MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzcmnf Structured version   Visualization version   GIF version

Theorem cntzcmnf 19712
Description: Discharge the centralizer assumption in a commutative monoid. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
cntzcmnf.b 𝐡 = (Baseβ€˜πΊ)
cntzcmnf.z 𝑍 = (Cntzβ€˜πΊ)
cntzcmnf.g (πœ‘ β†’ 𝐺 ∈ CMnd)
cntzcmnf.f (πœ‘ β†’ 𝐹:𝐴⟢𝐡)
Assertion
Ref Expression
cntzcmnf (πœ‘ β†’ ran 𝐹 βŠ† (π‘β€˜ran 𝐹))

Proof of Theorem cntzcmnf
StepHypRef Expression
1 cntzcmnf.f . . 3 (πœ‘ β†’ 𝐹:𝐴⟢𝐡)
21frnd 6725 . 2 (πœ‘ β†’ ran 𝐹 βŠ† 𝐡)
3 cntzcmnf.g . . 3 (πœ‘ β†’ 𝐺 ∈ CMnd)
4 cntzcmnf.b . . . 4 𝐡 = (Baseβ€˜πΊ)
5 cntzcmnf.z . . . 4 𝑍 = (Cntzβ€˜πΊ)
64, 5cntzcmn 19707 . . 3 ((𝐺 ∈ CMnd ∧ ran 𝐹 βŠ† 𝐡) β†’ (π‘β€˜ran 𝐹) = 𝐡)
73, 2, 6syl2anc 584 . 2 (πœ‘ β†’ (π‘β€˜ran 𝐹) = 𝐡)
82, 7sseqtrrd 4023 1 (πœ‘ β†’ ran 𝐹 βŠ† (π‘β€˜ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106   βŠ† wss 3948  ran crn 5677  βŸΆwf 6539  β€˜cfv 6543  Basecbs 17143  Cntzccntz 19178  CMndccmn 19647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-cntz 19180  df-cmn 19649
This theorem is referenced by:  gsumres  19780  gsumcl2  19781  gsumf1o  19783  gsumsubmcl  19786  gsumsplit  19795  gsummhm  19805  gsumfsum  21011  wilthlem3  26571
  Copyright terms: Public domain W3C validator