MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulmlem2 Structured version   Visualization version   GIF version

Theorem lgamgulmlem2 26990
Description: Lemma for lgamgulm 26995. (Contributed by Mario Carneiro, 3-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.n (𝜑𝑁 ∈ ℕ)
lgamgulm.a (𝜑𝐴𝑈)
lgamgulm.l (𝜑 → (2 · 𝑅) ≤ 𝑁)
Assertion
Ref Expression
lgamgulmlem2 (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑘,𝑅   𝐴,𝑘,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝑈(𝑥,𝑘)   𝑁(𝑘)

Proof of Theorem lgamgulmlem2
Dummy variables 𝑦 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1elunit 13485 . . 3 1 ∈ (0[,]1)
2 0elunit 13484 . . 3 0 ∈ (0[,]1)
3 0red 11236 . . . 4 (𝜑 → 0 ∈ ℝ)
4 1red 11234 . . . 4 (𝜑 → 1 ∈ ℝ)
5 eqid 2735 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
65subcn 24804 . . . . . 6 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
76a1i 11 . . . . 5 (𝜑 → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
8 lgamgulm.r . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ)
9 lgamgulm.u . . . . . . . . . . 11 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
108, 9lgamgulmlem1 26989 . . . . . . . . . 10 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
11 lgamgulm.a . . . . . . . . . 10 (𝜑𝐴𝑈)
1210, 11sseldd 3959 . . . . . . . . 9 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
1312eldifad 3938 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
14 lgamgulm.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
1514nnred 12253 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
1615recnd 11261 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
1714nnne0d 12288 . . . . . . . 8 (𝜑𝑁 ≠ 0)
1813, 16, 17divcld 12015 . . . . . . 7 (𝜑 → (𝐴 / 𝑁) ∈ ℂ)
19 unitssre 13514 . . . . . . . . 9 (0[,]1) ⊆ ℝ
20 ax-resscn 11184 . . . . . . . . 9 ℝ ⊆ ℂ
2119, 20sstri 3968 . . . . . . . 8 (0[,]1) ⊆ ℂ
2221a1i 11 . . . . . . 7 (𝜑 → (0[,]1) ⊆ ℂ)
23 ssidd 3982 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
24 cncfmptc 24854 . . . . . . 7 (((𝐴 / 𝑁) ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ (𝐴 / 𝑁)) ∈ ((0[,]1)–cn→ℂ))
2518, 22, 23, 24syl3anc 1373 . . . . . 6 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (𝐴 / 𝑁)) ∈ ((0[,]1)–cn→ℂ))
26 cncfmptid 24855 . . . . . . 7 (((0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ))
2721, 23, 26sylancr 587 . . . . . 6 (𝜑 → (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ))
2825, 27mulcncf 25396 . . . . 5 (𝜑 → (𝑡 ∈ (0[,]1) ↦ ((𝐴 / 𝑁) · 𝑡)) ∈ ((0[,]1)–cn→ℂ))
29 eqid 2735 . . . . . . . . . . 11 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
3029logcn 26606 . . . . . . . . . 10 (log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ)
3130a1i 11 . . . . . . . . 9 (𝜑 → (log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ))
32 cncff 24835 . . . . . . . . 9 ((log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ) → (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ)
3331, 32syl 17 . . . . . . . 8 (𝜑 → (log ↾ (ℂ ∖ (-∞(,]0))):(ℂ ∖ (-∞(,]0))⟶ℂ)
3418adantr 480 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0[,]1)) → (𝐴 / 𝑁) ∈ ℂ)
35 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0[,]1)) → 𝑡 ∈ (0[,]1))
3619, 35sselid 3956 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℝ)
3736recnd 11261 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℂ)
3834, 37mulcld 11253 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0[,]1)) → ((𝐴 / 𝑁) · 𝑡) ∈ ℂ)
39 1cnd 11228 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0[,]1)) → 1 ∈ ℂ)
4038, 39addcld 11252 . . . . . . . . 9 ((𝜑𝑡 ∈ (0[,]1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℂ)
41 rere 15139 . . . . . . . . . . . 12 ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (((𝐴 / 𝑁) · 𝑡) + 1))
4241adantl 481 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (0[,]1)) ∧ (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (((𝐴 / 𝑁) · 𝑡) + 1))
4340recld 15211 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℝ)
4438recld 15211 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘((𝐴 / 𝑁) · 𝑡)) ∈ ℝ)
4544recnd 11261 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘((𝐴 / 𝑁) · 𝑡)) ∈ ℂ)
4645abscld 15453 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘(ℜ‘((𝐴 / 𝑁) · 𝑡))) ∈ ℝ)
4738abscld 15453 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) ∈ ℝ)
48 1red 11234 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0[,]1)) → 1 ∈ ℝ)
49 absrele 15325 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 / 𝑁) · 𝑡) ∈ ℂ → (abs‘(ℜ‘((𝐴 / 𝑁) · 𝑡))) ≤ (abs‘((𝐴 / 𝑁) · 𝑡)))
5038, 49syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘(ℜ‘((𝐴 / 𝑁) · 𝑡))) ≤ (abs‘((𝐴 / 𝑁) · 𝑡)))
5148rehalfcld 12486 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0[,]1)) → (1 / 2) ∈ ℝ)
528nnred 12253 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑅 ∈ ℝ)
5352adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ (0[,]1)) → 𝑅 ∈ ℝ)
5414adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ (0[,]1)) → 𝑁 ∈ ℕ)
5553, 54nndivred 12292 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ (0[,]1)) → (𝑅 / 𝑁) ∈ ℝ)
5618abscld 15453 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (abs‘(𝐴 / 𝑁)) ∈ ℝ)
5756adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘(𝐴 / 𝑁)) ∈ ℝ)
5834absge0d 15461 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → 0 ≤ (abs‘(𝐴 / 𝑁)))
59 elicc01 13481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
6059simp2bi 1146 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ (0[,]1) → 0 ≤ 𝑡)
6160adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → 0 ≤ 𝑡)
6213, 16, 17absdivd 15472 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (abs‘(𝐴 / 𝑁)) = ((abs‘𝐴) / (abs‘𝑁)))
6314nnrpd 13047 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑁 ∈ ℝ+)
6463rpge0d 13053 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → 0 ≤ 𝑁)
6515, 64absidd 15439 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (abs‘𝑁) = 𝑁)
6665oveq2d 7419 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((abs‘𝐴) / (abs‘𝑁)) = ((abs‘𝐴) / 𝑁))
6762, 66eqtr2d 2771 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((abs‘𝐴) / 𝑁) = (abs‘(𝐴 / 𝑁)))
6813abscld 15453 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (abs‘𝐴) ∈ ℝ)
69 fveq2 6875 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = 𝐴 → (abs‘𝑥) = (abs‘𝐴))
7069breq1d 5129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 = 𝐴 → ((abs‘𝑥) ≤ 𝑅 ↔ (abs‘𝐴) ≤ 𝑅))
71 fvoveq1 7426 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 = 𝐴 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝐴 + 𝑘)))
7271breq2d 5131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = 𝐴 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7372ralbidv 3163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 = 𝐴 → (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7470, 73anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 = 𝐴 → (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) ↔ ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘)))))
7574, 9elrab2 3674 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐴𝑈 ↔ (𝐴 ∈ ℂ ∧ ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘)))))
7675simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴𝑈 → ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7711, 76syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((abs‘𝐴) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝐴 + 𝑘))))
7877simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (abs‘𝐴) ≤ 𝑅)
7968, 52, 63, 78lediv1dd 13107 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((abs‘𝐴) / 𝑁) ≤ (𝑅 / 𝑁))
8067, 79eqbrtrrd 5143 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (abs‘(𝐴 / 𝑁)) ≤ (𝑅 / 𝑁))
8180adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘(𝐴 / 𝑁)) ≤ (𝑅 / 𝑁))
8259simp3bi 1147 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ (0[,]1) → 𝑡 ≤ 1)
8382adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → 𝑡 ≤ 1)
8457, 55, 36, 48, 58, 61, 81, 83lemul12ad 12182 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ (0[,]1)) → ((abs‘(𝐴 / 𝑁)) · 𝑡) ≤ ((𝑅 / 𝑁) · 1))
8534, 37absmuld 15471 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) = ((abs‘(𝐴 / 𝑁)) · (abs‘𝑡)))
8636, 61absidd 15439 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘𝑡) = 𝑡)
8786oveq2d 7419 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → ((abs‘(𝐴 / 𝑁)) · (abs‘𝑡)) = ((abs‘(𝐴 / 𝑁)) · 𝑡))
8885, 87eqtr2d 2771 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ (0[,]1)) → ((abs‘(𝐴 / 𝑁)) · 𝑡) = (abs‘((𝐴 / 𝑁) · 𝑡)))
8955recnd 11261 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (0[,]1)) → (𝑅 / 𝑁) ∈ ℂ)
9089mulridd 11250 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ (0[,]1)) → ((𝑅 / 𝑁) · 1) = (𝑅 / 𝑁))
9184, 88, 903brtr3d 5150 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) ≤ (𝑅 / 𝑁))
92 lgamgulm.l . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (2 · 𝑅) ≤ 𝑁)
93 2rp 13011 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℝ+
9493a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → 2 ∈ ℝ+)
9552, 15, 94lemuldiv2d 13099 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((2 · 𝑅) ≤ 𝑁𝑅 ≤ (𝑁 / 2)))
9692, 95mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑅 ≤ (𝑁 / 2))
97 2cnd 12316 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 2 ∈ ℂ)
98 2ne0 12342 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ≠ 0
9998a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 2 ≠ 0)
10016, 97, 99divrecd 12018 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑁 / 2) = (𝑁 · (1 / 2)))
10196, 100breqtrd 5145 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑅 ≤ (𝑁 · (1 / 2)))
1024rehalfcld 12486 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (1 / 2) ∈ ℝ)
10352, 102, 63ledivmuld 13102 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑅 / 𝑁) ≤ (1 / 2) ↔ 𝑅 ≤ (𝑁 · (1 / 2))))
104101, 103mpbird 257 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑅 / 𝑁) ≤ (1 / 2))
105104adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ (0[,]1)) → (𝑅 / 𝑁) ≤ (1 / 2))
10647, 55, 51, 91, 105letrd 11390 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) ≤ (1 / 2))
107 halflt1 12456 . . . . . . . . . . . . . . . . . . . . 21 (1 / 2) < 1
108107a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0[,]1)) → (1 / 2) < 1)
10947, 51, 48, 106, 108lelttrd 11391 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) < 1)
11046, 47, 48, 50, 109lelttrd 11391 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0[,]1)) → (abs‘(ℜ‘((𝐴 / 𝑁) · 𝑡))) < 1)
11144, 48absltd 15446 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0[,]1)) → ((abs‘(ℜ‘((𝐴 / 𝑁) · 𝑡))) < 1 ↔ (-1 < (ℜ‘((𝐴 / 𝑁) · 𝑡)) ∧ (ℜ‘((𝐴 / 𝑁) · 𝑡)) < 1)))
112110, 111mpbid 232 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0[,]1)) → (-1 < (ℜ‘((𝐴 / 𝑁) · 𝑡)) ∧ (ℜ‘((𝐴 / 𝑁) · 𝑡)) < 1))
113112simpld 494 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0[,]1)) → -1 < (ℜ‘((𝐴 / 𝑁) · 𝑡)))
11448renegcld 11662 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0[,]1)) → -1 ∈ ℝ)
115114, 44posdifd 11822 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0[,]1)) → (-1 < (ℜ‘((𝐴 / 𝑁) · 𝑡)) ↔ 0 < ((ℜ‘((𝐴 / 𝑁) · 𝑡)) − -1)))
116113, 115mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0[,]1)) → 0 < ((ℜ‘((𝐴 / 𝑁) · 𝑡)) − -1))
11745, 39subnegd 11599 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0[,]1)) → ((ℜ‘((𝐴 / 𝑁) · 𝑡)) − -1) = ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + 1))
118116, 117breqtrd 5145 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0[,]1)) → 0 < ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + 1))
11938, 39readdd 15231 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) = ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + (ℜ‘1)))
120 re1 15171 . . . . . . . . . . . . . . . 16 (ℜ‘1) = 1
121120oveq2i 7414 . . . . . . . . . . . . . . 15 ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + (ℜ‘1)) = ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + 1)
122119, 121eqtrdi 2786 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) = ((ℜ‘((𝐴 / 𝑁) · 𝑡)) + 1))
123118, 122breqtrrd 5147 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0[,]1)) → 0 < (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)))
12443, 123elrpd 13046 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0[,]1)) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℝ+)
125124adantr 480 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (0[,]1)) ∧ (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ) → (ℜ‘(((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℝ+)
