MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzcmnf Structured version   Visualization version   GIF version

Theorem cntzcmnf 19831
Description: Discharge the centralizer assumption in a commutative monoid. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
cntzcmnf.b 𝐵 = (Base‘𝐺)
cntzcmnf.z 𝑍 = (Cntz‘𝐺)
cntzcmnf.g (𝜑𝐺 ∈ CMnd)
cntzcmnf.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
cntzcmnf (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))

Proof of Theorem cntzcmnf
StepHypRef Expression
1 cntzcmnf.f . . 3 (𝜑𝐹:𝐴𝐵)
21frnd 6719 . 2 (𝜑 → ran 𝐹𝐵)
3 cntzcmnf.g . . 3 (𝜑𝐺 ∈ CMnd)
4 cntzcmnf.b . . . 4 𝐵 = (Base‘𝐺)
5 cntzcmnf.z . . . 4 𝑍 = (Cntz‘𝐺)
64, 5cntzcmn 19826 . . 3 ((𝐺 ∈ CMnd ∧ ran 𝐹𝐵) → (𝑍‘ran 𝐹) = 𝐵)
73, 2, 6syl2anc 584 . 2 (𝜑 → (𝑍‘ran 𝐹) = 𝐵)
82, 7sseqtrrd 4001 1 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3931  ran crn 5660  wf 6532  cfv 6536  Basecbs 17233  Cntzccntz 19303  CMndccmn 19766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-cntz 19305  df-cmn 19768
This theorem is referenced by:  gsumres  19899  gsumcl2  19900  gsumf1o  19902  gsumsubmcl  19905  gsumsplit  19914  gsummhm  19924  gsumfsum  21407  wilthlem3  27037
  Copyright terms: Public domain W3C validator