𝑁) · 𝑡) + 1) − 1) / (((𝐴 / 𝑁) · 𝑡) + 1)) = (((𝐴 / 𝑁) · 𝑡) / (((𝐴 / 𝑁) · 𝑡) + 1)))
377190, 191dividd 11749 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) / (((𝐴 / 𝑁) · 𝑡) + 1)) = 1)
378377oveq1d 7290 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (((((𝐴 / 𝑁) · 𝑡) + 1) / (((𝐴 / 𝑁) · 𝑡) + 1)) − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))) = (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))
379374, 376, 3783eqtr3rd 2787 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))) = (((𝐴 / 𝑁) · 𝑡) / (((𝐴 / 𝑁) · 𝑡) + 1)))
380190, 168, 191, 305recdivd 11768 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (1 / ((((𝐴 / 𝑁) · 𝑡) + 1) / ((𝐴 / 𝑁) · 𝑡))) = (((𝐴 / 𝑁) · 𝑡) / (((𝐴 / 𝑁) · 𝑡) + 1)))
381311oveq2d 7291 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (1 / ((((𝐴 / 𝑁) · 𝑡) + 1) / ((𝐴 / 𝑁) · 𝑡))) = (1 / (1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
382379, 380, 3813eqtr2d 2784 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))) = (1 / (1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
383382fveq2d 6778 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) = (abs‘(1 / (1 + (1 / ((𝐴 / 𝑁) · 𝑡))))))
384189, 307, 313absdivd 15167 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 / (1 + (1 / ((𝐴 / 𝑁) · 𝑡))))) = ((abs‘1) / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))))
385340oveq1i 7285 . . . . . . . . . . . . 13 ((abs‘1) / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))) = (1 / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
386384, 385eqtrdi 2794 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 / (1 + (1 / ((𝐴 / 𝑁) · 𝑡))))) = (1 / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))))
387383, 386eqtrd 2778 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) = (1 / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))))
388360, 363reccld 11744 . . . . . . . . . . . . . 14 (𝜑 → (1 / (𝑁𝑅)) ∈ ℂ)
389388adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (𝑁𝑅)) ∈ ℂ)
390241recnd 11003 . . . . . . . . . . . . . 14 (𝜑 → (1 / 𝑁) ∈ ℂ)
391390adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (1 / 𝑁) ∈ ℂ)
392162, 389, 391subdid 11431 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) = ((𝑁 · (1 / (𝑁𝑅))) − (𝑁 · (1 / 𝑁))))
393162, 361, 364divrecd 11754 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 / (𝑁𝑅)) = (𝑁 · (1 / (𝑁𝑅))))
394393eqcomd 2744 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 · (1 / (𝑁𝑅))) = (𝑁 / (𝑁𝑅)))
395162, 163recidd 11746 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 · (1 / 𝑁)) = 1)
396394, 395oveq12d 7293 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 · (1 / (𝑁𝑅))) − (𝑁 · (1 / 𝑁))) = ((𝑁 / (𝑁𝑅)) − 1))
397392, 396eqtrd 2778 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) = ((𝑁 / (𝑁𝑅)) − 1))
398373, 387, 3973brtr4d 5106 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) ≤ (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
399279, 286, 281, 290, 292, 293, 294, 398lemul12ad 11917 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) ≤ (𝑅 · (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
400242recnd 11003 . . . . . . . . . . 11 (𝜑 → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℂ)
401400adantr 481 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℂ)
402323, 162, 401mul12d 11184 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (𝑅 · (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))) = (𝑁 · (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
403399, 402breqtrd 5100 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) ≤ (𝑁 · (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
404279, 281remulcld 11005 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) ∈ ℝ)
405243adantr 481 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ∈ ℝ)
406404, 405, 333ledivmuld 12825 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → ((((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) / 𝑁) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ↔ ((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) ≤ (𝑁 · (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))))
407403, 406mpbird 256 . . . . . . 7 ((𝜑𝑡 ∈ (0(,)1)) → (((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) / 𝑁) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
408285, 407eqbrtrd 5096 . . . . . 6 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
409254, 259, 408chvarfv 2233 . . . . 5 ((𝜑𝑦 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
410246, 409eqbrtrd 5096 . . . 4 ((𝜑𝑦 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
