![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsummhm | Structured version Visualization version GIF version |
Description: Apply a group homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 6-Jun-2019.) |
Ref | Expression |
---|---|
gsummhm.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummhm.z | ⊢ 0 = (0g‘𝐺) |
gsummhm.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsummhm.h | ⊢ (𝜑 → 𝐻 ∈ Mnd) |
gsummhm.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsummhm.k | ⊢ (𝜑 → 𝐾 ∈ (𝐺 MndHom 𝐻)) |
gsummhm.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
gsummhm.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Ref | Expression |
---|---|
gsummhm | ⊢ (𝜑 → (𝐻 Σg (𝐾 ∘ 𝐹)) = (𝐾‘(𝐺 Σg 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummhm.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2731 | . 2 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
3 | gsummhm.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | cmnmnd 19629 | . . 3 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
6 | gsummhm.h | . 2 ⊢ (𝜑 → 𝐻 ∈ Mnd) | |
7 | gsummhm.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
8 | gsummhm.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (𝐺 MndHom 𝐻)) | |
9 | gsummhm.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
10 | 1, 2, 3, 9 | cntzcmnf 19673 | . 2 ⊢ (𝜑 → ran 𝐹 ⊆ ((Cntz‘𝐺)‘ran 𝐹)) |
11 | gsummhm.z | . 2 ⊢ 0 = (0g‘𝐺) | |
12 | gsummhm.w | . 2 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
13 | 1, 2, 5, 6, 7, 8, 9, 10, 11, 12 | gsumzmhm 19764 | 1 ⊢ (𝜑 → (𝐻 Σg (𝐾 ∘ 𝐹)) = (𝐾‘(𝐺 Σg 𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 class class class wbr 5141 ∘ ccom 5673 ⟶wf 6528 ‘cfv 6532 (class class class)co 7393 finSupp cfsupp 9344 Basecbs 17126 0gc0g 17367 Σg cgsu 17368 Mndcmnd 18602 MndHom cmhm 18645 Cntzccntz 19145 CMndccmn 19612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-isom 6541 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-supp 8129 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-er 8686 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9345 df-oi 9487 df-card 9916 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-n0 12455 df-z 12541 df-uz 12805 df-fz 13467 df-fzo 13610 df-seq 13949 df-hash 14273 df-0g 17369 df-gsum 17370 df-mgm 18543 df-sgrp 18592 df-mnd 18603 df-mhm 18647 df-cntz 19147 df-cmn 19614 |
This theorem is referenced by: gsummhm2 19766 gsummptmhm 19767 gsuminv 19773 evlslem2 21571 tsmsmhm 23579 plypf1 25655 amgmlem 26421 amgmwlem 47497 amgmlemALT 47498 |
Copyright terms: Public domain | W3C validator |