12642, 125eqeltrrd 2835 . . . . . . . . . 10 (((𝜑𝑡 ∈ (0[,]1)) ∧ (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ+)
127126ex 412 . . . . . . . . 9 ((𝜑𝑡 ∈ (0[,]1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ+))
12829ellogdm 26598 . . . . . . . . 9 ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ (ℂ ∖ (-∞(,]0)) ↔ ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℂ ∧ ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℝ+)))
12940, 127, 128sylanbrc 583 . . . . . . . 8 ((𝜑𝑡 ∈ (0[,]1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ (ℂ ∖ (-∞(,]0)))
13033, 129cofmpt 7121 . . . . . . 7 (𝜑 → ((log ↾ (ℂ ∖ (-∞(,]0))) ∘ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ (0[,]1) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘(((𝐴 / 𝑁) · 𝑡) + 1))))
131129fvresd 6895 . . . . . . . 8 ((𝜑𝑡 ∈ (0[,]1)) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))
132131mpteq2dva 5214 . . . . . . 7 (𝜑 → (𝑡 ∈ (0[,]1) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘(((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ (0[,]1) ↦ (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))
133130, 132eqtrd 2770 . . . . . 6 (𝜑 → ((log ↾ (ℂ ∖ (-∞(,]0))) ∘ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ (0[,]1) ↦ (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))
134129fmpttd 7104 . . . . . . . 8 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)):(0[,]1)⟶(ℂ ∖ (-∞(,]0)))
135 difss 4111 . . . . . . . . 9 (ℂ ∖ (-∞(,]0)) ⊆ ℂ
1365addcn 24803 . . . . . . . . . . 11 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
137136a1i 11 . . . . . . . . . 10 (𝜑 → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
138 1cnd 11228 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
139 cncfmptc 24854 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 1) ∈ ((0[,]1)–cn→ℂ))
140138, 22, 23, 139syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (0[,]1) ↦ 1) ∈ ((0[,]1)–cn→ℂ))
1415, 137, 28, 140cncfmpt2f 24857 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ((0[,]1)–cn→ℂ))
142 cncfcdm 24840 . . . . . . . . 9 (((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ((0[,]1)–cn→ℂ)) → ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ((0[,]1)–cn→(ℂ ∖ (-∞(,]0))) ↔ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)):(0[,]1)⟶(ℂ ∖ (-∞(,]0))))
143135, 141, 142sylancr 587 . . . . . . . 8 (𝜑 → ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ((0[,]1)–cn→(ℂ ∖ (-∞(,]0))) ↔ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)):(0[,]1)⟶(ℂ ∖ (-∞(,]0))))
144134, 143mpbird 257 . . . . . . 7 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ((0[,]1)–cn→(ℂ ∖ (-∞(,]0))))
145144, 31cncfco 24849 . . . . . 6 (𝜑 → ((log ↾ (ℂ ∖ (-∞(,]0))) ∘ (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) ∈ ((0[,]1)–cn→ℂ))
146133, 145eqeltrrd 2835 . . . . 5 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (log‘(((𝐴 / 𝑁) · 𝑡) + 1))) ∈ ((0[,]1)–cn→ℂ))
1475, 7, 28, 146cncfmpt2f 24857 . . . 4 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))) ∈ ((0[,]1)–cn→ℂ))
14820a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
14919a1i 11 . . . . . . . 8 (𝜑 → (0[,]1) ⊆ ℝ)
15029logdmn0 26599 . . . . . . . . . . 11 ((((𝐴 / 𝑁) · 𝑡) + 1) ∈ (ℂ ∖ (-∞(,]0)) → (((𝐴 / 𝑁) · 𝑡) + 1) ≠ 0)
151129, 150syl 17 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0[,]1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ≠ 0)
15240, 151logcld 26529 . . . . . . . . 9 ((𝜑𝑡 ∈ (0[,]1)) → (log‘(((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℂ)
15338, 152subcld 11592 . . . . . . . 8 ((𝜑𝑡 ∈ (0[,]1)) → (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))) ∈ ℂ)
154 tgioo4 24742 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
155 0re 11235 . . . . . . . . 9 0 ∈ ℝ
156 iccntr 24759 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(0[,]1)) = (0(,)1))
157155, 4, 156sylancr 587 . . . . . . . 8 (𝜑 → ((int‘(topGen‘ran (,)))‘(0[,]1)) = (0(,)1))
158148, 149, 153, 154, 5, 157dvmptntr 25925 . . . . . . 7 (𝜑 → (ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))) = (ℝ D (𝑡 ∈ (0(,)1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))))
159 reelprrecn 11219 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
160159a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ {ℝ, ℂ})
16113adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 𝐴 ∈ ℂ)
16216adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 𝑁 ∈ ℂ)
16317adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 𝑁 ≠ 0)
164161, 162, 163divcld 12015 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (𝐴 / 𝑁) ∈ ℂ)
165 ioossicc 13448 . . . . . . . . . . 11 (0(,)1) ⊆ (0[,]1)
166165sseli 3954 . . . . . . . . . 10 (𝑡 ∈ (0(,)1) → 𝑡 ∈ (0[,]1))
167166, 37sylan2 593 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ)
168164, 167mulcld 11253 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) · 𝑡) ∈ ℂ)
16913adantr 480 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ) → 𝐴 ∈ ℂ)
17016adantr 480 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ) → 𝑁 ∈ ℂ)
17117adantr 480 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ) → 𝑁 ≠ 0)
172169, 170, 171divcld 12015 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → (𝐴 / 𝑁) ∈ ℂ)
173148sselda 3958 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
174172, 173mulcld 11253 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → ((𝐴 / 𝑁) · 𝑡) ∈ ℂ)
175 1cnd 11228 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ℝ) → 1 ∈ ℂ)
176160dvmptid 25911 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ 𝑡)) = (𝑡 ∈ ℝ ↦ 1))
177160, 173, 175, 176, 18dvmptcmul 25918 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) · 𝑡))) = (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) · 1)))
17818mulridd 11250 . . . . . . . . . . 11 (𝜑 → ((𝐴 / 𝑁) · 1) = (𝐴 / 𝑁))
179178mpteq2dv 5215 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) · 1)) = (𝑡 ∈ ℝ ↦ (𝐴 / 𝑁)))
180177, 179eqtrd 2770 . . . . . . . . 9 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) · 𝑡))) = (𝑡 ∈ ℝ ↦ (𝐴 / 𝑁)))
181165, 149sstrid 3970 . . . . . . . . 9 (𝜑 → (0(,)1) ⊆ ℝ)
182 retop 24698 . . . . . . . . . . 11 (topGen‘ran (,)) ∈ Top
183 iooretop 24702 . . . . . . . . . . 11 (0(,)1) ∈ (topGen‘ran (,))
184 isopn3i 23018 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ (0(,)1) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(0(,)1)) = (0(,)1))
