MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumfsum Structured version   Visualization version   GIF version

Theorem gsumfsum 21328
Description: Relate a group sum on β„‚fld to a finite sum on the complex numbers. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
gsumfsum.1 (πœ‘ β†’ 𝐴 ∈ Fin)
gsumfsum.2 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
Assertion
Ref Expression
gsumfsum (πœ‘ β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ 𝐡)) = Ξ£π‘˜ ∈ 𝐴 𝐡)
Distinct variable groups:   𝐴,π‘˜   πœ‘,π‘˜
Allowed substitution hint:   𝐡(π‘˜)

Proof of Theorem gsumfsum
Dummy variables 𝑓 𝑛 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpteq1 5234 . . . . . . 7 (𝐴 = βˆ… β†’ (π‘˜ ∈ 𝐴 ↦ 𝐡) = (π‘˜ ∈ βˆ… ↦ 𝐡))
2 mpt0 6686 . . . . . . 7 (π‘˜ ∈ βˆ… ↦ 𝐡) = βˆ…
31, 2eqtrdi 2782 . . . . . 6 (𝐴 = βˆ… β†’ (π‘˜ ∈ 𝐴 ↦ 𝐡) = βˆ…)
43oveq2d 7421 . . . . 5 (𝐴 = βˆ… β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ 𝐡)) = (β„‚fld Ξ£g βˆ…))
5 cnfld0 21281 . . . . . . 7 0 = (0gβ€˜β„‚fld)
65gsum0 18617 . . . . . 6 (β„‚fld Ξ£g βˆ…) = 0
7 sum0 15673 . . . . . 6 Ξ£π‘˜ ∈ βˆ… 𝐡 = 0
86, 7eqtr4i 2757 . . . . 5 (β„‚fld Ξ£g βˆ…) = Ξ£π‘˜ ∈ βˆ… 𝐡
94, 8eqtrdi 2782 . . . 4 (𝐴 = βˆ… β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ 𝐡)) = Ξ£π‘˜ ∈ βˆ… 𝐡)
10 sumeq1 15641 . . . 4 (𝐴 = βˆ… β†’ Ξ£π‘˜ ∈ 𝐴 𝐡 = Ξ£π‘˜ ∈ βˆ… 𝐡)
119, 10eqtr4d 2769 . . 3 (𝐴 = βˆ… β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ 𝐡)) = Ξ£π‘˜ ∈ 𝐴 𝐡)
1211a1i 11 . 2 (πœ‘ β†’ (𝐴 = βˆ… β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ 𝐡)) = Ξ£π‘˜ ∈ 𝐴 𝐡))
13 cnfldbas 21244 . . . . . . 7 β„‚ = (Baseβ€˜β„‚fld)
14 cnfldadd 21246 . . . . . . 7 + = (+gβ€˜β„‚fld)
15 eqid 2726 . . . . . . 7 (Cntzβ€˜β„‚fld) = (Cntzβ€˜β„‚fld)
16 cnring 21279 . . . . . . . 8 β„‚fld ∈ Ring
17 ringmnd 20148 . . . . . . . 8 (β„‚fld ∈ Ring β†’ β„‚fld ∈ Mnd)
1816, 17mp1i 13 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ β„‚fld ∈ Mnd)
19 gsumfsum.1 . . . . . . . 8 (πœ‘ β†’ 𝐴 ∈ Fin)
2019adantr 480 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ 𝐴 ∈ Fin)
21 gsumfsum.2 . . . . . . . . 9 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
2221fmpttd 7110 . . . . . . . 8 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„‚)
2322adantr 480 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (π‘˜ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„‚)
24 ringcmn 20181 . . . . . . . . 9 (β„‚fld ∈ Ring β†’ β„‚fld ∈ CMnd)
2516, 24mp1i 13 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ β„‚fld ∈ CMnd)
2613, 15, 25, 23cntzcmnf 19765 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ ran (π‘˜ ∈ 𝐴 ↦ 𝐡) βŠ† ((Cntzβ€˜β„‚fld)β€˜ran (π‘˜ ∈ 𝐴 ↦ 𝐡)))
27 simprl 768 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (β™―β€˜π΄) ∈ β„•)
28 simprr 770 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)
29 f1of1 6826 . . . . . . . 8 (𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴 β†’ 𝑓:(1...(β™―β€˜π΄))–1-1→𝐴)
3028, 29syl 17 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ 𝑓:(1...(β™―β€˜π΄))–1-1→𝐴)
31 suppssdm 8162 . . . . . . . . 9 ((π‘˜ ∈ 𝐴 ↦ 𝐡) supp 0) βŠ† dom (π‘˜ ∈ 𝐴 ↦ 𝐡)
3231, 23fssdm 6731 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡) supp 0) βŠ† 𝐴)
33 f1ofo 6834 . . . . . . . . 9 (𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴 β†’ 𝑓:(1...(β™―β€˜π΄))–onto→𝐴)
34 forn 6802 . . . . . . . . 9 (𝑓:(1...(β™―β€˜π΄))–onto→𝐴 β†’ ran 𝑓 = 𝐴)
3528, 33, 343syl 18 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ ran 𝑓 = 𝐴)
3632, 35sseqtrrd 4018 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡) supp 0) βŠ† ran 𝑓)
37 eqid 2726 . . . . . . 7 (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓) supp 0) = (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓) supp 0)
3813, 5, 14, 15, 18, 20, 23, 26, 27, 30, 36, 37gsumval3 19827 . . . . . 6 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ 𝐡)) = (seq1( + , ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓))β€˜(β™―β€˜π΄)))
