Step | Hyp | Ref
| Expression |
1 | | mpteq1 5240 |
. . . . . . 7
β’ (π΄ = β
β (π β π΄ β¦ π΅) = (π β β
β¦ π΅)) |
2 | | mpt0 6689 |
. . . . . . 7
β’ (π β β
β¦ π΅) = β
|
3 | 1, 2 | eqtrdi 2788 |
. . . . . 6
β’ (π΄ = β
β (π β π΄ β¦ π΅) = β
) |
4 | 3 | oveq2d 7421 |
. . . . 5
β’ (π΄ = β
β
(βfld Ξ£g (π β π΄ β¦ π΅)) = (βfld
Ξ£g β
)) |
5 | | cnfld0 20961 |
. . . . . . 7
β’ 0 =
(0gββfld) |
6 | 5 | gsum0 18599 |
. . . . . 6
β’
(βfld Ξ£g β
) =
0 |
7 | | sum0 15663 |
. . . . . 6
β’
Ξ£π β
β
π΅ =
0 |
8 | 6, 7 | eqtr4i 2763 |
. . . . 5
β’
(βfld Ξ£g β
) =
Ξ£π β β
π΅ |
9 | 4, 8 | eqtrdi 2788 |
. . . 4
β’ (π΄ = β
β
(βfld Ξ£g (π β π΄ β¦ π΅)) = Ξ£π β β
π΅) |
10 | | sumeq1 15631 |
. . . 4
β’ (π΄ = β
β Ξ£π β π΄ π΅ = Ξ£π β β
π΅) |
11 | 9, 10 | eqtr4d 2775 |
. . 3
β’ (π΄ = β
β
(βfld Ξ£g (π β π΄ β¦ π΅)) = Ξ£π β π΄ π΅) |
12 | 11 | a1i 11 |
. 2
β’ (π β (π΄ = β
β (βfld
Ξ£g (π β π΄ β¦ π΅)) = Ξ£π β π΄ π΅)) |
13 | | cnfldbas 20940 |
. . . . . . 7
β’ β =
(Baseββfld) |
14 | | cnfldadd 20941 |
. . . . . . 7
β’ + =
(+gββfld) |
15 | | eqid 2732 |
. . . . . . 7
β’
(Cntzββfld) =
(Cntzββfld) |
16 | | cnring 20959 |
. . . . . . . 8
β’
βfld β Ring |
17 | | ringmnd 20059 |
. . . . . . . 8
β’
(βfld β Ring β βfld β
Mnd) |
18 | 16, 17 | mp1i 13 |
. . . . . . 7
β’ ((π β§ ((β―βπ΄) β β β§ π:(1...(β―βπ΄))β1-1-ontoβπ΄)) β βfld
β Mnd) |
19 | | gsumfsum.1 |
. . . . . . . 8
β’ (π β π΄ β Fin) |
20 | 19 | adantr 481 |
. . . . . . 7
β’ ((π β§ ((β―βπ΄) β β β§ π:(1...(β―βπ΄))β1-1-ontoβπ΄)) β π΄ β Fin) |
21 | | gsumfsum.2 |
. . . . . . . . 9
β’ ((π β§ π β π΄) β π΅ β β) |
22 | 21 | fmpttd 7111 |
. . . . . . . 8
β’ (π β (π β π΄ β¦ π΅):π΄βΆβ) |
23 | 22 | adantr 481 |
. . . . . . 7
β’ ((π β§ ((β―βπ΄) β β β§ π:(1...(β―βπ΄))β1-1-ontoβπ΄)) β (π β π΄ β¦ π΅):π΄βΆβ) |
24 | | ringcmn 20092 |
. . . . . . . . 9
β’
(βfld β Ring β βfld β
CMnd) |
25 | 16, 24 | mp1i 13 |
. . . . . . . 8
