![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnrmnrm | Structured version Visualization version GIF version |
Description: A completely normal space is normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
cnrmnrm | ⊢ (𝐽 ∈ CNrm → 𝐽 ∈ Nrm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2770 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | restid 16301 | . 2 ⊢ (𝐽 ∈ CNrm → (𝐽 ↾t ∪ 𝐽) = 𝐽) |
3 | uniexg 7101 | . . 3 ⊢ (𝐽 ∈ CNrm → ∪ 𝐽 ∈ V) | |
4 | cnrmi 21384 | . . 3 ⊢ ((𝐽 ∈ CNrm ∧ ∪ 𝐽 ∈ V) → (𝐽 ↾t ∪ 𝐽) ∈ Nrm) | |
5 | 3, 4 | mpdan 659 | . 2 ⊢ (𝐽 ∈ CNrm → (𝐽 ↾t ∪ 𝐽) ∈ Nrm) |
6 | 2, 5 | eqeltrrd 2850 | 1 ⊢ (𝐽 ∈ CNrm → 𝐽 ∈ Nrm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2144 Vcvv 3349 ∪ cuni 4572 (class class class)co 6792 ↾t crest 16288 Nrmcnrm 21334 CNrmccnrm 21335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-rest 16290 df-cnrm 21342 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |