MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrmnrm Structured version   Visualization version   GIF version

Theorem cnrmnrm 23334
Description: A completely normal space is normal. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
cnrmnrm (𝐽 ∈ CNrm → 𝐽 ∈ Nrm)

Proof of Theorem cnrmnrm
StepHypRef Expression
1 eqid 2734 . . 3 𝐽 = 𝐽
21restid 17454 . 2 (𝐽 ∈ CNrm → (𝐽t 𝐽) = 𝐽)
3 uniexg 7743 . . 3 (𝐽 ∈ CNrm → 𝐽 ∈ V)
4 cnrmi 23333 . . 3 ((𝐽 ∈ CNrm ∧ 𝐽 ∈ V) → (𝐽t 𝐽) ∈ Nrm)
53, 4mpdan 687 . 2 (𝐽 ∈ CNrm → (𝐽t 𝐽) ∈ Nrm)
62, 5eqeltrrd 2834 1 (𝐽 ∈ CNrm → 𝐽 ∈ Nrm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Vcvv 3464   cuni 4889  (class class class)co 7414  t crest 17441  Nrmcnrm 23283  CNrmccnrm 23284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-rest 17443  df-cnrm 23291
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator