MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulmlem2 Structured version   Visualization version   GIF version

Theorem lgamgulmlem2 27007
Description: Lemma for lgamgulm 27012. (Contributed by Mario Carneiro, 3-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.n (𝜑𝑁 ∈ ℕ)
lgamgulm.a (𝜑𝐴𝑈)
lgamgulm.l (𝜑 → (2 · 𝑅) ≤ 𝑁)
Assertion
Ref Expression
lgamgulmlem2 (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑘,𝑅   𝐴,𝑘,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝑈(𝑥,𝑘)   𝑁(𝑘)

Proof of Theorem lgamgulmlem2
Dummy variables 𝑦 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1elunit 13482 . . 3 1 ∈ (0[,]1)
2 0elunit 13481 . . 3 0 ∈ (0[,]1)
3 0red 11249 . . . 4 (𝜑 → 0 ∈ ℝ)
4 1red 11247 . . . 4 (𝜑 → 1 ∈ ℝ)
5 eqid 2725 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
65subcn 24826 . . . . . 6 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
76a1i 11 . . . . 5 (𝜑 → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
8 lgamgulm.r . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ)
9 lgamgulm.u . . . . . . . . . . 11 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
108, 9lgamgulmlem1 27006 . . . . . . . . . 10 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
11 lgamgulm.a . . . . . . . . . 10 (𝜑𝐴𝑈)
1210, 11sseldd 3977 . . . . . . . . 9 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
1312eldifad 3956 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
14 lgamgulm.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
1514nnred 12260 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
1615recnd 11274 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
1714nnne0d 12295 . . . . . . . 8 (𝜑𝑁 ≠ 0)
1813, 16, 17divcld 12023 . . . . . . 7 (𝜑 → (𝐴 / 𝑁) ∈ ℂ)
19 unitssre 13511 . . . . . . . . 9 (0[,]1) ⊆ ℝ
20 ax-resscn 11197 . . . . . . . . 9 ℝ ⊆ ℂ
2119, 20sstri 3986 . . . . . . . 8 (0[,]1) ⊆ ℂ
2221a1i 11 . . . . . . 7 (𝜑 → (0[,]1) ⊆ ℂ)
23 ssidd 4000 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
24 cncfmptc 24876 . . . . . . 7 (((𝐴 / 𝑁) ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ (𝐴 / 𝑁)) ∈ ((0[,]1)–cn→ℂ))
2518, 22, 23, 24syl3anc 1368 . . . . . 6 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (𝐴 / 𝑁)) ∈ ((0[,]1)–cn→ℂ))
26 cncfmptid 24877 . . . . . . 7 (((0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ))
2721, 23, 26sylancr 585 . . . . . 6 (𝜑 → (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ))
2825, 27mulcncf 25418 . . . . 5 (𝜑 → (𝑡 ∈ (0[,]1) ↦ ((𝐴 / 𝑁) · 𝑡)) ∈ ((0[,]1)–cn→ℂ))
29 eqid 2725 . . . . . . . . . . 11 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
3029logcn 26626 . . . . . . . . . 10 (log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ)
3130a1i 11 . . . . . . . . 9 (𝜑 → (log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ))
32 cncff 24857 . . . . . . . . 9 ((log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ) → (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ)
3331, 32syl 17 . . . . . . . 8 (𝜑 → (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ)
3418adantr 479 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0[,]1)) → (𝐴 / 𝑁) ∈ ℂ)
35 simpr 483 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0[,]1)) → 𝑡 ∈ (0[,]1))
3619, 35sselid 3974 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℝ)
3736recnd 11274 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℂ)
3834, 37mulcld 11266 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0[,]1)) → ((𝐴 / 𝑁) · 𝑡) ∈ ℂ)
39 1cnd 11241 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0[,]1)) → 1 ∈ ℂ)
4038, 39addcld 11265 . . . . . . . . 9 ((𝜑𝑡 ∈ (0[,]1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℂ)
41 rere 15105 . . . . . . . . . . . 12 ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (((𝐴 / 𝑁) · 𝑡) + 1))
4241adantl 480 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (0[,]1)) ∧ (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (((𝐴 / 𝑁) · 𝑡) + 1))
4340recld 15177 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℝ)
4438recld 15177 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘((𝐴 / 𝑁) · 𝑡)) ∈ ℝ)
4544recnd 11274 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘((𝐴 / 𝑁) · 𝑡)) ∈ ℂ)
4645abscld 15419 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘(ℜ‘((𝐴 / 𝑁) · 𝑡))) ∈ ℝ)
4738abscld 15419 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) ∈ ℝ)
48 1red 11247 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0[,]1)) → 1 ∈ ℝ)
49 absrele 15291 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 / 𝑁) · 𝑡) ∈ ℂ → (abs‘(ℜ‘((𝐴 / 𝑁) · 𝑡))) ≤ (abs‘((𝐴 / 𝑁) · 𝑡)))
5038, 49syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘(ℜ‘((𝐴 / 𝑁) · 𝑡))) ≤ (abs‘((𝐴 / 𝑁) · 𝑡)))
5148rehalfcld 12492 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0[,]1)) → (1 / 2) ∈ ℝ)
528nnred 12260 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑅 ∈ ℝ)
5352adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ (0[,]1)) → 𝑅 ∈ ℝ)
5414adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ (0[,]1)) → 𝑁 ∈ ℕ)
5553, 54nndivred 12299 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ (0[,]1)) → (𝑅 / 𝑁) ∈ ℝ)
5618abscld 15419 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (abs‘(𝐴 / 𝑁)) ∈ ℝ)
5756adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘(𝐴 / 𝑁)) ∈ ℝ)
5834absge0d 15427 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → 0 ≤ (abs‘(𝐴 / 𝑁)))
59 elicc01 13478 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
6059simp2bi 1143 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ (0[,]1) → 0 ≤ 𝑡)
6160adantl 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → 0 ≤ 𝑡)
6213, 16, 17absdivd 15438 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (abs‘(𝐴 / 𝑁)) = ((abs‘𝐴) / (abs‘𝑁)))
6314nnrpd 13049 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑁 ∈ ℝ+)
6463rpge0d 13055 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → 0 ≤ 𝑁)
6515, 64absidd 15405 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (abs‘𝑁) = 𝑁)
6665oveq2d 7435 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((abs‘𝐴) / (abs‘𝑁)) = ((abs‘𝐴) / 𝑁))
6762, 66eqtr2d 2766 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((abs‘𝐴) / 𝑁) = (abs‘(𝐴 / 𝑁)))
6813abscld 15419 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (abs‘𝐴) ∈ ℝ)
69 fveq2 6896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = 𝐴 → (abs‘𝑥) = (abs‘𝐴))
7069breq1d 5159 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 = 𝐴 → ((abs‘𝑥) ≤ 𝑅 ↔ (abs‘𝐴) ≤ 𝑅))
71 fvoveq1 7442 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 = 𝐴 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝐴 + 𝑘)))
7271breq2d 5161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = 𝐴 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7372ralbidv 3167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 = 𝐴 → (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7470, 73anbi12d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 = 𝐴 → (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘)))))
7574, 9elrab2 3682 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐴𝑈 ↔ (𝐴 ∈ ℂ ∧ ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘)))))
7675simprbi 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴𝑈 → ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7711, 76syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7877simpld 493 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (abs‘𝐴) ≤ 𝑅)
7968, 52, 63, 78lediv1dd 13109 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((abs‘𝐴) / 𝑁) ≤ (𝑅 / 𝑁))
8067, 79eqbrtrrd 5173 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (abs‘(𝐴 / 𝑁)) ≤ (𝑅 / 𝑁))
8180adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘(𝐴 / 𝑁)) ≤ (𝑅 / 𝑁))
8259simp3bi 1144 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ (0[,]1) → 𝑡 ≤ 1)
8382adantl 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → 𝑡 ≤ 1)
8457, 55, 36, 48, 58, 61, 81, 83lemul12ad 12189 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ (0[,]1)) → ((abs‘(𝐴 / 𝑁)) · 𝑡) ≤ ((𝑅 / 𝑁) · 1))
8534, 37absmuld 15437 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) = ((abs‘(𝐴 / 𝑁)) · (abs‘𝑡)))
8636, 61absidd 15405 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘𝑡) = 𝑡)
8786oveq2d 7435 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → ((abs‘(𝐴 / 𝑁)) · (abs‘𝑡)) = ((abs‘(𝐴 / 𝑁)) · 𝑡))
8885, 87eqtr2d 2766 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ (0[,]1)) → ((abs‘(𝐴 / 𝑁)) · 𝑡) = (abs‘((𝐴 / 𝑁) · 𝑡)))
8955recnd 11274 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → (𝑅 / 𝑁) ∈ ℂ)
9089mulridd 11263 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ (0[,]1)) → ((𝑅 / 𝑁) · 1) = (𝑅 / 𝑁))
9184, 88, 903brtr3d 5180 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) ≤ (𝑅 / 𝑁))
92 lgamgulm.l . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (2 · 𝑅) ≤ 𝑁)
93 2rp 13014 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℝ+
9493a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → 2 ∈ ℝ+)
9552, 15, 94lemuldiv2d 13101 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((2 · 𝑅) ≤ 𝑁𝑅 ≤ (𝑁 / 2)))
9692, 95mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑅 ≤ (𝑁 / 2))
97 2cnd 12323 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 2 ∈ ℂ)
98 2ne0 12349 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ≠ 0
9998a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 2 ≠ 0)
10016, 97, 99divrecd 12026 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑁 / 2) = (𝑁 · (1 / 2)))
10196, 100breqtrd 5175 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑅 ≤ (𝑁 · (1 / 2)))
1024rehalfcld 12492 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (1 / 2) ∈ ℝ)
10352, 102, 63ledivmuld 13104 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑅 / 𝑁) ≤ (1 / 2) ↔ 𝑅 ≤ (𝑁 · (1 / 2))))
104101, 103mpbird 256 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑅 / 𝑁) ≤ (1 / 2))
105104adantr 479 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ (0[,]1)) → (𝑅 / 𝑁) ≤ (1 / 2))
10647, 55, 51, 91, 105letrd 11403 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) ≤ (1 / 2))
107 halflt1 12463 . . . . . . . . . . . . . . . . . . . . 21 (1 / 2) < 1
108107a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0[,]1)) → (1 / 2) < 1)
10947, 51, 48, 106, 108lelttrd 11404 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) < 1)
11046, 47, 48, 50, 109lelttrd 11404 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘(ℜ‘((𝐴 / 𝑁) · 𝑡))) < 1)
11144, 48absltd 15412 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0[,]1)) → ((abs‘(ℜ‘((𝐴 / 𝑁) · 𝑡))) < 1 ↔ (-1 < (ℜ‘((𝐴 / 𝑁) · 𝑡)) ∧ (ℜ‘((𝐴 / 𝑁) · 𝑡)) < 1)))
112110, 111mpbid 231 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0[,]1)) → (-1 < (ℜ‘((𝐴 / 𝑁) · 𝑡)) ∧ (ℜ‘((𝐴 / 𝑁) · 𝑡)) < 1))
113112simpld 493 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0[,]1)) → -1 < (ℜ‘((𝐴 / 𝑁) · 𝑡)))
11448renegcld 11673 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0[,]1)) → -1 ∈ ℝ)
115114, 44posdifd 11833 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0[,]1)) → (-1 < (ℜ‘((𝐴 / 𝑁) · 𝑡)) ↔ 0 < ((ℜ‘((𝐴 / 𝑁) · 𝑡)) − -1)))
116113, 115mpbid 231 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0[,]1)) → 0 < ((ℜ‘((𝐴 / 𝑁) · 𝑡)) − -1))
11745, 39subnegd 11610 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0[,]1)) → ((ℜ‘((𝐴 / 𝑁) · 𝑡)) − -1) = ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + 1))
118116, 117breqtrd 5175 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0[,]1)) → 0 < ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + 1))
11938, 39readdd 15197 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) = ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + (ℜ‘1)))
120 re1 15137 . . . . . . . . . . . . . . . 16 (ℜ‘1) = 1
121120oveq2i 7430 . . . . . . . . . . . . . . 15 ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + (ℜ‘1)) = ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + 1)
122119, 121eqtrdi 2781 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) = ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + 1))
123118, 122breqtrrd 5177 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0[,]1)) → 0 < (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)))
12443, 123elrpd 13048 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℝ+)
125124adantr 479 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (0[,]1)) ∧ (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℝ+)
12642, 125eqeltrrd 2826 . . . . . . . . . 10 (((𝜑𝑡 ∈ (0[,]1)) ∧ (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ+)
127126ex 411 . . . . . . . . 9 ((𝜑𝑡 ∈ (0[,]1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ+))
12829ellogdm 26618 . . . . . . . . 9 ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ (ℂ ∖ (-∞(,]0)) ↔ ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℂ ∧ ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ+)))
12940, 127, 128sylanbrc 581 . . . . . . . 8 ((𝜑𝑡 ∈ (0[,]1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ (ℂ ∖ (-∞(,]0)))
13033, 129cofmpt 7141 . . . . . . 7 (𝜑 → ((log ↾ (ℂ ∖ (-∞(,]0))) ∘ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ (0[,]1) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘(((𝐴 / 𝑁) · 𝑡) + 1))))
131129fvresd 6916 . . . . . . . 8 ((𝜑𝑡 ∈ (0[,]1)) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))
132131mpteq2dva 5249 . . . . . . 7 (𝜑 → (𝑡 ∈ (0[,]1) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘(((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ (0[,]1) ↦ (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))
133130, 132eqtrd 2765 . . . . . 6 (𝜑 → ((log ↾ (ℂ ∖ (-∞(,]0))) ∘ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ (0[,]1) ↦ (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))
134129fmpttd 7124 . . . . . . . 8 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)):(0[,]1)⟶(ℂ ∖ (-∞(,]0)))
135 difss 4128 . . . . . . . . 9 (ℂ ∖ (-∞(,]0)) ⊆ ℂ
1365addcn 24825 . . . . . . . . . . 11 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
137136a1i 11 . . . . . . . . . 10 (𝜑 → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
138 1cnd 11241 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
139 cncfmptc 24876 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 1) ∈ ((0[,]1)–cn→ℂ))
140138, 22, 23, 139syl3anc 1368 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (0[,]1) ↦ 1) ∈ ((0[,]1)–cn→ℂ))
1415, 137, 28, 140cncfmpt2f 24879 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ((0[,]1)–cn→ℂ))
142 cncfcdm 24862 . . . . . . . . 9 (((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ((0[,]1)–cn→ℂ)) → ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ((0[,]1)–cn→(ℂ ∖ (-∞(,]0))) ↔ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)):(0[,]1)⟶(ℂ ∖ (-∞(,]0))))
143135, 141, 142sylancr 585 . . . . . . . 8 (𝜑 → ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ((0[,]1)–cn→(ℂ ∖ (-∞(,]0))) ↔ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)):(0[,]1)⟶(ℂ ∖ (-∞(,]0))))
144134, 143mpbird 256 . . . . . . 7 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ((0[,]1)–cn→(ℂ ∖ (-∞(,]0))))
145144, 31cncfco 24871 . . . . . 6 (𝜑 → ((log ↾ (ℂ ∖ (-∞(,]0))) ∘ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) ∈ ((0[,]1)–cn→ℂ))
146133, 145eqeltrrd 2826 . . . . 5 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (log‘(((𝐴 / 𝑁) · 𝑡) + 1))) ∈ ((0[,]1)–cn→ℂ))
1475, 7, 28, 146cncfmpt2f 24879 . . . 4 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))) ∈ ((0[,]1)–cn→ℂ))
14820a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
14919a1i 11 . . . . . . . 8 (𝜑 → (0[,]1) ⊆ ℝ)
15029logdmn0 26619 . . . . . . . . . . 11 ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ (ℂ ∖ (-∞(,]0)) → (((𝐴 / 𝑁) · 𝑡) + 1) ≠ 0)
151129, 150syl 17 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0[,]1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ≠ 0)
15240, 151logcld 26549 . . . . . . . . 9 ((𝜑𝑡 ∈ (0[,]1)) → (log‘(((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℂ)
15338, 152subcld 11603 . . . . . . . 8 ((𝜑𝑡 ∈ (0[,]1)) → (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))) ∈ ℂ)
1545tgioo2 24763 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
155 0re 11248 . . . . . . . . 9 0 ∈ ℝ
156 iccntr 24781 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(0[,]1)) = (0(,)1))
157155, 4, 156sylancr 585 . . . . . . . 8 (𝜑 → ((int‘(topGen‘ran (,)))‘(0[,]1)) = (0(,)1))
158148, 149, 153, 154, 5, 157dvmptntr 25947 . . . . . . 7 (𝜑 → (ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))) = (ℝ D (𝑡 ∈ (0(,)1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))))
159 reelprrecn 11232 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
160159a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ {ℝ, ℂ})
16113adantr 479 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 𝐴 ∈ ℂ)
16216adantr 479 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 𝑁 ∈ ℂ)
16317adantr 479 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 𝑁 ≠ 0)
164161, 162, 163divcld 12023 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (𝐴 / 𝑁) ∈ ℂ)
165 ioossicc 13445 . . . . . . . . . . 11 (0(,)1) ⊆ (0[,]1)
166165sseli 3972 . . . . . . . . . 10 (𝑡 ∈ (0(,)1) → 𝑡 ∈ (0[,]1))
167166, 37sylan2 591 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ)
168164, 167mulcld 11266 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) · 𝑡) ∈ ℂ)
16913adantr 479 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ) → 𝐴 ∈ ℂ)
17016adantr 479 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ) → 𝑁 ∈ ℂ)
17117adantr 479 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ) → 𝑁 ≠ 0)
172169, 170, 171divcld 12023 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → (𝐴 / 𝑁) ∈ ℂ)
173148sselda 3976 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
174172, 173mulcld 11266 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → ((𝐴 / 𝑁) · 𝑡) ∈ ℂ)
175 1cnd 11241 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ) → 1 ∈ ℂ)
176160dvmptid 25933 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ 𝑡)) = (𝑡 ∈ ℝ ↦ 1))
177160, 173, 175, 176, 18dvmptcmul 25940 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) · 𝑡))) = (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) · 1)))
17818mulridd 11263 . . . . . . . . . . 11 (𝜑 → ((𝐴 / 𝑁) · 1) = (𝐴 / 𝑁))
179178mpteq2dv 5251 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) · 1)) = (𝑡 ∈ ℝ ↦ (𝐴 / 𝑁)))
180177, 179eqtrd 2765 . . . . . . . . 9 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) · 𝑡))) = (𝑡 ∈ ℝ ↦ (𝐴 / 𝑁)))
181165, 149sstrid 3988 . . . . . . . . 9 (𝜑 → (0(,)1) ⊆ ℝ)
182 retop 24722 . . . . . . . . . . 11 (topGen‘ran (,)) ∈ Top
183 iooretop 24726 . . . . . . . . . . 11 (0(,)1) ∈ (topGen‘ran (,))
184 isopn3i 23030 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ (0(,)1) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(0(,)1)) = (0(,)1))
