MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzcmnf Structured version   Visualization version   GIF version

Theorem cntzcmnf 19864
Description: Discharge the centralizer assumption in a commutative monoid. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
cntzcmnf.b 𝐵 = (Base‘𝐺)
cntzcmnf.z 𝑍 = (Cntz‘𝐺)
cntzcmnf.g (𝜑𝐺 ∈ CMnd)
cntzcmnf.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
cntzcmnf (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))

Proof of Theorem cntzcmnf
StepHypRef Expression
1 cntzcmnf.f . . 3 (𝜑𝐹:𝐴𝐵)
21frnd 6743 . 2 (𝜑 → ran 𝐹𝐵)
3 cntzcmnf.g . . 3 (𝜑𝐺 ∈ CMnd)
4 cntzcmnf.b . . . 4 𝐵 = (Base‘𝐺)
5 cntzcmnf.z . . . 4 𝑍 = (Cntz‘𝐺)
64, 5cntzcmn 19859 . . 3 ((𝐺 ∈ CMnd ∧ ran 𝐹𝐵) → (𝑍‘ran 𝐹) = 𝐵)
73, 2, 6syl2anc 584 . 2 (𝜑 → (𝑍‘ran 𝐹) = 𝐵)
82, 7sseqtrrd 4020 1 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wss 3950  ran crn 5685  wf 6556  cfv 6560  Basecbs 17248  Cntzccntz 19334  CMndccmn 19799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-cntz 19336  df-cmn 19801
This theorem is referenced by:  gsumres  19932  gsumcl2  19933  gsumf1o  19935  gsumsubmcl  19938  gsumsplit  19947  gsummhm  19957  gsumfsum  21453  wilthlem3  27114
  Copyright terms: Public domain W3C validator