β’ ((π β§ ((β―βπ΄) β β β§ π:(1...(β―βπ΄))β1-1-ontoβπ΄)) β βfld
β CMnd) |
26 | 13, 15, 25, 23 | cntzcmnf 19707 |
. . . . . . 7
β’ ((π β§ ((β―βπ΄) β β β§ π:(1...(β―βπ΄))β1-1-ontoβπ΄)) β ran (π β π΄ β¦ π΅) β
((Cntzββfld)βran (π β π΄ β¦ π΅))) |
27 | | simprl 769 |
. . . . . . 7
β’ ((π β§ ((β―βπ΄) β β β§ π:(1...(β―βπ΄))β1-1-ontoβπ΄)) β (β―βπ΄) β
β) |
28 | | simprr 771 |
. . . . . . . 8
β’ ((π β§ ((β―βπ΄) β β β§ π:(1...(β―βπ΄))β1-1-ontoβπ΄)) β π:(1...(β―βπ΄))β1-1-ontoβπ΄) |
29 | | f1of1 6829 |
. . . . . . . 8
β’ (π:(1...(β―βπ΄))β1-1-ontoβπ΄ β π:(1...(β―βπ΄))β1-1βπ΄) |
30 | 28, 29 | syl 17 |
. . . . . . 7
β’ ((π β§ ((β―βπ΄) β β β§ π:(1...(β―βπ΄))β1-1-ontoβπ΄)) β π:(1...(β―βπ΄))β1-1βπ΄) |
31 | | suppssdm 8158 |
. . . . . . . . 9
β’ ((π β π΄ β¦ π΅) supp 0) β dom (π β π΄ β¦ π΅) |
32 | 31, 23 | fssdm 6734 |
. . . . . . . 8
β’ ((π β§ ((β―βπ΄) β β β§ π:(1...(β―βπ΄))β1-1-ontoβπ΄)) β ((π β π΄ β¦ π΅) supp 0) β π΄) |
33 | | f1ofo 6837 |
. . . . . . . . 9
β’ (π:(1...(β―βπ΄))β1-1-ontoβπ΄ β π:(1...(β―βπ΄))βontoβπ΄) |
34 | | forn 6805 |
. . . . . . . . 9
β’ (π:(1...(β―βπ΄))βontoβπ΄ β ran π = π΄) |
35 | 28, 33, 34 | 3syl 18 |
. . . . . . . 8
β’ ((π β§ ((β―βπ΄) β β β§ π:(1...(β―βπ΄))β1-1-ontoβπ΄)) β ran π = π΄) |
36 | 32, 35 | sseqtrrd 4022 |
. . . . . . 7
β’ ((π β§ ((β―βπ΄) β β β§ π:(1...(β―βπ΄))β1-1-ontoβπ΄)) β ((π β π΄ β¦ π΅) supp 0) β ran π) |
37 | | eqid 2732 |
. . . . . . 7
β’ (((π β π΄ β¦ π΅) β π) supp 0) = (((π β π΄ β¦ π΅) β π) supp 0) |
38 | 13, 5, 14, 15, 18, 20, 23, 26, 27, 30, 36, 37 | gsumval3 19769 |
. . . . . 6
β’ ((π β§ ((β―βπ΄) β β β§ π:(1...(β―βπ΄))β1-1-ontoβπ΄)) β (βfld
Ξ£g (π β π΄ β¦ π΅)) = (seq1( + , ((π β π΄ β¦ π΅) β π))β(β―βπ΄))) |
39 | | sumfc 15651 |
. . . . . . 7
β’
Ξ£π₯ β
π΄ ((π β π΄ β¦ π΅)βπ₯) = Ξ£π β π΄ π΅ |
40 | | fveq2 6888 |
. . . . . . . 8
β’ (π₯ = (πβπ) β ((π β π΄ β¦ π΅)βπ₯) = ((π β π΄ β¦ π΅)β(πβπ))) |