185182, 183, 184mp2an 690 . . . . . . . . . 10 ((int‘(topGen‘ran (,)))‘(0(,)1)) = (0(,)1)
186185a1i 11 . . . . . . . . 9 (𝜑 → ((int‘(topGen‘ran (,)))‘(0(,)1)) = (0(,)1))
187160, 174, 172, 180, 181, 154, 5, 186dvmptres2 25938 . . . . . . . 8 (𝜑 → (ℝ D (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) · 𝑡))) = (𝑡 ∈ (0(,)1) ↦ (𝐴 / 𝑁)))
188166, 152sylan2 591 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (log‘(((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℂ)
189 1cnd 11241 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → 1 ∈ ℂ)
190168, 189addcld 11265 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℂ)
191166, 151sylan2 591 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ≠ 0)
192190, 191reccld 12016 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℂ)
193192, 164mulcld 11266 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)) ∈ ℂ)
194 cnelprrecn 11233 . . . . . . . . . 10 ℂ ∈ {ℝ, ℂ}
195194a1i 11 . . . . . . . . 9 (𝜑 → ℂ ∈ {ℝ, ℂ})
196166, 129sylan2 591 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ (ℂ ∖ (-∞(,]0)))
197 eldifi 4123 . . . . . . . . . . 11 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → 𝑦 ∈ ℂ)
198197adantl 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (ℂ ∖ (-∞(,]0))) → 𝑦 ∈ ℂ)
19929logdmn0 26619 . . . . . . . . . . 11 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → 𝑦 ≠ 0)
200199adantl 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (ℂ ∖ (-∞(,]0))) → 𝑦 ≠ 0)
201198, 200logcld 26549 . . . . . . . . 9 ((𝜑𝑦 ∈ (ℂ ∖ (-∞(,]0))) → (log‘𝑦) ∈ ℂ)
202198, 200reccld 12016 . . . . . . . . 9 ((𝜑𝑦 ∈ (ℂ ∖ (-∞(,]0))) → (1 / 𝑦) ∈ ℂ)
203174, 175addcld 11265 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℂ)
204 0cnd 11239 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ) → 0 ∈ ℂ)
205160, 138dvmptc 25934 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ 1)) = (𝑡 ∈ ℝ ↦ 0))
206160, 174, 172, 180, 175, 204, 205dvmptadd 25936 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) + 0)))
20718addridd 11446 . . . . . . . . . . . 12 (𝜑 → ((𝐴 / 𝑁) + 0) = (𝐴 / 𝑁))
208207mpteq2dv 5251 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) + 0)) = (𝑡 ∈ ℝ ↦ (𝐴 / 𝑁)))
209206, 208eqtrd 2765 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ ℝ ↦ (𝐴 / 𝑁)))
210160, 203, 172, 209, 181, 154, 5, 186dvmptres2 25938 . . . . . . . . 9 (𝜑 → (ℝ D (𝑡 ∈ (0(,)1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ (0(,)1) ↦ (𝐴 / 𝑁)))
21133feqmptd 6966 . . . . . . . . . . . 12 (𝜑 → (log ↾ (ℂ ∖ (-∞(,]0))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘𝑦)))
212 fvres 6915 . . . . . . . . . . . . 13 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘𝑦) = (log‘𝑦))
213212mpteq2ia 5252 . . . . . . . . . . . 12 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘𝑦)) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))
214211, 213eqtr2di 2782 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦)) = (log ↾ (ℂ ∖ (-∞(,]0))))
215214oveq2d 7435 . . . . . . . . . 10 (𝜑 → (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))) = (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))))
21629dvlog 26630 . . . . . . . . . 10 (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦))
217215, 216eqtrdi 2781 . . . . . . . . 9 (𝜑 → (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦)))
218 fveq2 6896 . . . . . . . . 9 (𝑦 = (((𝐴 / 𝑁) · 𝑡) + 1) → (log‘𝑦) = (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))
219 oveq2 7427 . . . . . . . . 9 (𝑦 = (((𝐴 / 𝑁) · 𝑡) + 1) → (1 / 𝑦) = (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))
220160, 195, 196, 164, 201, 202, 210, 217, 218, 219dvmptco 25948 . . . . . . . 8 (𝜑 → (ℝ D (𝑡 ∈ (0(,)1) ↦ (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))) = (𝑡 ∈ (0(,)1) ↦ ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))
221160, 168, 164, 187, 188, 193, 220dvmptsub 25943 . . . . . . 7 (𝜑 → (ℝ D (𝑡 ∈ (0(,)1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))) = (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))))
222158, 221eqtrd 2765 . . . . . 6 (𝜑 → (ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))) = (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))))
223222dmeqd 5908 . . . . 5 (𝜑 → dom (ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))) = dom (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))))
224 ovex 7452 . . . . . 6 ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))) ∈ V
225 eqid 2725 . . . . . 6 (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))) = (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))
226224, 225dmmpti 6700 . . . . 5 dom (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))) = (0(,)1)
227223, 226eqtrdi 2781 . . . 4 (𝜑 → dom (ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))) = (0(,)1))
228 2re 12319 . . . . . . . . . . 11 2 ∈ ℝ
229228a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ)
230229, 52remulcld 11276 . . . . . . . . 9 (𝜑 → (2 · 𝑅) ∈ ℝ)
2318nnrpd 13049 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℝ+)
23252, 231ltaddrpd 13084 . . . . . . . . . 10 (𝜑𝑅 < (𝑅 + 𝑅))
23352recnd 11274 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℂ)
2342332timesd 12488 . . . . . . . . . 10 (𝜑 → (2 · 𝑅) = (𝑅 + 𝑅))
235232, 234breqtrrd 5177 . . . . . . . . 9 (𝜑𝑅 < (2 · 𝑅))
23652, 230, 15, 235, 92ltletrd 11406 . . . . . . . 8 (𝜑𝑅 < 𝑁)
237 difrp 13047 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑅 < 𝑁 ↔ (𝑁𝑅) ∈ ℝ+))
23852, 15, 237syl2anc 582 . . . . . . . 8 (𝜑 → (𝑅 < 𝑁 ↔ (𝑁𝑅) ∈ ℝ+))
239236, 238mpbid 231 . . . . . . 7 (𝜑 → (𝑁𝑅) ∈ ℝ+)
240239rprecred 13062 . . . . . 6 (𝜑 → (1 / (𝑁𝑅)) ∈ ℝ)
24114nnrecred 12296 . . . . . 6 (𝜑 → (1 / 𝑁) ∈ ℝ)
242240, 241resubcld 11674 . . . . 5 (𝜑 → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℝ)
24352, 242remulcld 11276 . . . 4 (𝜑 → (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ∈ ℝ)
244222fveq1d 6898 . . . . . . 7 (𝜑 → ((ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))))‘𝑦) = ((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦))
245244fveq2d 6900 . . . . . 6 (𝜑 → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))))‘𝑦)) = (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)))
