Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cntzcmnf | Structured version Visualization version GIF version |
Description: Discharge the centralizer assumption in a commutative monoid. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
cntzcmnf.b | ⊢ 𝐵 = (Base‘𝐺) |
cntzcmnf.z | ⊢ 𝑍 = (Cntz‘𝐺) |
cntzcmnf.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
cntzcmnf.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
cntzcmnf | ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzcmnf.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | frnd 6606 | . 2 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
3 | cntzcmnf.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | cntzcmnf.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
5 | cntzcmnf.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝐺) | |
6 | 4, 5 | cntzcmn 19439 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ ran 𝐹 ⊆ 𝐵) → (𝑍‘ran 𝐹) = 𝐵) |
7 | 3, 2, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑍‘ran 𝐹) = 𝐵) |
8 | 2, 7 | sseqtrrd 3967 | 1 ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 ran crn 5591 ⟶wf 6428 ‘cfv 6432 Basecbs 16910 Cntzccntz 18919 CMndccmn 19384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-cntz 18921 df-cmn 19386 |
This theorem is referenced by: gsumres 19512 gsumcl2 19513 gsumf1o 19515 gsumsubmcl 19518 gsumsplit 19527 gsummhm 19537 gsumfsum 20663 wilthlem3 26217 |
Copyright terms: Public domain | W3C validator |