41 | 23 | ffvelcdmda 7083 |
. . . . . . . 8
β’ (((π β§ ((β―βπ΄) β β β§ π:(1...(β―βπ΄))β1-1-ontoβπ΄)) β§ π₯ β π΄) β ((π β π΄ β¦ π΅)βπ₯) β β) |
42 | | f1of 6830 |
. . . . . . . . . 10
β’ (π:(1...(β―βπ΄))β1-1-ontoβπ΄ β π:(1...(β―βπ΄))βΆπ΄) |
43 | 28, 42 | syl 17 |
. . . . . . . . 9
β’ ((π β§ ((β―βπ΄) β β β§ π:(1...(β―βπ΄))β1-1-ontoβπ΄)) β π:(1...(β―βπ΄))βΆπ΄) |
44 | | fvco3 6987 |
. . . . . . . . 9
β’ ((π:(1...(β―βπ΄))βΆπ΄ β§ π β (1...(β―βπ΄))) β (((π β π΄ β¦ π΅) β π)βπ) = ((π β π΄ β¦ π΅)β(πβπ))) |
45 | 43, 44 | sylan 580 |
. . . . . . . 8
β’ (((π β§ ((β―βπ΄) β β β§ π:(1...(β―βπ΄))β1-1-ontoβπ΄)) β§ π β (1...(β―βπ΄))) β (((π β π΄ β¦ π΅) β π)βπ) = ((π β π΄ β¦ π΅)β(πβπ))) |
46 | 40, 27, 28, 41, 45 | fsum 15662 |
. . . . . . 7
β’ ((π β§ ((β―βπ΄) β β β§ π:(1...(β―βπ΄))β1-1-ontoβπ΄)) β Ξ£π₯ β π΄ ((π β π΄ β¦ π΅)βπ₯) = (seq1( + , ((π β π΄ β¦ π΅) β π))β(β―βπ΄))) |
47 | 39, 46 | eqtr3id 2786 |
. . . . . 6
β’ ((π β§ ((β―βπ΄) β β β§ π:(1...(β―βπ΄))β1-1-ontoβπ΄)) β Ξ£π β π΄ π΅ = (seq1( + , ((π β π΄ β¦ π΅) β π))β(β―βπ΄))) |
48 | 38, 47 | eqtr4d 2775 |
. . . . 5
β’ ((π β§ ((β―βπ΄) β β β§ π:(1...(β―βπ΄))β1-1-ontoβπ΄)) β (βfld
Ξ£g (π β π΄ β¦ π΅)) = Ξ£π β π΄ π΅) |
49 | 48 | expr 457 |
. . . 4
β’ ((π β§ (β―βπ΄) β β) β (π:(1...(β―βπ΄))β1-1-ontoβπ΄ β (βfld
Ξ£g (π β π΄ β¦ π΅)) = Ξ£π β π΄ π΅)) |
50 | 49 | exlimdv 1936 |
. . 3
β’ ((π β§ (β―βπ΄) β β) β
(βπ π:(1...(β―βπ΄))β1-1-ontoβπ΄ β (βfld
Ξ£g (π β π΄ β¦ π΅)) = Ξ£π β π΄ π΅)) |
51 | 50 | expimpd 454 |
. 2
β’ (π β (((β―βπ΄) β β β§
βπ π:(1...(β―βπ΄))β1-1-ontoβπ΄) β (βfld
Ξ£g (π β π΄ β¦ π΅)) = Ξ£π β π΄ π΅)) |
52 | | fz1f1o 15652 |
. . 3
β’ (π΄ β Fin β (π΄ = β
β¨
((β―βπ΄) β
β β§ βπ
π:(1...(β―βπ΄))β1-1-ontoβπ΄))) |
53 | 19, 52 | syl 17 |
. 2
β’ (π β (π΄ = β
β¨ ((β―βπ΄) β β β§
βπ π:(1...(β―βπ΄))β1-1-ontoβπ΄))) |
54 | 12, 51, 53 | mpjaod 858 |
1
β’ (π β (βfld
Ξ£g (π β π΄ β¦ π΅)) = Ξ£π β π΄ π΅) |