246245adantr 479 . . . . 5 ((𝜑𝑦 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))))‘𝑦)) = (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)))
247 nfv 1909 . . . . . . 7 𝑡(𝜑𝑦 ∈ (0(,)1))
248 nfcv 2891 . . . . . . . . 9 𝑡abs
249 nffvmpt1 6907 . . . . . . . . 9 𝑡((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)
250248, 249nffv 6906 . . . . . . . 8 𝑡(abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦))
251 nfcv 2891 . . . . . . . 8 𝑡
252 nfcv 2891 . . . . . . . 8 𝑡(𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))
253250, 251, 252nfbr 5196 . . . . . . 7 𝑡(abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))
254247, 253nfim 1891 . . . . . 6 𝑡((𝜑𝑦 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
255 eleq1w 2808 . . . . . . . 8 (𝑡 = 𝑦 → (𝑡 ∈ (0(,)1) ↔ 𝑦 ∈ (0(,)1)))
256255anbi2d 628 . . . . . . 7 (𝑡 = 𝑦 → ((𝜑𝑡 ∈ (0(,)1)) ↔ (𝜑𝑦 ∈ (0(,)1))))
257 2fveq3 6901 . . . . . . . 8 (𝑡 = 𝑦 → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) = (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)))
258257breq1d 5159 . . . . . . 7 (𝑡 = 𝑦 → ((abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ↔ (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
259256, 258imbi12d 343 . . . . . 6 (𝑡 = 𝑦 → (((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))) ↔ ((𝜑𝑦 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))))
260 simpr 483 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 𝑡 ∈ (0(,)1))
261225fvmpt2 7015 . . . . . . . . . 10 ((𝑡 ∈ (0(,)1) ∧ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))) ∈ V) → ((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡) = ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))
262260, 224, 261sylancl 584 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡) = ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))
263262fveq2d 6900 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) = (abs‘((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))))
264164, 189, 192subdid 11702 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) · (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) = (((𝐴 / 𝑁) · 1) − ((𝐴 / 𝑁) · (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))))
265164mulridd 11263 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) · 1) = (𝐴 / 𝑁))
266164, 192mulcomd 11267 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) · (1 / (((𝐴 / 𝑁) · 𝑡) + 1))) = ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))
267265, 266oveq12d 7437 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (((𝐴 / 𝑁) · 1) − ((𝐴 / 𝑁) · (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) = ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))
268264, 267eqtr2d 2766 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))) = ((𝐴 / 𝑁) · (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))))
269268fveq2d 6900 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))) = (abs‘((𝐴 / 𝑁) · (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))))
270161, 162, 163absdivd 15438 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(𝐴 / 𝑁)) = ((abs‘𝐴) / (abs‘𝑁)))
27115adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → 𝑁 ∈ ℝ)
27264adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → 0 ≤ 𝑁)
273271, 272absidd 15405 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘𝑁) = 𝑁)
274273oveq2d 7435 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘𝐴) / (abs‘𝑁)) = ((abs‘𝐴) / 𝑁))
275270, 274eqtrd 2765 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(𝐴 / 𝑁)) = ((abs‘𝐴) / 𝑁))
276275oveq1d 7434 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘(𝐴 / 𝑁)) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) = (((abs‘𝐴) / 𝑁) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))))
277189, 192subcld 11603 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))) ∈ ℂ)
278164, 277absmuld 15437 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝐴 / 𝑁) · (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) = ((abs‘(𝐴 / 𝑁)) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))))
27968adantr 479 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘𝐴) ∈ ℝ)
280279recnd 11274 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘𝐴) ∈ ℂ)
281277abscld 15419 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) ∈ ℝ)
282281recnd 11274 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) ∈ ℂ)
283280, 282, 162, 163div23d 12060 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) / 𝑁) = (((abs‘𝐴) / 𝑁) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))))
284276, 278, 2833eqtr4d 2775 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝐴 / 𝑁) · (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) = (((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) / 𝑁))
285263, 269, 2843eqtrd 2769 . . . . . . 7 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) = (((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) / 𝑁))
28652adantr 479 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 𝑅 ∈ ℝ)
287240adantr 479 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (𝑁𝑅)) ∈ ℝ)
288241adantr 479 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (1 / 𝑁) ∈ ℝ)
289287, 288resubcld 11674 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℝ)
290271, 289remulcld 11276 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ∈ ℝ)
29113absge0d 15427 . . . . . . . . . . 11 (𝜑 → 0 ≤ (abs‘𝐴))
292291adantr 479 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 0 ≤ (abs‘𝐴))
293277absge0d 15427 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 0 ≤ (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))))
29478adantr 479 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘𝐴) ≤ 𝑅)
295239adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁𝑅) ∈ ℝ+)
296231adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → 𝑅 ∈ ℝ+)
297295, 296rpdivcld 13068 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) ∈ ℝ+)
29812dmgmn0 27003 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ≠ 0)
299298adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → 𝐴 ≠ 0)
300161, 162, 299, 163divne0d 12039 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → (𝐴 / 𝑁) ≠ 0)
301 eliooord 13418 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ (0(,)1) → (0 < 𝑡𝑡 < 1))
