MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumfsum Structured version   Visualization version   GIF version

Theorem gsumfsum 20180
Description: Relate a group sum on fld to a finite sum on the complex numbers. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
gsumfsum.1 (𝜑𝐴 ∈ Fin)
gsumfsum.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
gsumfsum (𝜑 → (ℂfld Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem gsumfsum
Dummy variables 𝑓 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpteq1 4962 . . . . . . 7 (𝐴 = ∅ → (𝑘𝐴𝐵) = (𝑘 ∈ ∅ ↦ 𝐵))
2 mpt0 6258 . . . . . . 7 (𝑘 ∈ ∅ ↦ 𝐵) = ∅
31, 2syl6eq 2877 . . . . . 6 (𝐴 = ∅ → (𝑘𝐴𝐵) = ∅)
43oveq2d 6926 . . . . 5 (𝐴 = ∅ → (ℂfld Σg (𝑘𝐴𝐵)) = (ℂfld Σg ∅))
5 cnfld0 20137 . . . . . . 7 0 = (0g‘ℂfld)
65gsum0 17638 . . . . . 6 (ℂfld Σg ∅) = 0
7 sum0 14836 . . . . . 6 Σ𝑘 ∈ ∅ 𝐵 = 0
86, 7eqtr4i 2852 . . . . 5 (ℂfld Σg ∅) = Σ𝑘 ∈ ∅ 𝐵
94, 8syl6eq 2877 . . . 4 (𝐴 = ∅ → (ℂfld Σg (𝑘𝐴𝐵)) = Σ𝑘 ∈ ∅ 𝐵)
10 sumeq1 14803 . . . 4 (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
119, 10eqtr4d 2864 . . 3 (𝐴 = ∅ → (ℂfld Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵)
1211a1i 11 . 2 (𝜑 → (𝐴 = ∅ → (ℂfld Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵))
13 cnfldbas 20117 . . . . . . 7 ℂ = (Base‘ℂfld)
14 cnfldadd 20118 . . . . . . 7 + = (+g‘ℂfld)
15 eqid 2825 . . . . . . 7 (Cntz‘ℂfld) = (Cntz‘ℂfld)
16 cnring 20135 . . . . . . . 8 fld ∈ Ring
17 ringmnd 18917 . . . . . . . 8 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
1816, 17mp1i 13 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ℂfld ∈ Mnd)
19 gsumfsum.1 . . . . . . . 8 (𝜑𝐴 ∈ Fin)
2019adantr 474 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝐴 ∈ Fin)
21 gsumfsum.2 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2221fmpttd 6639 . . . . . . . 8 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
2322adantr 474 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
24 ringcmn 18942 . . . . . . . . 9 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
2516, 24mp1i 13 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ℂfld ∈ CMnd)
2613, 15, 25, 23cntzcmnf 18608 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ran (𝑘𝐴𝐵) ⊆ ((Cntz‘ℂfld)‘ran (𝑘𝐴𝐵)))
27 simprl 787 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
28 simprr 789 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
29 f1of1 6381 . . . . . . . 8 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))–1-1𝐴)
3028, 29syl 17 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1𝐴)
31 suppssdm 7577 . . . . . . . . 9 ((𝑘𝐴𝐵) supp 0) ⊆ dom (𝑘𝐴𝐵)
3231, 23fssdm 6298 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐵) supp 0) ⊆ 𝐴)
33 f1ofo 6389 . . . . . . . . 9 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))–onto𝐴)
34 forn 6360 . . . . . . . . 9 (𝑓:(1...(♯‘𝐴))–onto𝐴 → ran 𝑓 = 𝐴)
3528, 33, 343syl 18 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ran 𝑓 = 𝐴)
3632, 35sseqtr4d 3867 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ((𝑘𝐴𝐵) supp 0) ⊆ ran 𝑓)
37 eqid 2825 . . . . . . 7 (((𝑘𝐴𝐵) ∘ 𝑓) supp 0) = (((𝑘𝐴𝐵) ∘ 𝑓) supp 0)
3813, 5, 14, 15, 18, 20, 23, 26, 27, 30, 36, 37gsumval3 18668 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (ℂfld Σg (𝑘𝐴𝐵)) = (seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)))
39 sumfc 14824 . . . . . . 7 Σ𝑥𝐴 ((𝑘𝐴𝐵)‘𝑥) = Σ𝑘𝐴 𝐵
40 fveq2 6437 . . . . . . . 8 (𝑥 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑥) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
4123ffvelrnda 6613 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥𝐴) → ((𝑘𝐴𝐵)‘𝑥) ∈ ℂ)
42 f1of 6382 . . . . . . . . . 10 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
4328, 42syl 17 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
44 fvco3 6526 . . . . . . . . 9 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
4543, 44sylan 575 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
4640, 27, 28, 41, 45fsum 14835 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑥𝐴 ((𝑘𝐴𝐵)‘𝑥) = (seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)))
4739, 46syl5eqr 2875 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 𝐵 = (seq1( + , ((𝑘𝐴𝐵) ∘ 𝑓))‘(♯‘𝐴)))
4838, 47eqtr4d 2864 . . . . 5 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (ℂfld Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵)
4948expr 450 . . . 4 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (ℂfld Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵))
5049exlimdv 2032 . . 3 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (ℂfld Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵))
5150expimpd 447 . 2 (𝜑 → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (ℂfld Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵))
52 fz1f1o 14825 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
5319, 52syl 17 . 2 (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
5412, 51, 53mpjaod 891 1 (𝜑 → (ℂfld Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wo 878   = wceq 1656  wex 1878  wcel 2164  c0 4146  cmpt 4954  ran crn 5347  ccom 5350  wf 6123  1-1wf1 6124  ontowfo 6125  1-1-ontowf1o 6126  cfv 6127  (class class class)co 6910   supp csupp 7564  Fincfn 8228  cc 10257  0cc0 10259  1c1 10260   + caddc 10262  cn 11357  ...cfz 12626  seqcseq 13102  chash 13417  Σcsu 14800   Σg cgsu 16461  Mndcmnd 17654  Cntzccntz 18105  CMndccmn 18553  Ringcrg 18908  fldccnfld 20113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337  ax-addf 10338  ax-mulf 10339
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-supp 7565  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-sup 8623  df-oi 8691  df-card 9085  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-rp 12120  df-fz 12627  df-fzo 12768  df-seq 13103  df-exp 13162  df-hash 13418  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-clim 14603  df-sum 14801  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-plusg 16325  df-mulr 16326  df-starv 16327  df-tset 16331  df-ple 16332  df-ds 16334  df-unif 16335  df-0g 16462  df-gsum 16463  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-grp 17786  df-minusg 17787  df-cntz 18107  df-cmn 18555  df-abl 18556  df-mgp 18851  df-ur 18863  df-ring 18910  df-cring 18911  df-cnfld 20114
This theorem is referenced by:  regsumfsum  20181  regsumsupp  20336  plypf1  24374  taylpfval  24525  jensen  25135  amgmlem  25136  lgseisenlem4  25523  esumpfinval  30678  esumpfinvalf  30679  esumpcvgval  30681  esumcvg  30689  sge0tsms  41386  aacllem  43457  amgmwlem  43458  amgmlemALT  43459
  Copyright terms: Public domain W3C validator