Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cntzcmnf | Structured version Visualization version GIF version |
Description: Discharge the centralizer assumption in a commutative monoid. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
cntzcmnf.b | ⊢ 𝐵 = (Base‘𝐺) |
cntzcmnf.z | ⊢ 𝑍 = (Cntz‘𝐺) |
cntzcmnf.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
cntzcmnf.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
cntzcmnf | ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzcmnf.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | frnd 6589 | . 2 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐵) |
3 | cntzcmnf.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | cntzcmnf.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
5 | cntzcmnf.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝐺) | |
6 | 4, 5 | cntzcmn 19331 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ ran 𝐹 ⊆ 𝐵) → (𝑍‘ran 𝐹) = 𝐵) |
7 | 3, 2, 6 | syl2anc 587 | . 2 ⊢ (𝜑 → (𝑍‘ran 𝐹) = 𝐵) |
8 | 2, 7 | sseqtrrd 3959 | 1 ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 ⊆ wss 3884 ran crn 5580 ⟶wf 6411 ‘cfv 6415 Basecbs 16815 Cntzccntz 18811 CMndccmn 19276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5479 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-ov 7255 df-cntz 18813 df-cmn 19278 |
This theorem is referenced by: gsumres 19404 gsumcl2 19405 gsumf1o 19407 gsumsubmcl 19410 gsumsplit 19419 gsummhm 19429 gsumfsum 20552 wilthlem3 26099 |
Copyright terms: Public domain | W3C validator |