302301adantl 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0(,)1)) → (0 < 𝑡𝑡 < 1))
303302simpld 493 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → 0 < 𝑡)
304303gt0ne0d 11810 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → 𝑡 ≠ 0)
305164, 167, 300, 304mulne0d 11898 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) · 𝑡) ≠ 0)
306168, 305reccld 12016 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (1 / ((𝐴 / 𝑁) · 𝑡)) ∈ ℂ)
307189, 306addcld 11265 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (1 + (1 / ((𝐴 / 𝑁) · 𝑡))) ∈ ℂ)
308168, 189, 168, 305divdird 12061 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) / ((𝐴 / 𝑁) · 𝑡)) = ((((𝐴 / 𝑁) · 𝑡) / ((𝐴 / 𝑁) · 𝑡)) + (1 / ((𝐴 / 𝑁) · 𝑡))))
309168, 305dividd 12021 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → (((𝐴 / 𝑁) · 𝑡) / ((𝐴 / 𝑁) · 𝑡)) = 1)
310309oveq1d 7434 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) / ((𝐴 / 𝑁) · 𝑡)) + (1 / ((𝐴 / 𝑁) · 𝑡))) = (1 + (1 / ((𝐴 / 𝑁) · 𝑡))))
311308, 310eqtrd 2765 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) / ((𝐴 / 𝑁) · 𝑡)) = (1 + (1 / ((𝐴 / 𝑁) · 𝑡))))
312190, 168, 191, 305divne0d 12039 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) / ((𝐴 / 𝑁) · 𝑡)) ≠ 0)
313311, 312eqnetrrd 2998 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (1 + (1 / ((𝐴 / 𝑁) · 𝑡))) ≠ 0)
314307, 313absrpcld 15431 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))) ∈ ℝ+)
315 1red 11247 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → 1 ∈ ℝ)
316 0le1 11769 . . . . . . . . . . . . . 14 0 ≤ 1
317316a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → 0 ≤ 1)
318297rpred 13051 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) ∈ ℝ)
319306negcld 11590 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → -(1 / ((𝐴 / 𝑁) · 𝑡)) ∈ ℂ)
320319abscld 15419 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) ∈ ℝ)
321320, 315resubcld 11674 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1) ∈ ℝ)
322307abscld 15419 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))) ∈ ℝ)
323233adantr 479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → 𝑅 ∈ ℂ)
324296rpne0d 13056 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → 𝑅 ≠ 0)
325162, 323, 323, 324divsubdird 12062 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) = ((𝑁 / 𝑅) − (𝑅 / 𝑅)))
326323, 324dividd 12021 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → (𝑅 / 𝑅) = 1)
327326oveq2d 7435 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 / 𝑅) − (𝑅 / 𝑅)) = ((𝑁 / 𝑅) − 1))
328325, 327eqtrd 2765 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) = ((𝑁 / 𝑅) − 1))
329271, 296rerpdivcld 13082 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 / 𝑅) ∈ ℝ)
330323, 162, 324, 163recdivd 12040 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (𝑅 / 𝑁)) = (𝑁 / 𝑅))
331166, 91sylan2 591 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) ≤ (𝑅 / 𝑁))
332168, 305absrpcld 15431 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) ∈ ℝ+)
33363adantr 479 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ (0(,)1)) → 𝑁 ∈ ℝ+)
334296, 333rpdivcld 13068 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0(,)1)) → (𝑅 / 𝑁) ∈ ℝ+)
335332, 334lerecd 13070 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘((𝐴 / 𝑁) · 𝑡)) ≤ (𝑅 / 𝑁) ↔ (1 / (𝑅 / 𝑁)) ≤ (1 / (abs‘((𝐴 / 𝑁) · 𝑡)))))
336331, 335mpbid 231 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (𝑅 / 𝑁)) ≤ (1 / (abs‘((𝐴 / 𝑁) · 𝑡))))
337330, 336eqbrtrrd 5173 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 / 𝑅) ≤ (1 / (abs‘((𝐴 / 𝑁) · 𝑡))))
338306absnegd 15432 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) = (abs‘(1 / ((𝐴 / 𝑁) · 𝑡))))
339189, 168, 305absdivd 15438 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 / ((𝐴 / 𝑁) · 𝑡))) = ((abs‘1) / (abs‘((𝐴 / 𝑁) · 𝑡))))
340 abs1 15280 . . . . . . . . . . . . . . . . . . . 20 (abs‘1) = 1
341340oveq1i 7429 . . . . . . . . . . . . . . . . . . 19 ((abs‘1) / (abs‘((𝐴 / 𝑁) · 𝑡))) = (1 / (abs‘((𝐴 / 𝑁) · 𝑡)))
342339, 341eqtrdi 2781 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 / ((𝐴 / 𝑁) · 𝑡))) = (1 / (abs‘((𝐴 / 𝑁) · 𝑡))))
343338, 342eqtrd 2765 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) = (1 / (abs‘((𝐴 / 𝑁) · 𝑡))))
344337, 343breqtrrd 5177 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 / 𝑅) ≤ (abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))))
345329, 320, 315, 344lesub1dd 11862 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 / 𝑅) − 1) ≤ ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1))
346328, 345eqbrtrd 5171 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) ≤ ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1))
347340oveq2i 7430 . . . . . . . . . . . . . . . 16 ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − (abs‘1)) = ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1)
348319, 189abs2difd 15440 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − (abs‘1)) ≤ (abs‘(-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1)))
349347, 348eqbrtrrid 5185 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1) ≤ (abs‘(-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1)))
350189, 306addcomd 11448 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0(,)1)) → (1 + (1 / ((𝐴 / 𝑁) · 𝑡))) = ((1 / ((𝐴 / 𝑁) · 𝑡)) + 1))
351350negeqd 11486 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → -(1 + (1 / ((𝐴 / 𝑁) · 𝑡))) = -((1 / ((𝐴 / 𝑁) · 𝑡)) + 1))
352306, 189negdi2d 11617 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → -((1 / ((𝐴 / 𝑁) · 𝑡)) + 1) = (-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1))
353351, 352eqtrd 2765 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → -(1 + (1 / ((𝐴 / 𝑁) · 𝑡))) = (-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1))
354353fveq2d 6900 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘-(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))) = (abs‘(-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1)))
355307absnegd 15432 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘-(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))) = (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
356354, 355eqtr3d 2767 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1)) = (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
