![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumsubmcl | Structured version Visualization version GIF version |
Description: Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
Ref | Expression |
---|---|
gsumsubmcl.z | β’ 0 = (0gβπΊ) |
gsumsubmcl.g | β’ (π β πΊ β CMnd) |
gsumsubmcl.a | β’ (π β π΄ β π) |
gsumsubmcl.s | β’ (π β π β (SubMndβπΊ)) |
gsumsubmcl.f | β’ (π β πΉ:π΄βΆπ) |
gsumsubmcl.w | β’ (π β πΉ finSupp 0 ) |
Ref | Expression |
---|---|
gsumsubmcl | β’ (π β (πΊ Ξ£g πΉ) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumsubmcl.z | . 2 β’ 0 = (0gβπΊ) | |
2 | eqid 2732 | . 2 β’ (CntzβπΊ) = (CntzβπΊ) | |
3 | gsumsubmcl.g | . . 3 β’ (π β πΊ β CMnd) | |
4 | cmnmnd 19664 | . . 3 β’ (πΊ β CMnd β πΊ β Mnd) | |
5 | 3, 4 | syl 17 | . 2 β’ (π β πΊ β Mnd) |
6 | gsumsubmcl.a | . 2 β’ (π β π΄ β π) | |
7 | gsumsubmcl.s | . 2 β’ (π β π β (SubMndβπΊ)) | |
8 | gsumsubmcl.f | . 2 β’ (π β πΉ:π΄βΆπ) | |
9 | eqid 2732 | . . 3 β’ (BaseβπΊ) = (BaseβπΊ) | |
10 | 9 | submss 18689 | . . . . 5 β’ (π β (SubMndβπΊ) β π β (BaseβπΊ)) |
11 | 7, 10 | syl 17 | . . . 4 β’ (π β π β (BaseβπΊ)) |
12 | 8, 11 | fssd 6735 | . . 3 β’ (π β πΉ:π΄βΆ(BaseβπΊ)) |
13 | 9, 2, 3, 12 | cntzcmnf 19712 | . 2 β’ (π β ran πΉ β ((CntzβπΊ)βran πΉ)) |
14 | gsumsubmcl.w | . 2 β’ (π β πΉ finSupp 0 ) | |
15 | 1, 2, 5, 6, 7, 8, 13, 14 | gsumzsubmcl 19785 | 1 β’ (π β (πΊ Ξ£g πΉ) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β wss 3948 class class class wbr 5148 βΆwf 6539 βcfv 6543 (class class class)co 7408 finSupp cfsupp 9360 Basecbs 17143 0gc0g 17384 Ξ£g cgsu 17385 Mndcmnd 18624 SubMndcsubmnd 18669 Cntzccntz 19178 CMndccmn 19647 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-fzo 13627 df-seq 13966 df-hash 14290 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-0g 17386 df-gsum 17387 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-submnd 18671 df-cntz 19180 df-cmn 19649 |
This theorem is referenced by: gsumsubgcl 19787 mplbas2 21596 tdeglem1 25572 tdeglem1OLD 25573 tdeglem4 25576 tdeglem4OLD 25577 plypf1 25725 jensen 26490 amgmlem 26491 amgm 26492 wilthlem2 26570 wilthlem3 26571 lgseisenlem3 26877 elrspunidl 32541 amgmwlem 47839 |
Copyright terms: Public domain | W3C validator |