| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntzcmnf | Structured version Visualization version GIF version | ||
| Description: Discharge the centralizer assumption in a commutative monoid. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| Ref | Expression |
|---|---|
| cntzcmnf.b | ⊢ 𝐵 = (Base‘𝐺) |
| cntzcmnf.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| cntzcmnf.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| cntzcmnf.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| cntzcmnf | ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzcmnf.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | frnd 6719 | . 2 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
| 3 | cntzcmnf.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | cntzcmnf.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | cntzcmnf.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 6 | 4, 5 | cntzcmn 19826 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ ran 𝐹 ⊆ 𝐵) → (𝑍‘ran 𝐹) = 𝐵) |
| 7 | 3, 2, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑍‘ran 𝐹) = 𝐵) |
| 8 | 2, 7 | sseqtrrd 4001 | 1 ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ran crn 5660 ⟶wf 6532 ‘cfv 6536 Basecbs 17233 Cntzccntz 19303 CMndccmn 19766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-cntz 19305 df-cmn 19768 |
| This theorem is referenced by: gsumres 19899 gsumcl2 19900 gsumf1o 19902 gsumsubmcl 19905 gsumsplit 19914 gsummhm 19924 gsumfsum 21407 wilthlem3 27037 |
| Copyright terms: Public domain | W3C validator |