![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumsplit | Structured version Visualization version GIF version |
Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 5-Jun-2019.) |
Ref | Expression |
---|---|
gsumsplit.b | β’ π΅ = (BaseβπΊ) |
gsumsplit.z | β’ 0 = (0gβπΊ) |
gsumsplit.p | β’ + = (+gβπΊ) |
gsumsplit.g | β’ (π β πΊ β CMnd) |
gsumsplit.a | β’ (π β π΄ β π) |
gsumsplit.f | β’ (π β πΉ:π΄βΆπ΅) |
gsumsplit.w | β’ (π β πΉ finSupp 0 ) |
gsumsplit.i | β’ (π β (πΆ β© π·) = β ) |
gsumsplit.u | β’ (π β π΄ = (πΆ βͺ π·)) |
Ref | Expression |
---|---|
gsumsplit | β’ (π β (πΊ Ξ£g πΉ) = ((πΊ Ξ£g (πΉ βΎ πΆ)) + (πΊ Ξ£g (πΉ βΎ π·)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumsplit.b | . 2 β’ π΅ = (BaseβπΊ) | |
2 | gsumsplit.z | . 2 β’ 0 = (0gβπΊ) | |
3 | gsumsplit.p | . 2 β’ + = (+gβπΊ) | |
4 | eqid 2728 | . 2 β’ (CntzβπΊ) = (CntzβπΊ) | |
5 | gsumsplit.g | . . 3 β’ (π β πΊ β CMnd) | |
6 | cmnmnd 19766 | . . 3 β’ (πΊ β CMnd β πΊ β Mnd) | |
7 | 5, 6 | syl 17 | . 2 β’ (π β πΊ β Mnd) |
8 | gsumsplit.a | . 2 β’ (π β π΄ β π) | |
9 | gsumsplit.f | . 2 β’ (π β πΉ:π΄βΆπ΅) | |
10 | 1, 4, 5, 9 | cntzcmnf 19814 | . 2 β’ (π β ran πΉ β ((CntzβπΊ)βran πΉ)) |
11 | gsumsplit.w | . 2 β’ (π β πΉ finSupp 0 ) | |
12 | gsumsplit.i | . 2 β’ (π β (πΆ β© π·) = β ) | |
13 | gsumsplit.u | . 2 β’ (π β π΄ = (πΆ βͺ π·)) | |
14 | 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13 | gsumzsplit 19896 | 1 β’ (π β (πΊ Ξ£g πΉ) = ((πΊ Ξ£g (πΉ βΎ πΆ)) + (πΊ Ξ£g (πΉ βΎ π·)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 βͺ cun 3947 β© cin 3948 β c0 4326 class class class wbr 5152 βΎ cres 5684 βΆwf 6549 βcfv 6553 (class class class)co 7426 finSupp cfsupp 9395 Basecbs 17189 +gcplusg 17242 0gc0g 17430 Ξ£g cgsu 17431 Mndcmnd 18703 Cntzccntz 19280 CMndccmn 19749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7692 df-om 7879 df-1st 8001 df-2nd 8002 df-supp 8174 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-fsupp 9396 df-oi 9543 df-card 9972 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12253 df-2 12315 df-n0 12513 df-z 12599 df-uz 12863 df-fz 13527 df-fzo 13670 df-seq 14009 df-hash 14332 df-sets 17142 df-slot 17160 df-ndx 17172 df-base 17190 df-ress 17219 df-plusg 17255 df-0g 17432 df-gsum 17433 df-mre 17575 df-mrc 17576 df-acs 17578 df-mgm 18609 df-sgrp 18688 df-mnd 18704 df-submnd 18750 df-cntz 19282 df-cmn 19751 |
This theorem is referenced by: gsumsplit2 19898 gsummptfidmsplitres 19900 gsum2dlem2 19940 islindf4 21786 tmdgsum 24027 xrge0gsumle 24777 amgm 26951 wilthlem2 27029 rprmdvdsprod 33281 gsumesum 33719 selvvvval 41867 evlselv 41869 gsumsplit2f 47338 |
Copyright terms: Public domain | W3C validator |