![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzcmnf | Structured version Visualization version GIF version |
Description: Discharge the centralizer assumption in a commutative monoid. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
cntzcmnf.b | β’ π΅ = (BaseβπΊ) |
cntzcmnf.z | β’ π = (CntzβπΊ) |
cntzcmnf.g | β’ (π β πΊ β CMnd) |
cntzcmnf.f | β’ (π β πΉ:π΄βΆπ΅) |
Ref | Expression |
---|---|
cntzcmnf | β’ (π β ran πΉ β (πβran πΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzcmnf.f | . . 3 β’ (π β πΉ:π΄βΆπ΅) | |
2 | 1 | frnd 6725 | . 2 β’ (π β ran πΉ β π΅) |
3 | cntzcmnf.g | . . 3 β’ (π β πΊ β CMnd) | |
4 | cntzcmnf.b | . . . 4 β’ π΅ = (BaseβπΊ) | |
5 | cntzcmnf.z | . . . 4 β’ π = (CntzβπΊ) | |
6 | 4, 5 | cntzcmn 19707 | . . 3 β’ ((πΊ β CMnd β§ ran πΉ β π΅) β (πβran πΉ) = π΅) |
7 | 3, 2, 6 | syl2anc 584 | . 2 β’ (π β (πβran πΉ) = π΅) |
8 | 2, 7 | sseqtrrd 4023 | 1 β’ (π β ran πΉ β (πβran πΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β wss 3948 ran crn 5677 βΆwf 6539 βcfv 6543 Basecbs 17143 Cntzccntz 19178 CMndccmn 19647 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-cntz 19180 df-cmn 19649 |
This theorem is referenced by: gsumres 19780 gsumcl2 19781 gsumf1o 19783 gsumsubmcl 19786 gsumsplit 19795 gsummhm 19805 gsumfsum 21011 wilthlem3 26571 |
Copyright terms: Public domain | W3C validator |