4113, 4, 147, 227, 243, 410dvlip 25157 . . 3 ((𝜑 ∧ (1 ∈ (0[,]1) ∧ 0 ∈ (0[,]1))) → (abs‘(((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0))) ≤ ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · (abs‘(1 − 0))))
4121, 2, 411mpanr12 702 . 2 (𝜑 → (abs‘(((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0))) ≤ ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · (abs‘(1 − 0))))
413 eqidd 2739 . . . . . 6 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))) = (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))))
414 oveq2 7283 . . . . . . . 8 (𝑡 = 1 → ((𝐴 / 𝑁) · 𝑡) = ((𝐴 / 𝑁) · 1))
415414, 178sylan9eqr 2800 . . . . . . 7 ((𝜑𝑡 = 1) → ((𝐴 / 𝑁) · 𝑡) = (𝐴 / 𝑁))
416415fvoveq1d 7297 . . . . . . 7 ((𝜑𝑡 = 1) → (log‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (log‘((𝐴 / 𝑁) + 1)))
417415, 416oveq12d 7293 . . . . . 6 ((𝜑𝑡 = 1) → (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))) = ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))
4181a1i 11 . . . . . 6 (𝜑 → 1 ∈ (0[,]1))
419 ovexd 7310 . . . . . 6 (𝜑 → ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) ∈ V)
420413, 417, 418, 419fvmptd 6882 . . . . 5 (𝜑 → ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) = ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))
421 oveq2 7283 . . . . . . . . 9 (𝑡 = 0 → ((𝐴 / 𝑁) · 𝑡) = ((𝐴 / 𝑁) · 0))
42218mul01d 11174 . . . . . . . . 9 (𝜑 → ((𝐴 / 𝑁) · 0) = 0)
423421, 422sylan9eqr 2800 . . . . . . . 8 ((𝜑𝑡 = 0) → ((𝐴 / 𝑁) · 𝑡) = 0)
424423oveq1d 7290 . . . . . . . . . . 11 ((𝜑𝑡 = 0) → (((𝐴 / 𝑁) · 𝑡) + 1) = (0 + 1))
425 0p1e1 12095 . . . . . . . . . . 11 (0 + 1) = 1
426424, 425eqtrdi 2794 . . . . . . . . . 10 ((𝜑𝑡 = 0) → (((𝐴 / 𝑁) · 𝑡) + 1) = 1)
427426fveq2d 6778 . . . . . . . . 9 ((𝜑𝑡 = 0) → (log‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (log‘1))
428 log1 25741 . . . . . . . . 9 (log‘1) = 0
429427, 428eqtrdi 2794 . . . . . . . 8 ((𝜑𝑡 = 0) → (log‘(((𝐴 / 𝑁) · 𝑡) + 1)) = 0)
430423, 429oveq12d 7293 . . . . . . 7 ((𝜑𝑡 = 0) → (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))) = (0 − 0))
431 0m0e0 12093 . . . . . . 7 (0 − 0) = 0
432430, 431eqtrdi 2794 . . . . . 6 ((𝜑𝑡 = 0) → (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))) = 0)
4332a1i 11 . . . . . 6 (𝜑 → 0 ∈ (0[,]1))
434413, 432, 433, 433fvmptd 6882 . . . . 5 (𝜑 → ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0) = 0)
435420, 434oveq12d 7293 . . . 4 (𝜑 → (((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0)) = (((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) − 0))
43618, 138addcld 10994 . . . . . . 7 (𝜑 → ((𝐴 / 𝑁) + 1) ∈ ℂ)
43712, 14dmgmdivn0 26177 . . . . . . 7 (𝜑 → ((𝐴 / 𝑁) + 1) ≠ 0)
438436, 437logcld 25726 . . . . . 6 (𝜑 → (log‘((𝐴 / 𝑁) + 1)) ∈ ℂ)
43918, 438subcld 11332 . . . . 5 (𝜑 → ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) ∈ ℂ)
440439subid1d 11321 . . . 4 (𝜑 → (((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) − 0) = ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))
441435, 440eqtr2d 2779 . . 3 (𝜑 → ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) = (((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0)))
442441fveq2d 6778 . 2 (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) = (abs‘(((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0))))
443 1m0e1 12094 . . . . . 6 (1 − 0) = 1
444443fveq2i 6777 . . . . 5 (abs‘(1 − 0)) = (abs‘1)
445444, 340eqtri 2766 . . . 4 (abs‘(1 − 0)) = 1
446445oveq2i 7286 . . 3 ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · (abs‘(1 − 0))) = ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · 1)
447233, 400mulcld 10995 . . . 4 (𝜑 → (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ∈ ℂ)
448447mulid1d 10992 . . 3 (𝜑 → ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · 1) = (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
449446, 448eqtr2id 2791 . 2 (𝜑 → (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) = ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · (abs‘(1 − 0))))
450412, 442, 4493brtr4d 5106 1 (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  Vcvv 3432  cdif 3884  wss 3887  {cpr 4563   class class class wbr 5074  cmpt 5157  dom cdm 5589  ran crn 5590  cres 5591  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  -∞cmnf 11007   < clt 11009  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  +crp 12730  (,)cioo 13079  (,]cioc 13080  [,]cicc 13082  cre 14808  abscabs 14945  TopOpenctopn 17132  topGenctg 17148  fldccnfld 20597  Topctop 22042  intcnt 22168   Cn ccn 22375   ×t ctx 22711  cnccncf 24039   D cdv 25027  logclog 25710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-tan 15781  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712
This theorem is referenced by:  lgamgulmlem3  26180
  Copyright terms: Public domain W3C validator