MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzcmnf Structured version   Visualization version   GIF version

Theorem cntzcmnf 19446
Description: Discharge the centralizer assumption in a commutative monoid. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
cntzcmnf.b 𝐵 = (Base‘𝐺)
cntzcmnf.z 𝑍 = (Cntz‘𝐺)
cntzcmnf.g (𝜑𝐺 ∈ CMnd)
cntzcmnf.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
cntzcmnf (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))

Proof of Theorem cntzcmnf
StepHypRef Expression
1 cntzcmnf.f . . 3 (𝜑𝐹:𝐴𝐵)
21frnd 6608 . 2 (𝜑 → ran 𝐹𝐵)
3 cntzcmnf.g . . 3 (𝜑𝐺 ∈ CMnd)
4 cntzcmnf.b . . . 4 𝐵 = (Base‘𝐺)
5 cntzcmnf.z . . . 4 𝑍 = (Cntz‘𝐺)
64, 5cntzcmn 19441 . . 3 ((𝐺 ∈ CMnd ∧ ran 𝐹𝐵) → (𝑍‘ran 𝐹) = 𝐵)
73, 2, 6syl2anc 584 . 2 (𝜑 → (𝑍‘ran 𝐹) = 𝐵)
82, 7sseqtrrd 3962 1 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wss 3887  ran crn 5590  wf 6429  cfv 6433  Basecbs 16912  Cntzccntz 18921  CMndccmn 19386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-cntz 18923  df-cmn 19388
This theorem is referenced by:  gsumres  19514  gsumcl2  19515  gsumf1o  19517  gsumsubmcl  19520  gsumsplit  19529  gsummhm  19539  gsumfsum  20665  wilthlem3  26219
  Copyright terms: Public domain W3C validator