| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsummhm | Structured version Visualization version GIF version | ||
| Description: Apply a group homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 6-Jun-2019.) |
| Ref | Expression |
|---|---|
| gsummhm.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsummhm.z | ⊢ 0 = (0g‘𝐺) |
| gsummhm.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsummhm.h | ⊢ (𝜑 → 𝐻 ∈ Mnd) |
| gsummhm.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsummhm.k | ⊢ (𝜑 → 𝐾 ∈ (𝐺 MndHom 𝐻)) |
| gsummhm.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| gsummhm.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| Ref | Expression |
|---|---|
| gsummhm | ⊢ (𝜑 → (𝐻 Σg (𝐾 ∘ 𝐹)) = (𝐾‘(𝐺 Σg 𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummhm.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2731 | . 2 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
| 3 | gsummhm.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | cmnmnd 19710 | . . 3 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 6 | gsummhm.h | . 2 ⊢ (𝜑 → 𝐻 ∈ Mnd) | |
| 7 | gsummhm.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 8 | gsummhm.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (𝐺 MndHom 𝐻)) | |
| 9 | gsummhm.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 10 | 1, 2, 3, 9 | cntzcmnf 19758 | . 2 ⊢ (𝜑 → ran 𝐹 ⊆ ((Cntz‘𝐺)‘ran 𝐹)) |
| 11 | gsummhm.z | . 2 ⊢ 0 = (0g‘𝐺) | |
| 12 | gsummhm.w | . 2 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
| 13 | 1, 2, 5, 6, 7, 8, 9, 10, 11, 12 | gsumzmhm 19850 | 1 ⊢ (𝜑 → (𝐻 Σg (𝐾 ∘ 𝐹)) = (𝐾‘(𝐺 Σg 𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ∘ ccom 5620 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 finSupp cfsupp 9245 Basecbs 17120 0gc0g 17343 Σg cgsu 17344 Mndcmnd 18642 MndHom cmhm 18689 Cntzccntz 19228 CMndccmn 19693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-0g 17345 df-gsum 17346 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-cntz 19230 df-cmn 19695 |
| This theorem is referenced by: gsummhm2 19852 gsummptmhm 19853 gsuminv 19859 evlslem2 22015 tsmsmhm 24062 plypf1 26145 amgmlem 26928 selvvvval 42624 evlselv 42626 amgmwlem 49840 amgmlemALT 49841 |
| Copyright terms: Public domain | W3C validator |