185182, 183, 184mp2an 692 . . . . . . . . . 10 ((int‘(topGen‘ran (,)))‘(0(,)1)) = (0(,)1)
186185a1i 11 . . . . . . . . 9 (𝜑 → ((int‘(topGen‘ran (,)))‘(0(,)1)) = (0(,)1))
187160, 174, 172, 180, 181, 154, 5, 186dvmptres2 25916 . . . . . . . 8 (𝜑 → (ℝ D (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) · 𝑡))) = (𝑡 ∈ (0(,)1) ↦ (𝐴 / 𝑁)))
188166, 152sylan2 593 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (log‘(((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℂ)
189 1cnd 11228 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → 1 ∈ ℂ)
190168, 189addcld 11252 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℂ)
191166, 151sylan2 593 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ≠ 0)
192190, 191reccld 12008 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (((𝐴 / 𝑁) · 𝑡) + 1)) ∈ ℂ)
193192, 164mulcld 11253 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)) ∈ ℂ)
194 cnelprrecn 11220 . . . . . . . . . 10 ℂ ∈ {ℝ, ℂ}
195194a1i 11 . . . . . . . . 9 (𝜑 → ℂ ∈ {ℝ, ℂ})
196166, 129sylan2 593 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ (ℂ ∖ (-∞(,]0)))
197 eldifi 4106 . . . . . . . . . . 11 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → 𝑦 ∈ ℂ)
198197adantl 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ (ℂ ∖ (-∞(,]0))) → 𝑦 ∈ ℂ)
19929logdmn0 26599 . . . . . . . . . . 11 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → 𝑦 ≠ 0)
200199adantl 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ (ℂ ∖ (-∞(,]0))) → 𝑦 ≠ 0)
201198, 200logcld 26529 . . . . . . . . 9 ((𝜑𝑦 ∈ (ℂ ∖ (-∞(,]0))) → (log‘𝑦) ∈ ℂ)
202198, 200reccld 12008 . . . . . . . . 9 ((𝜑𝑦 ∈ (ℂ ∖ (-∞(,]0))) → (1 / 𝑦) ∈ ℂ)
203174, 175addcld 11252 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → (((𝐴 / 𝑁) · 𝑡) + 1) ∈ ℂ)
204 0cnd 11226 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ) → 0 ∈ ℂ)
205160, 138dvmptc 25912 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ 1)) = (𝑡 ∈ ℝ ↦ 0))
206160, 174, 172, 180, 175, 204, 205dvmptadd 25914 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) + 0)))
20718addridd 11433 . . . . . . . . . . . 12 (𝜑 → ((𝐴 / 𝑁) + 0) = (𝐴 / 𝑁))
208207mpteq2dv 5215 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ ℝ ↦ ((𝐴 / 𝑁) + 0)) = (𝑡 ∈ ℝ ↦ (𝐴 / 𝑁)))
209206, 208eqtrd 2770 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ ℝ ↦ (𝐴 / 𝑁)))
210160, 203, 172, 209, 181, 154, 5, 186dvmptres2 25916 . . . . . . . . 9 (𝜑 → (ℝ D (𝑡 ∈ (0(,)1) ↦ (((𝐴 / 𝑁) · 𝑡) + 1))) = (𝑡 ∈ (0(,)1) ↦ (𝐴 / 𝑁)))
21133feqmptd 6946 . . . . . . . . . . . 12 (𝜑 → (log ↾ (ℂ ∖ (-∞(,]0))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘𝑦)))
212 fvres 6894 . . . . . . . . . . . . 13 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘𝑦) = (log‘𝑦))
213212mpteq2ia 5216 . . . . . . . . . . . 12 (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘𝑦)) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))
214211, 213eqtr2di 2787 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦)) = (log ↾ (ℂ ∖ (-∞(,]0))))
215214oveq2d 7419 . . . . . . . . . 10 (𝜑 → (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))) = (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))))
21629dvlog 26610 . . . . . . . . . 10 (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦))
217215, 216eqtrdi 2786 . . . . . . . . 9 (𝜑 → (ℂ D (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0)) ↦ (1 / 𝑦)))
218 fveq2 6875 . . . . . . . . 9 (𝑦 = (((𝐴 / 𝑁) · 𝑡) + 1) → (log‘𝑦) = (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))
219 oveq2 7411 . . . . . . . . 9 (𝑦 = (((𝐴 / 𝑁) · 𝑡) + 1) → (1 / 𝑦) = (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))
220160, 195, 196, 164, 201, 202, 210, 217, 218, 219dvmptco 25926 . . . . . . . 8 (𝜑 → (ℝ D (𝑡 ∈ (0(,)1) ↦ (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))) = (𝑡 ∈ (0(,)1) ↦ ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))
221160, 168, 164, 187, 188, 193, 220dvmptsub 25921 . . . . . . 7 (𝜑 → (ℝ D (𝑡 ∈ (0(,)1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))) = (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))))
222158, 221eqtrd 2770 . . . . . 6 (𝜑 → (ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))) = (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))))
223222dmeqd 5885 . . . . 5 (𝜑 → dom (ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))) = dom (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))))
224 ovex 7436 . . . . . 6 ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))) ∈ V
225 eqid 2735 . . . . . 6 (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))) = (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))
226224, 225dmmpti 6681 . . . . 5 dom (𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))) = (0(,)1)
227223, 226eqtrdi 2786 . . . 4 (𝜑 → dom (ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))) = (0(,)1))
228 2re 12312 . . . . . . . . . . 11 2 ∈ ℝ
229228a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ)
230229, 52remulcld 11263 . . . . . . . . 9 (𝜑 → (2 · 𝑅) ∈ ℝ)
2318nnrpd 13047 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℝ+)
23252, 231ltaddrpd 13082 . . . . . . . . . 10 (𝜑𝑅 < (𝑅 + 𝑅))
23352recnd 11261 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℂ)
2342332timesd 12482 . . . . . . . . . 10 (𝜑 → (2 · 𝑅) = (𝑅 + 𝑅))
235232, 234breqtrrd 5147 . . . . . . . . 9 (𝜑𝑅 < (2 · 𝑅))
23652, 230, 15, 235, 92ltletrd 11393 . . . . . . . 8 (𝜑𝑅 < 𝑁)
237 difrp 13045 . . . . . . . . 9 ((𝑅 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑅 < 𝑁 ↔ (𝑁𝑅) ∈ ℝ+))
23852, 15, 237syl2anc 584 . . . . . . . 8 (𝜑 → (𝑅 < 𝑁 ↔ (𝑁𝑅) ∈ ℝ+))
239236, 238mpbid 232 . . . . . . 7 (𝜑 → (𝑁𝑅) ∈ ℝ+)
240239rprecred 13060 . . . . . 6 (𝜑 → (1 / (𝑁𝑅)) ∈ ℝ)
24114nnrecred 12289 . . . . . 6 (𝜑 → (1 / 𝑁) ∈ ℝ)
242240, 241resubcld 11663 . . . . 5 (𝜑 → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℝ)
24352, 242remulcld 11263 . . . 4 (𝜑 → (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ∈ ℝ)
244222fveq1d 6877 . . . . . . 7 (𝜑 → ((ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))))‘𝑦) = ((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦))
245244fveq2d 6879 . . . . . 6 (𝜑 → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))))‘𝑦)) = (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)))
246245adantr 480 . . . . 5 ((𝜑𝑦 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))))‘𝑦)) = (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)))
247 nfv 1914 . . . . . . 7 𝑡(𝜑𝑦 ∈ (0(,)1))
248 nfcv 2898 . . . . . . . . 9 𝑡abs
249 nffvmpt1 6886 . . . . . . . . 9 𝑡((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)
250248, 249nffv 6885 . . . . . . . 8 𝑡(abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦))
251 nfcv 2898 . . . . . . . 8 𝑡
252 nfcv 2898 . . . . . . . 8 𝑡(𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))
253250, 251, 252nfbr 5166 . . . . . . 7 𝑡(abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))
254247, 253nfim 1896 . . . . . 6 𝑡((𝜑𝑦 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
255 eleq1w 2817 . . . . . . . 8 (𝑡 = 𝑦 → (𝑡 ∈ (0(,)1) ↔ 𝑦 ∈ (0(,)1)))
256255anbi2d 630 . . . . . . 7 (𝑡 = 𝑦 → ((𝜑𝑡 ∈ (0(,)1)) ↔ (𝜑𝑦 ∈ (0(,)1))))
257 2fveq3 6880 . . . . . . . 8 (𝑡 = 𝑦 → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) = (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)))
258257breq1d 5129 . . . . . . 7 (𝑡 = 𝑦 → ((abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ↔ (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
259256, 258imbi12d 344 . . . . . 6 (𝑡 = 𝑦 → (((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))) ↔ ((𝜑𝑦 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))))
260 simpr 484 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 𝑡 ∈ (0(,)1))
261225fvmpt2 6996 . . . . . . . . . 10 ((𝑡 ∈ (0(,)1) ∧ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))) ∈ V) → ((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡) = ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))
262260, 224, 261sylancl 586 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡) = ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))
263262fveq2d 6879 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) = (abs‘((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))))
264164, 189, 192subdid 11691 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) · (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) = (((𝐴 / 𝑁) · 1) − ((𝐴 / 𝑁) · (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))))
265164mulridd 11250 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) · 1) = (𝐴 / 𝑁))
266164, 192mulcomd 11254 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) · (1 / (((𝐴 / 𝑁) · 𝑡) + 1))) = ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))
267265, 266oveq12d 7421 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (((𝐴 / 𝑁) · 1) − ((𝐴 / 𝑁) · (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) = ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))
268264, 267eqtr2d 2771 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))) = ((𝐴 / 𝑁) · (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))))
269268fveq2d 6879 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁)))) = (abs‘((𝐴 / 𝑁) · (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))))
270161, 162, 163absdivd 15472 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(𝐴 / 𝑁)) = ((abs‘𝐴) / (abs‘𝑁)))
27115adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → 𝑁 ∈ ℝ)
27264adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → 0 ≤ 𝑁)
273271, 272absidd 15439 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘𝑁) = 𝑁)
274273oveq2d 7419 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘𝐴) / (abs‘𝑁)) = ((abs‘𝐴) / 𝑁))
275270, 274eqtrd 2770 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(𝐴 / 𝑁)) = ((abs‘𝐴) / 𝑁))
276275oveq1d 7418 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘(𝐴 / 𝑁)) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) = (((abs‘𝐴) / 𝑁) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))))
277189, 192subcld 11592 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))) ∈ ℂ)
278164, 277absmuld 15471 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝐴 / 𝑁) · (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) = ((abs‘(𝐴 / 𝑁)) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))))
27968adantr 480 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘𝐴) ∈ ℝ)
280279recnd 11261 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘𝐴) ∈ ℂ)
281277abscld 15453 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) ∈ ℝ)
282281recnd 11261 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) ∈ ℂ)
283280, 282, 162, 163div23d 12052 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) / 𝑁) = (((abs‘𝐴) / 𝑁) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))))
284276, 278, 2833eqtr4d 2780 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝐴 / 𝑁) · (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) = (((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) / 𝑁))
285263, 269, 2843eqtrd 2774 . . . . . . 7 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) = (((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) / 𝑁))
28652adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 𝑅 ∈ ℝ)
287240adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (𝑁𝑅)) ∈ ℝ)
288241adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (1 / 𝑁) ∈ ℝ)
289287, 288resubcld 11663 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℝ)
290271, 289remulcld 11263 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ∈ ℝ)
29113absge0d 15461 . . . . . . . . . . 11 (𝜑 → 0 ≤ (abs‘𝐴))
292291adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 0 ≤ (abs‘𝐴))
293277absge0d 15461 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → 0 ≤ (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))))
29478adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘𝐴) ≤ 𝑅)
295239adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁𝑅) ∈ ℝ+)
296231adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → 𝑅 ∈ ℝ+)
297295, 296rpdivcld 13066 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) ∈ ℝ+)
29812dmgmn0 26986 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ≠ 0)
299298adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → 𝐴 ≠ 0)
300161, 162, 299, 163divne0d 12031 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → (𝐴 / 𝑁) ≠ 0)
301 eliooord 13420 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ (0(,)1) → (0 < 𝑡𝑡 < 1))
302301adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0(,)1)) → (0 < 𝑡𝑡 < 1))
303302simpld 494 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → 0 < 𝑡)