39 sumfc 15661 . . . . . . 7 Ξ£π‘₯ ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘₯) = Ξ£π‘˜ ∈ 𝐴 𝐡
40 fveq2 6885 . . . . . . . 8 (π‘₯ = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘₯) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)))
4123ffvelcdmda 7080 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ π‘₯ ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘₯) ∈ β„‚)
42 f1of 6827 . . . . . . . . . 10 (𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴 β†’ 𝑓:(1...(β™―β€˜π΄))⟢𝐴)
4328, 42syl 17 . . . . . . . . 9 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ 𝑓:(1...(β™―β€˜π΄))⟢𝐴)
44 fvco3 6984 . . . . . . . . 9 ((𝑓:(1...(β™―β€˜π΄))⟢𝐴 ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)))
4543, 44sylan 579 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(β™―β€˜π΄))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(π‘“β€˜π‘›)))
4640, 27, 28, 41, 45fsum 15672 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ Ξ£π‘₯ ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘₯) = (seq1( + , ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓))β€˜(β™―β€˜π΄)))
4739, 46eqtr3id 2780 . . . . . 6 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ Ξ£π‘˜ ∈ 𝐴 𝐡 = (seq1( + , ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ 𝑓))β€˜(β™―β€˜π΄)))
4838, 47eqtr4d 2769 . . . . 5 ((πœ‘ ∧ ((β™―β€˜π΄) ∈ β„• ∧ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)) β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ 𝐡)) = Ξ£π‘˜ ∈ 𝐴 𝐡)
4948expr 456 . . . 4 ((πœ‘ ∧ (β™―β€˜π΄) ∈ β„•) β†’ (𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴 β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ 𝐡)) = Ξ£π‘˜ ∈ 𝐴 𝐡))
5049exlimdv 1928 . . 3 ((πœ‘ ∧ (β™―β€˜π΄) ∈ β„•) β†’ (βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴 β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ 𝐡)) = Ξ£π‘˜ ∈ 𝐴 𝐡))
5150expimpd 453 . 2 (πœ‘ β†’ (((β™―β€˜π΄) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴) β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ 𝐡)) = Ξ£π‘˜ ∈ 𝐴 𝐡))
52 fz1f1o 15662 . . 3 (𝐴 ∈ Fin β†’ (𝐴 = βˆ… ∨ ((β™―β€˜π΄) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)))
5319, 52syl 17 . 2 (πœ‘ β†’ (𝐴 = βˆ… ∨ ((β™―β€˜π΄) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜π΄))–1-1-onto→𝐴)))
5412, 51, 53mpjaod 857 1 (πœ‘ β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ 𝐡)) = Ξ£π‘˜ ∈ 𝐴 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∨ wo 844   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098  βˆ…c0 4317   ↦ cmpt 5224  ran crn 5670   ∘ ccom 5673  βŸΆwf 6533  β€“1-1β†’wf1 6534  β€“ontoβ†’wfo 6535  β€“1-1-ontoβ†’wf1o 6536  β€˜cfv 6537  (class class class)co 7405   supp csupp 8146  Fincfn 8941  β„‚cc 11110  0cc0 11112  1c1 11113   + caddc 11115  β„•cn 12216  ...cfz 13490  seqcseq 13972  β™―chash 14295  Ξ£csu 15638   Ξ£g cgsu 17395  Mndcmnd 18667  Cntzccntz 19231  CMndccmn 19700  Ringcrg 20138  β„‚fldccnfld 21240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-supp 8147  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-rp 12981  df-fz 13491  df-fzo 13634  df-seq 13973  df-exp 14033  df-hash 14296  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-clim 15438  df-sum 15639  df-struct 17089  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-plusg 17219  df-mulr 17220  df-starv 17221  df-tset 17225  df-ple 17226  df-ds 17228  df-unif 17229  df-0g 17396  df-gsum 17397  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18866  df-minusg 18867  df-cntz 19233  df-cmn 19702  df-abl 19703  df-mgp 20040  df-ur 20087  df-ring 20140  df-cring 20141  df-cnfld 21241
This theorem is referenced by:  regsumfsum  21329  regsumsupp  21515  plypf1  26101  taylpfval  26254  jensen  26876  amgmlem  26877  lgseisenlem4  27266  esumpfinval  33603  esumpfinvalf  33604  esumpcvgval  33606  esumcvg  33614  sge0tsms  45668  aacllem  48122  amgmwlem  48123  amgmlemALT  48124
  Copyright terms: Public domain W3C validator