MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reelprrecn Structured version   Visualization version   GIF version

Theorem reelprrecn 11160
Description: Reals are a subset of the pair of real and complex numbers. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
reelprrecn ℝ ∈ {ℝ, ℂ}

Proof of Theorem reelprrecn
StepHypRef Expression
1 reex 11159 . 2 ℝ ∈ V
21prid1 4726 1 ℝ ∈ {ℝ, ℂ}
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  {cpr 4591  cc 11066  cr 11067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-un 3919  df-in 3921  df-ss 3931  df-sn 4590  df-pr 4592
This theorem is referenced by:  dvf  25808  dvmptresicc  25817  dvmptcj  25872  dvmptre  25873  dvmptim  25874  rolle  25894  cmvth  25895  cmvthOLD  25896  mvth  25897  dvlip  25898  dvlipcn  25899  dvle  25912  dvivthlem1  25913  dvivth  25915  lhop2  25920  dvcnvre  25924  dvfsumle  25926  dvfsumleOLD  25927  dvfsumge  25928  dvfsumabs  25929  dvfsumlem2  25933  dvfsumlem2OLD  25934  dvfsum2  25941  ftc2  25951  itgparts  25954  itgsubstlem  25955  itgpowd  25957  aalioulem3  26242  taylthlem2  26282  taylthlem2OLD  26283  taylth  26284  efcvx  26359  pige3ALT  26429  dvrelog  26546  advlog  26563  advlogexp  26564  logccv  26572  dvcxp1  26649  loglesqrt  26671  divsqrtsumlem  26890  lgamgulmlem2  26940  logexprlim  27136  logdivsum  27444  log2sumbnd  27455  fdvneggt  34591  fdvnegge  34593  itgexpif  34597  logdivsqrle  34641  ftc2nc  37696  dvreasin  37700  dvreacos  37701  areacirclem1  37702  dvrelog2  42052  dvrelog3  42053  dvrelog2b  42054  dvrelogpow2b  42056  aks4d1p1p6  42061  redvmptabs  42348  readvrec2  42349  readvrec  42350  readvcot  42352  lhe4.4ex1a  44318  dvcosre  45910  dvcnre  45914  itgsin0pilem1  45948  itgsinexplem1  45952  itgcoscmulx  45967  itgiccshift  45978  itgperiod  45979  itgsbtaddcnst  45980  dirkeritg  46100  dirkercncflem2  46102  fourierdlem28  46133  fourierdlem39  46144  fourierdlem56  46160  fourierdlem57  46161  fourierdlem58  46162  fourierdlem59  46163  fourierdlem60  46164  fourierdlem61  46165  fourierdlem62  46166  fourierdlem68  46172  fourierdlem72  46176  fouriersw  46229  etransclem2  46234  etransclem23  46255  etransclem35  46267  etransclem38  46270  etransclem39  46271  etransclem44  46276  etransclem45  46277  etransclem46  46278  etransclem47  46279
  Copyright terms: Public domain W3C validator