357349, 356breqtrd 5175 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1) ≤ (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
358318, 321, 322, 346, 357letrd 11403 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) ≤ (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
359297, 314, 315, 317, 358lediv2ad 13073 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))) ≤ (1 / ((𝑁𝑅) / 𝑅)))
36016, 233subcld 11603 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑅) ∈ ℂ)
361360adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁𝑅) ∈ ℂ)
36252, 236gtned 11381 . . . . . . . . . . . . . . . 16 (𝜑𝑁𝑅)
36316, 233, 362subne0d 11612 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑅) ≠ 0)
364363adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁𝑅) ≠ 0)
365361, 323, 364, 324recdivd 12040 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (1 / ((𝑁𝑅) / 𝑅)) = (𝑅 / (𝑁𝑅)))
366162, 323nncand 11608 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 − (𝑁𝑅)) = 𝑅)
367366oveq1d 7434 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 − (𝑁𝑅)) / (𝑁𝑅)) = (𝑅 / (𝑁𝑅)))
368162, 361, 361, 364divsubdird 12062 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 − (𝑁𝑅)) / (𝑁𝑅)) = ((𝑁 / (𝑁𝑅)) − ((𝑁𝑅) / (𝑁𝑅))))
369367, 368eqtr3d 2767 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (𝑅 / (𝑁𝑅)) = ((𝑁 / (𝑁𝑅)) − ((𝑁𝑅) / (𝑁𝑅))))
370361, 364dividd 12021 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / (𝑁𝑅)) = 1)
371370oveq2d 7435 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 / (𝑁𝑅)) − ((𝑁𝑅) / (𝑁𝑅))) = ((𝑁 / (𝑁𝑅)) − 1))
372365, 369, 3713eqtrd 2769 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (1 / ((𝑁𝑅) / 𝑅)) = ((𝑁 / (𝑁𝑅)) − 1))
373359, 372breqtrd 5175 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))) ≤ ((𝑁 / (𝑁𝑅)) − 1))
374190, 189, 190, 191divsubdird 12062 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (((((𝐴 / 𝑁) · 𝑡) + 1) − 1) / (((𝐴 / 𝑁) · 𝑡) + 1)) = (((((𝐴 / 𝑁) · 𝑡) + 1) / (((𝐴 / 𝑁) · 𝑡) + 1)) − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))
375168, 189pncand 11604 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) − 1) = ((𝐴 / 𝑁) · 𝑡))
376375oveq1d 7434 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (((((𝐴 / 𝑁) · 𝑡) + 1) − 1) / (((𝐴 / 𝑁) · 𝑡) + 1)) = (((𝐴 / 𝑁) · 𝑡) / (((𝐴 / 𝑁) · 𝑡) + 1)))
377190, 191dividd 12021 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) / (((𝐴 / 𝑁) · 𝑡) + 1)) = 1)
378377oveq1d 7434 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (((((𝐴 / 𝑁) · 𝑡) + 1) / (((𝐴 / 𝑁) · 𝑡) + 1)) − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))) = (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))
379374, 376, 3783eqtr3rd 2774 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))) = (((𝐴 / 𝑁) · 𝑡) / (((𝐴 / 𝑁) · 𝑡) + 1)))
380190, 168, 191, 305recdivd 12040 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (1 / ((((𝐴 / 𝑁) · 𝑡) + 1) / ((𝐴 / 𝑁) · 𝑡))) = (((𝐴 / 𝑁) · 𝑡) / (((𝐴 / 𝑁) · 𝑡) + 1)))
381311oveq2d 7435 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (1 / ((((𝐴 / 𝑁) · 𝑡) + 1) / ((𝐴 / 𝑁) · 𝑡))) = (1 / (1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
382379, 380, 3813eqtr2d 2771 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))) = (1 / (1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
383382fveq2d 6900 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) = (abs‘(1 / (1 + (1 / ((𝐴 / 𝑁) · 𝑡))))))
384189, 307, 313absdivd 15438 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 / (1 + (1 / ((𝐴 / 𝑁) · 𝑡))))) = ((abs‘1) / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))))
385340oveq1i 7429 . . . . . . . . . . . . 13 ((abs‘1) / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))) = (1 / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
386384, 385eqtrdi 2781 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 / (1 + (1 / ((𝐴 / 𝑁) · 𝑡))))) = (1 / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))))
387383, 386eqtrd 2765 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) = (1 / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))))
388360, 363reccld 12016 . . . . . . . . . . . . . 14 (𝜑 → (1 / (𝑁𝑅)) ∈ ℂ)
389388adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (𝑁𝑅)) ∈ ℂ)
390241recnd 11274 . . . . . . . . . . . . . 14 (𝜑 → (1 / 𝑁) ∈ ℂ)
391390adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (1 / 𝑁) ∈ ℂ)
392162, 389, 391subdid 11702 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) = ((𝑁 · (1 / (𝑁𝑅))) − (𝑁 · (1 / 𝑁))))
393162, 361, 364divrecd 12026 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 / (𝑁𝑅)) = (𝑁 · (1 / (𝑁𝑅))))
394393eqcomd 2731 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 · (1 / (𝑁𝑅))) = (𝑁 / (𝑁𝑅)))
395162, 163recidd 12018 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 · (1 / 𝑁)) = 1)
396394, 395oveq12d 7437 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 · (1 / (𝑁𝑅))) − (𝑁 · (1 / 𝑁))) = ((𝑁 / (𝑁𝑅)) − 1))
397392, 396eqtrd 2765 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) = ((𝑁 / (𝑁𝑅)) − 1))
398373, 387, 3973brtr4d 5181 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) ≤ (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
399279, 286, 281, 290, 292, 293, 294, 398lemul12ad 12189 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) ≤ (𝑅 · (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
400242recnd 11274 . . . . . . . . . . 11 (𝜑 → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℂ)
401400adantr 479 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℂ)
402323, 162, 401mul12d 11455 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (𝑅 · (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))) = (𝑁 · (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
403399, 402breqtrd 5175 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) ≤ (𝑁 · (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
404279, 281remulcld 11276 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) ∈ ℝ)
405243adantr 479 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ∈ ℝ)
406404, 405, 333ledivmuld 13104 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → ((((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) / 𝑁) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ↔ ((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) ≤ (𝑁 · (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))))
407403, 406mpbird 256 . . . . . . 7 ((𝜑𝑡 ∈ (0(,)1)) → (((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) / 𝑁) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
408285, 407eqbrtrd 5171 . . . . . 6 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
409254, 259, 408chvarfv 2228 . . . . 5 ((𝜑𝑦 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
410246, 409eqbrtrd 5171 . . . 4 ((𝜑𝑦 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
4113, 4, 147, 227, 243, 410dvlip 25970 . . 3 ((𝜑 ∧ (1 ∈ (0[,]1) ∧ 0 ∈ (0[,]1))) → (abs‘(((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0))) ≤ ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · (abs‘(1 − 0))))
4121, 2, 411mpanr12 703 . 2 (𝜑 → (abs‘(((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0))) ≤ ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · (abs‘(1 − 0))))
413 eqidd 2726 . . . . . 6 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))) = (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))))
414 oveq2 7427 . . . . . . . 8 (𝑡 = 1 → ((𝐴 / 𝑁) · 𝑡) = ((𝐴 / 𝑁) · 1))
415414, 178sylan9eqr 2787 . . . . . . 7 ((𝜑𝑡 = 1) → ((𝐴 / 𝑁) · 𝑡) = (𝐴 / 𝑁))
416415fvoveq1d 7441 . . . . . . 7 ((𝜑𝑡 = 1) → (log‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (log‘((𝐴 / 𝑁) + 1)))
417415, 416oveq12d 7437 . . . . . 6 ((𝜑𝑡 = 1) → (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))) = ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))
4181a1i 11 . . . . . 6 (𝜑 → 1 ∈ (0[,]1))
419 ovexd 7454 . . . . . 6 (𝜑 → ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) ∈ V)
420413, 417, 418, 419fvmptd 7011 . . . . 5 (𝜑 → ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) = ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))
421 oveq2 7427 . . . . . . . . 9 (𝑡 = 0 → ((𝐴 / 𝑁) · 𝑡) = ((𝐴 / 𝑁) · 0))
42218mul01d 11445 . . . . . . . . 9 (𝜑 → ((𝐴 / 𝑁) · 0) = 0)
423421, 422sylan9eqr 2787 . . . . . . . 8 ((𝜑𝑡 = 0) → ((𝐴 / 𝑁) · 𝑡) = 0)
424423oveq1d 7434 . . . . . . . . . . 11 ((𝜑𝑡 = 0) → (((𝐴 / 𝑁) · 𝑡) + 1) = (0 + 1))
425 0p1e1 12367 . . . . . . . . . . 11 (0 + 1) = 1
426424, 425eqtrdi 2781 . . . . . . . . . 10 ((𝜑𝑡 = 0) → (((𝐴 / 𝑁) · 𝑡) + 1) = 1)
427426fveq2d 6900 . . . . . . . . 9 ((𝜑𝑡 = 0) → (log‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (log‘1))
428 log1 26564 . . . . . . . . 9 (log‘1) = 0
429427, 428eqtrdi 2781 . . . . . . . 8 ((𝜑𝑡 = 0) → (log‘(((𝐴 / 𝑁) · 𝑡) + 1)) = 0)
430423, 429oveq12d 7437 . . . . . . 7 ((𝜑𝑡 = 0) → (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))) = (0 − 0))
431 0m0e0 12365 . . . . . . 7 (0 − 0) = 0
432430, 431eqtrdi 2781 . . . . . 6 ((𝜑𝑡 = 0) → (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))) = 0)
4332a1i 11 . . . . . 6 (𝜑 → 0 ∈ (0[,]1))
434413, 432, 433, 433fvmptd 7011 . . . . 5 (𝜑 → ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0) = 0)
435420, 434oveq12d 7437 . . . 4 (𝜑 → (((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0)) = (((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) − 0))
43618, 138addcld 11265 . . . . . . 7 (𝜑 → ((𝐴 / 𝑁) + 1) ∈ ℂ)
43712, 14dmgmdivn0 27005 . . . . . . 7 (𝜑 → ((𝐴 / 𝑁) + 1) ≠ 0)
438436, 437logcld 26549 . . . . . 6 (𝜑 → (log‘((𝐴 / 𝑁) + 1)) ∈ ℂ)
43918, 438subcld 11603 . . . . 5 (𝜑 → ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) ∈ ℂ)
440439subid1d 11592 . . . 4 (𝜑 → (((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) − 0) = ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))
441435, 440eqtr2d 2766 . . 3 (𝜑 → ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) = (((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0)))
442441fveq2d 6900 . 2 (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) = (abs‘(((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0))))
443 1m0e1 12366 . . . . . 6 (1 − 0) = 1
444443fveq2i 6899 . . . . 5 (abs‘(1 − 0)) = (abs‘1)
445444, 340eqtri 2753 . . . 4 (abs‘(1 − 0)) = 1
446445oveq2i 7430 . . 3 ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · (abs‘(1 − 0))) = ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · 1)
447233, 400mulcld 11266 . . . 4 (𝜑 → (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ∈ ℂ)
448447mulridd 11263 . . 3 (𝜑 → ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · 1) = (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
449446, 448eqtr2id 2778 . 2 (𝜑 → (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) = ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · (abs‘(1 − 0))))
450412, 442, 4493brtr4d 5181 1 (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2929  wral 3050  {crab 3418  Vcvv 3461  cdif 3941  wss 3944  {cpr 4632   class class class wbr 5149  cmpt 5232  dom cdm 5678  ran crn 5679  cres 5680  ccom 5682  wf 6545  cfv 6549  (class class class)co 7419  cc 11138  cr 11139  0cc0 11140  1c1 11141   + caddc 11143   · cmul 11145  -∞cmnf 11278   < clt 11280  cle 11281  cmin 11476  -cneg 11477   / cdiv 11903  cn 12245  2c2 12300  0cn0 12505  cz 12591  +crp 13009  (,)cioo 13359  (,]cioc 13360  [,]cicc 13362  cre 15080  abscabs 15217  TopOpenctopn 17406  topGenctg 17422  fldccnfld 21296  Topctop 22839  intcnt 22965   Cn ccn 23172   ×t ctx 23508  cnccncf 24840   D cdv 25836  logclog 26533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ioc 13364  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-mod 13871  df-seq 14003  df-exp 14063  df-fac 14269  df-bc 14298  df-hash 14326  df-shft 15050  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-limsup 15451  df-clim 15468  df-rlim 15469  df-sum 15669  df-ef 16047  df-sin 16049  df-cos 16050  df-tan 16051  df-pi 16052  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-xrs 17487  df-qtop 17492  df-imas 17493  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-mulg 19032  df-cntz 19280  df-cmn 19749  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-nei 23046  df-lp 23084  df-perf 23085  df-cn 23175  df-cnp 23176  df-haus 23263  df-cmp 23335  df-tx 23510  df-hmeo 23703  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-xms 24270  df-ms 24271  df-tms 24272  df-cncf 24842  df-limc 25839  df-dv 25840  df-log 26535
This theorem is referenced by:  lgamgulmlem3  27008
  Copyright terms: Public domain W3C validator