| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntzcmnf | Structured version Visualization version GIF version | ||
| Description: Discharge the centralizer assumption in a commutative monoid. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| Ref | Expression |
|---|---|
| cntzcmnf.b | ⊢ 𝐵 = (Base‘𝐺) |
| cntzcmnf.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| cntzcmnf.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| cntzcmnf.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| cntzcmnf | ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzcmnf.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | frnd 6713 | . 2 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
| 3 | cntzcmnf.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | cntzcmnf.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | cntzcmnf.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 6 | 4, 5 | cntzcmn 19819 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ ran 𝐹 ⊆ 𝐵) → (𝑍‘ran 𝐹) = 𝐵) |
| 7 | 3, 2, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑍‘ran 𝐹) = 𝐵) |
| 8 | 2, 7 | sseqtrrd 3996 | 1 ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ran crn 5655 ⟶wf 6526 ‘cfv 6530 Basecbs 17226 Cntzccntz 19296 CMndccmn 19759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-cntz 19298 df-cmn 19761 |
| This theorem is referenced by: gsumres 19892 gsumcl2 19893 gsumf1o 19895 gsumsubmcl 19898 gsumsplit 19907 gsummhm 19917 gsumfsum 21400 wilthlem3 27030 |
| Copyright terms: Public domain | W3C validator |