304303gt0ne0d 11799 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → 𝑡 ≠ 0)
305164, 167, 300, 304mulne0d 11887 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((𝐴 / 𝑁) · 𝑡) ≠ 0)
306168, 305reccld 12008 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (1 / ((𝐴 / 𝑁) · 𝑡)) ∈ ℂ)
307189, 306addcld 11252 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (1 + (1 / ((𝐴 / 𝑁) · 𝑡))) ∈ ℂ)
308168, 189, 168, 305divdird 12053 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) / ((𝐴 / 𝑁) · 𝑡)) = ((((𝐴 / 𝑁) · 𝑡) / ((𝐴 / 𝑁) · 𝑡)) + (1 / ((𝐴 / 𝑁) · 𝑡))))
309168, 305dividd 12013 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → (((𝐴 / 𝑁) · 𝑡) / ((𝐴 / 𝑁) · 𝑡)) = 1)
310309oveq1d 7418 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) / ((𝐴 / 𝑁) · 𝑡)) + (1 / ((𝐴 / 𝑁) · 𝑡))) = (1 + (1 / ((𝐴 / 𝑁) · 𝑡))))
311308, 310eqtrd 2770 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) / ((𝐴 / 𝑁) · 𝑡)) = (1 + (1 / ((𝐴 / 𝑁) · 𝑡))))
312190, 168, 191, 305divne0d 12031 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) / ((𝐴 / 𝑁) · 𝑡)) ≠ 0)
313311, 312eqnetrrd 3000 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (1 + (1 / ((𝐴 / 𝑁) · 𝑡))) ≠ 0)
314307, 313absrpcld 15465 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))) ∈ ℝ+)
315 1red 11234 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → 1 ∈ ℝ)
316 0le1 11758 . . . . . . . . . . . . . 14 0 ≤ 1
317316a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → 0 ≤ 1)
318297rpred 13049 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) ∈ ℝ)
319306negcld 11579 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → -(1 / ((𝐴 / 𝑁) · 𝑡)) ∈ ℂ)
320319abscld 15453 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) ∈ ℝ)
321320, 315resubcld 11663 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1) ∈ ℝ)
322307abscld 15453 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))) ∈ ℝ)
323233adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → 𝑅 ∈ ℂ)
324296rpne0d 13054 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → 𝑅 ≠ 0)
325162, 323, 323, 324divsubdird 12054 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) = ((𝑁 / 𝑅) − (𝑅 / 𝑅)))
326323, 324dividd 12013 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → (𝑅 / 𝑅) = 1)
327326oveq2d 7419 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 / 𝑅) − (𝑅 / 𝑅)) = ((𝑁 / 𝑅) − 1))
328325, 327eqtrd 2770 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) = ((𝑁 / 𝑅) − 1))
329271, 296rerpdivcld 13080 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 / 𝑅) ∈ ℝ)
330323, 162, 324, 163recdivd 12032 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (𝑅 / 𝑁)) = (𝑁 / 𝑅))
331166, 91sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) ≤ (𝑅 / 𝑁))
332168, 305absrpcld 15465 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝐴 / 𝑁) · 𝑡)) ∈ ℝ+)
33363adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ (0(,)1)) → 𝑁 ∈ ℝ+)
334296, 333rpdivcld 13066 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0(,)1)) → (𝑅 / 𝑁) ∈ ℝ+)
335332, 334lerecd 13068 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘((𝐴 / 𝑁) · 𝑡)) ≤ (𝑅 / 𝑁) ↔ (1 / (𝑅 / 𝑁)) ≤ (1 / (abs‘((𝐴 / 𝑁) · 𝑡)))))
336331, 335mpbid 232 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (𝑅 / 𝑁)) ≤ (1 / (abs‘((𝐴 / 𝑁) · 𝑡))))
337330, 336eqbrtrrd 5143 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 / 𝑅) ≤ (1 / (abs‘((𝐴 / 𝑁) · 𝑡))))
338306absnegd 15466 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) = (abs‘(1 / ((𝐴 / 𝑁) · 𝑡))))
339189, 168, 305absdivd 15472 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 / ((𝐴 / 𝑁) · 𝑡))) = ((abs‘1) / (abs‘((𝐴 / 𝑁) · 𝑡))))
340 abs1 15314 . . . . . . . . . . . . . . . . . . . 20 (abs‘1) = 1
341340oveq1i 7413 . . . . . . . . . . . . . . . . . . 19 ((abs‘1) / (abs‘((𝐴 / 𝑁) · 𝑡))) = (1 / (abs‘((𝐴 / 𝑁) · 𝑡)))
342339, 341eqtrdi 2786 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 / ((𝐴 / 𝑁) · 𝑡))) = (1 / (abs‘((𝐴 / 𝑁) · 𝑡))))
343338, 342eqtrd 2770 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) = (1 / (abs‘((𝐴 / 𝑁) · 𝑡))))
344337, 343breqtrrd 5147 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 / 𝑅) ≤ (abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))))
345329, 320, 315, 344lesub1dd 11851 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 / 𝑅) − 1) ≤ ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1))
346328, 345eqbrtrd 5141 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) ≤ ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1))
347340oveq2i 7414 . . . . . . . . . . . . . . . 16 ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − (abs‘1)) = ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1)
348319, 189abs2difd 15474 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − (abs‘1)) ≤ (abs‘(-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1)))
349347, 348eqbrtrrid 5155 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1) ≤ (abs‘(-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1)))
350189, 306addcomd 11435 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0(,)1)) → (1 + (1 / ((𝐴 / 𝑁) · 𝑡))) = ((1 / ((𝐴 / 𝑁) · 𝑡)) + 1))
351350negeqd 11474 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → -(1 + (1 / ((𝐴 / 𝑁) · 𝑡))) = -((1 / ((𝐴 / 𝑁) · 𝑡)) + 1))
352306, 189negdi2d 11606 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0(,)1)) → -((1 / ((𝐴 / 𝑁) · 𝑡)) + 1) = (-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1))
353351, 352eqtrd 2770 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0(,)1)) → -(1 + (1 / ((𝐴 / 𝑁) · 𝑡))) = (-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1))
354353fveq2d 6879 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘-(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))) = (abs‘(-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1)))
355307absnegd 15466 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘-(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))) = (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
356354, 355eqtr3d 2772 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(-(1 / ((𝐴 / 𝑁) · 𝑡)) − 1)) = (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
357349, 356breqtrd 5145 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘-(1 / ((𝐴 / 𝑁) · 𝑡))) − 1) ≤ (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
358318, 321, 322, 346, 357letrd 11390 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / 𝑅) ≤ (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
359297, 314, 315, 317, 358lediv2ad 13071 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))) ≤ (1 / ((𝑁𝑅) / 𝑅)))
36016, 233subcld 11592 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑅) ∈ ℂ)
361360adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁𝑅) ∈ ℂ)
36252, 236gtned 11368 . . . . . . . . . . . . . . . 16 (𝜑𝑁𝑅)
36316, 233, 362subne0d 11601 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁𝑅) ≠ 0)
364363adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁𝑅) ≠ 0)
365361, 323, 364, 324recdivd 12032 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (1 / ((𝑁𝑅) / 𝑅)) = (𝑅 / (𝑁𝑅)))
366162, 323nncand 11597 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 − (𝑁𝑅)) = 𝑅)
367366oveq1d 7418 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 − (𝑁𝑅)) / (𝑁𝑅)) = (𝑅 / (𝑁𝑅)))
368162, 361, 361, 364divsubdird 12054 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 − (𝑁𝑅)) / (𝑁𝑅)) = ((𝑁 / (𝑁𝑅)) − ((𝑁𝑅) / (𝑁𝑅))))
369367, 368eqtr3d 2772 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (𝑅 / (𝑁𝑅)) = ((𝑁 / (𝑁𝑅)) − ((𝑁𝑅) / (𝑁𝑅))))
370361, 364dividd 12013 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁𝑅) / (𝑁𝑅)) = 1)
371370oveq2d 7419 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 / (𝑁𝑅)) − ((𝑁𝑅) / (𝑁𝑅))) = ((𝑁 / (𝑁𝑅)) − 1))
372365, 369, 3713eqtrd 2774 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (1 / ((𝑁𝑅) / 𝑅)) = ((𝑁 / (𝑁𝑅)) − 1))
373359, 372breqtrd 5145 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))) ≤ ((𝑁 / (𝑁𝑅)) − 1))
374190, 189, 190, 191divsubdird 12054 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (((((𝐴 / 𝑁) · 𝑡) + 1) − 1) / (((𝐴 / 𝑁) · 𝑡) + 1)) = (((((𝐴 / 𝑁) · 𝑡) + 1) / (((𝐴 / 𝑁) · 𝑡) + 1)) − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))
375168, 189pncand 11593 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) − 1) = ((𝐴 / 𝑁) · 𝑡))
376375oveq1d 7418 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (((((𝐴 / 𝑁) · 𝑡) + 1) − 1) / (((𝐴 / 𝑁) · 𝑡) + 1)) = (((𝐴 / 𝑁) · 𝑡) / (((𝐴 / 𝑁) · 𝑡) + 1)))
377190, 191dividd 12013 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0(,)1)) → ((((𝐴 / 𝑁) · 𝑡) + 1) / (((𝐴 / 𝑁) · 𝑡) + 1)) = 1)
378377oveq1d 7418 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0(,)1)) → (((((𝐴 / 𝑁) · 𝑡) + 1) / (((𝐴 / 𝑁) · 𝑡) + 1)) − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))) = (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))
379374, 376, 3783eqtr3rd 2779 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))) = (((𝐴 / 𝑁) · 𝑡) / (((𝐴 / 𝑁) · 𝑡) + 1)))
380190, 168, 191, 305recdivd 12032 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (1 / ((((𝐴 / 𝑁) · 𝑡) + 1) / ((𝐴 / 𝑁) · 𝑡))) = (((𝐴 / 𝑁) · 𝑡) / (((𝐴 / 𝑁) · 𝑡) + 1)))
381311oveq2d 7419 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (1 / ((((𝐴 / 𝑁) · 𝑡) + 1) / ((𝐴 / 𝑁) · 𝑡))) = (1 / (1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
382379, 380, 3813eqtr2d 2776 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))) = (1 / (1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
383382fveq2d 6879 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) = (abs‘(1 / (1 + (1 / ((𝐴 / 𝑁) · 𝑡))))))
384189, 307, 313absdivd 15472 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 / (1 + (1 / ((𝐴 / 𝑁) · 𝑡))))) = ((abs‘1) / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))))
385340oveq1i 7413 . . . . . . . . . . . . 13 ((abs‘1) / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))) = (1 / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡)))))
386384, 385eqtrdi 2786 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 / (1 + (1 / ((𝐴 / 𝑁) · 𝑡))))) = (1 / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))))
387383, 386eqtrd 2770 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) = (1 / (abs‘(1 + (1 / ((𝐴 / 𝑁) · 𝑡))))))
388360, 363reccld 12008 . . . . . . . . . . . . . 14 (𝜑 → (1 / (𝑁𝑅)) ∈ ℂ)
389388adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (1 / (𝑁𝑅)) ∈ ℂ)
390241recnd 11261 . . . . . . . . . . . . . 14 (𝜑 → (1 / 𝑁) ∈ ℂ)
391390adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (1 / 𝑁) ∈ ℂ)
392162, 389, 391subdid 11691 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) = ((𝑁 · (1 / (𝑁𝑅))) − (𝑁 · (1 / 𝑁))))
393162, 361, 364divrecd 12018 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 / (𝑁𝑅)) = (𝑁 · (1 / (𝑁𝑅))))
394393eqcomd 2741 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 · (1 / (𝑁𝑅))) = (𝑁 / (𝑁𝑅)))
395162, 163recidd 12010 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 · (1 / 𝑁)) = 1)
396394, 395oveq12d 7421 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑁 · (1 / (𝑁𝑅))) − (𝑁 · (1 / 𝑁))) = ((𝑁 / (𝑁𝑅)) − 1))
397392, 396eqtrd 2770 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) = ((𝑁 / (𝑁𝑅)) − 1))
398373, 387, 3973brtr4d 5151 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1)))) ≤ (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
399279, 286, 281, 290, 292, 293, 294, 398lemul12ad 12182 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) ≤ (𝑅 · (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
400242recnd 11261 . . . . . . . . . . 11 (𝜑 → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℂ)
401400adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (0(,)1)) → ((1 / (𝑁𝑅)) − (1 / 𝑁)) ∈ ℂ)
402323, 162, 401mul12d 11442 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (𝑅 · (𝑁 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))) = (𝑁 · (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
403399, 402breqtrd 5145 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) ≤ (𝑁 · (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁)))))
404279, 281remulcld 11263 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → ((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) ∈ ℝ)
405243adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ∈ ℝ)
406404, 405, 333ledivmuld 13102 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → ((((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) / 𝑁) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ↔ ((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) ≤ (𝑁 · (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))))
407403, 406mpbird 257 . . . . . . 7 ((𝜑𝑡 ∈ (0(,)1)) → (((abs‘𝐴) · (abs‘(1 − (1 / (((𝐴 / 𝑁) · 𝑡) + 1))))) / 𝑁) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
408285, 407eqbrtrd 5141 . . . . . 6 ((𝜑𝑡 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑡)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
409254, 259, 408chvarfv 2240 . . . . 5 ((𝜑𝑦 ∈ (0(,)1)) → (abs‘((𝑡 ∈ (0(,)1) ↦ ((𝐴 / 𝑁) − ((1 / (((𝐴 / 𝑁) · 𝑡) + 1)) · (𝐴 / 𝑁))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
410246, 409eqbrtrd 5141 . . . 4 ((𝜑𝑦 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))))‘𝑦)) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
4113, 4, 147, 227, 243, 410dvlip 25948 . . 3 ((𝜑 ∧ (1 ∈ (0[,]1) ∧ 0 ∈ (0[,]1))) → (abs‘(((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0))) ≤ ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · (abs‘(1 − 0))))
4121, 2, 411mpanr12 705 . 2 (𝜑 → (abs‘(((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0))) ≤ ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · (abs‘(1 − 0))))
413 eqidd 2736 . . . . . 6 (𝜑 → (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))) = (𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1)))))
414 oveq2 7411 . . . . . . . 8 (𝑡 = 1 → ((𝐴 / 𝑁) · 𝑡) = ((𝐴 / 𝑁) · 1))
415414, 178sylan9eqr 2792 . . . . . . 7 ((𝜑𝑡 = 1) → ((𝐴 / 𝑁) · 𝑡) = (𝐴 / 𝑁))
416415fvoveq1d 7425 . . . . . . 7 ((𝜑𝑡 = 1) → (log‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (log‘((𝐴 / 𝑁) + 1)))
417415, 416oveq12d 7421 . . . . . 6 ((𝜑𝑡 = 1) → (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))) = ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))
4181a1i 11 . . . . . 6 (𝜑 → 1 ∈ (0[,]1))
419 ovexd 7438 . . . . . 6 (𝜑 → ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) ∈ V)
420413, 417, 418, 419fvmptd 6992 . . . . 5 (𝜑 → ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) = ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))
421 oveq2 7411 . . . . . . . . 9 (𝑡 = 0 → ((𝐴 / 𝑁) · 𝑡) = ((𝐴 / 𝑁) · 0))
42218mul01d 11432 . . . . . . . . 9 (𝜑 → ((𝐴 / 𝑁) · 0) = 0)
423421, 422sylan9eqr 2792 . . . . . . . 8 ((𝜑𝑡 = 0) → ((𝐴 / 𝑁) · 𝑡) = 0)
424423oveq1d 7418 . . . . . . . . . . 11 ((𝜑𝑡 = 0) → (((𝐴 / 𝑁) · 𝑡) + 1) = (0 + 1))
425 0p1e1 12360 . . . . . . . . . . 11 (0 + 1) = 1
426424, 425eqtrdi 2786 . . . . . . . . . 10 ((𝜑𝑡 = 0) → (((𝐴 / 𝑁) · 𝑡) + 1) = 1)
427426fveq2d 6879 . . . . . . . . 9 ((𝜑𝑡 = 0) → (log‘(((𝐴 / 𝑁) · 𝑡) + 1)) = (log‘1))
428 log1 26544 . . . . . . . . 9 (log‘1) = 0
429427, 428eqtrdi 2786 . . . . . . . 8 ((𝜑𝑡 = 0) → (log‘(((𝐴 / 𝑁) · 𝑡) + 1)) = 0)
430423, 429oveq12d 7421 . . . . . . 7 ((𝜑𝑡 = 0) → (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))) = (0 − 0))
431 0m0e0 12358 . . . . . . 7 (0 − 0) = 0
432430, 431eqtrdi 2786 . . . . . 6 ((𝜑𝑡 = 0) → (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))) = 0)
4332a1i 11 . . . . . 6 (𝜑 → 0 ∈ (0[,]1))
434413, 432, 433, 433fvmptd 6992 . . . . 5 (𝜑 → ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0) = 0)
435420, 434oveq12d 7421 . . . 4 (𝜑 → (((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0)) = (((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) − 0))
43618, 138addcld 11252 . . . . . . 7 (𝜑 → ((𝐴 / 𝑁) + 1) ∈ ℂ)
43712, 14dmgmdivn0 26988 . . . . . . 7 (𝜑 → ((𝐴 / 𝑁) + 1) ≠ 0)
438436, 437logcld 26529 . . . . . 6 (𝜑 → (log‘((𝐴 / 𝑁) + 1)) ∈ ℂ)
43918, 438subcld 11592 . . . . 5 (𝜑 → ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) ∈ ℂ)
440439subid1d 11581 . . . 4 (𝜑 → (((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) − 0) = ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))))
441435, 440eqtr2d 2771 . . 3 (𝜑 → ((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1))) = (((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0)))
442441fveq2d 6879 . 2 (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) = (abs‘(((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (((𝐴 / 𝑁) · 𝑡) − (log‘(((𝐴 / 𝑁) · 𝑡) + 1))))‘0))))
443 1m0e1 12359 . . . . . 6 (1 − 0) = 1
444443fveq2i 6878 . . . . 5 (abs‘(1 − 0)) = (abs‘1)
445444, 340eqtri 2758 . . . 4 (abs‘(1 − 0)) = 1
446445oveq2i 7414 . . 3 ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · (abs‘(1 − 0))) = ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · 1)
447233, 400mulcld 11253 . . . 4 (𝜑 → (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) ∈ ℂ)
448447mulridd 11250 . . 3 (𝜑 → ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · 1) = (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
449446, 448eqtr2id 2783 . 2 (𝜑 → (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) = ((𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))) · (abs‘(1 − 0))))
450412, 442, 4493brtr4d 5151 1 (𝜑 → (abs‘((𝐴 / 𝑁) − (log‘((𝐴 / 𝑁) + 1)))) ≤ (𝑅 · ((1 / (𝑁𝑅)) − (1 / 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  {crab 3415  Vcvv 3459  cdif 3923  wss 3926  {cpr 4603   class class class wbr 5119  cmpt 5201  dom cdm 5654  ran crn 5655  cres 5656  ccom 5658  wf 6526  cfv 6530  (class class class)co 7403  cc 11125  cr 11126  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132  -∞cmnf 11265   < clt 11267  cle 11268  cmin 11464  -cneg 11465   / cdiv 11892  cn 12238  2c2 12293  0cn0 12499  cz 12586  +crp 13006  (,)cioo 13360  (,]cioc 13361  [,]cicc 13363  cre 15114  abscabs 15251  TopOpenctopn 17433  topGenctg 17449  fldccnfld 21313  Topctop 22829  intcnt 22953   Cn ccn 23160   ×t ctx 23496  cnccncf 24818   D cdv 25814  logclog 26513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ioc 13365  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-mod 13885  df-seq 14018  df-exp 14078  df-fac 14290  df-bc 14319  df-hash 14347  df-shft 15084  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-limsup 15485  df-clim 15502  df-rlim 15503  df-sum 15701  df-ef 16081  df-sin 16083  df-cos 16084  df-tan 16085  df-pi 16086  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-lp 23072  df-perf 23073  df-cn 23163  df-cnp 23164  df-haus 23251  df-cmp 23323  df-tx 23498  df-hmeo 23691  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-xms 24257  df-ms 24258  df-tms 24259  df-cncf 24820  df-limc 25817  df-dv 25818  df-log 26515
This theorem is referenced by:  lgamgulmlem3  26991
  Copyright terms: Public domain W3C validator