Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cntzcmnf | Structured version Visualization version GIF version |
Description: Discharge the centralizer assumption in a commutative monoid. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
cntzcmnf.b | ⊢ 𝐵 = (Base‘𝐺) |
cntzcmnf.z | ⊢ 𝑍 = (Cntz‘𝐺) |
cntzcmnf.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
cntzcmnf.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
cntzcmnf | ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzcmnf.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | frnd 6608 | . 2 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
3 | cntzcmnf.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | cntzcmnf.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
5 | cntzcmnf.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝐺) | |
6 | 4, 5 | cntzcmn 19441 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ ran 𝐹 ⊆ 𝐵) → (𝑍‘ran 𝐹) = 𝐵) |
7 | 3, 2, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑍‘ran 𝐹) = 𝐵) |
8 | 2, 7 | sseqtrrd 3962 | 1 ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ran crn 5590 ⟶wf 6429 ‘cfv 6433 Basecbs 16912 Cntzccntz 18921 CMndccmn 19386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-cntz 18923 df-cmn 19388 |
This theorem is referenced by: gsumres 19514 gsumcl2 19515 gsumf1o 19517 gsumsubmcl 19520 gsumsplit 19529 gsummhm 19539 gsumfsum 20665 wilthlem3 26219 |
Copyright terms: Public domain | W3C validator |