MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumsplit Structured version   Visualization version   GIF version

Theorem gsumsplit 18968
Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by AV, 5-Jun-2019.)
Hypotheses
Ref Expression
gsumsplit.b 𝐵 = (Base‘𝐺)
gsumsplit.z 0 = (0g𝐺)
gsumsplit.p + = (+g𝐺)
gsumsplit.g (𝜑𝐺 ∈ CMnd)
gsumsplit.a (𝜑𝐴𝑉)
gsumsplit.f (𝜑𝐹:𝐴𝐵)
gsumsplit.w (𝜑𝐹 finSupp 0 )
gsumsplit.i (𝜑 → (𝐶𝐷) = ∅)
gsumsplit.u (𝜑𝐴 = (𝐶𝐷))
Assertion
Ref Expression
gsumsplit (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹𝐶)) + (𝐺 Σg (𝐹𝐷))))

Proof of Theorem gsumsplit
StepHypRef Expression
1 gsumsplit.b . 2 𝐵 = (Base‘𝐺)
2 gsumsplit.z . 2 0 = (0g𝐺)
3 gsumsplit.p . 2 + = (+g𝐺)
4 eqid 2826 . 2 (Cntz‘𝐺) = (Cntz‘𝐺)
5 gsumsplit.g . . 3 (𝜑𝐺 ∈ CMnd)
6 cmnmnd 18842 . . 3 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
75, 6syl 17 . 2 (𝜑𝐺 ∈ Mnd)
8 gsumsplit.a . 2 (𝜑𝐴𝑉)
9 gsumsplit.f . 2 (𝜑𝐹:𝐴𝐵)
101, 4, 5, 9cntzcmnf 18885 . 2 (𝜑 → ran 𝐹 ⊆ ((Cntz‘𝐺)‘ran 𝐹))
11 gsumsplit.w . 2 (𝜑𝐹 finSupp 0 )
12 gsumsplit.i . 2 (𝜑 → (𝐶𝐷) = ∅)
13 gsumsplit.u . 2 (𝜑𝐴 = (𝐶𝐷))
141, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13gsumzsplit 18967 1 (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹𝐶)) + (𝐺 Σg (𝐹𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1530  wcel 2107  cun 3938  cin 3939  c0 4295   class class class wbr 5063  cres 5556  wf 6348  cfv 6352  (class class class)co 7148   finSupp cfsupp 8822  Basecbs 16473  +gcplusg 16555  0gc0g 16703   Σg cgsu 16704  Mndcmnd 17900  Cntzccntz 18375  CMndccmn 18826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7399  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-n0 11887  df-z 11971  df-uz 12233  df-fz 12883  df-fzo 13024  df-seq 13360  df-hash 13681  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-0g 16705  df-gsum 16706  df-mre 16847  df-mrc 16848  df-acs 16850  df-mgm 17842  df-sgrp 17890  df-mnd 17901  df-submnd 17945  df-cntz 18377  df-cmn 18828
This theorem is referenced by:  gsumsplit2  18969  gsummptfidmsplitres  18971  gsum2dlem2  19011  islindf4  20898  tmdgsum  22619  xrge0gsumle  23356  amgm  25482  wilthlem2  25560  gsumesum  31204  gsumsplit2f  43919
  Copyright terms: Public domain W3C validator