| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntzrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for elements of the centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| Ref | Expression |
|---|---|
| cntzrcl.b | ⊢ 𝐵 = (Base‘𝑀) |
| cntzrcl.z | ⊢ 𝑍 = (Cntz‘𝑀) |
| Ref | Expression |
|---|---|
| cntzrcl | ⊢ (𝑋 ∈ (𝑍‘𝑆) → (𝑀 ∈ V ∧ 𝑆 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4285 | . . . 4 ⊢ ¬ 𝑋 ∈ ∅ | |
| 2 | cntzrcl.z | . . . . . . . 8 ⊢ 𝑍 = (Cntz‘𝑀) | |
| 3 | fvprc 6814 | . . . . . . . 8 ⊢ (¬ 𝑀 ∈ V → (Cntz‘𝑀) = ∅) | |
| 4 | 2, 3 | eqtrid 2778 | . . . . . . 7 ⊢ (¬ 𝑀 ∈ V → 𝑍 = ∅) |
| 5 | 4 | fveq1d 6824 | . . . . . 6 ⊢ (¬ 𝑀 ∈ V → (𝑍‘𝑆) = (∅‘𝑆)) |
| 6 | 0fv 6863 | . . . . . 6 ⊢ (∅‘𝑆) = ∅ | |
| 7 | 5, 6 | eqtrdi 2782 | . . . . 5 ⊢ (¬ 𝑀 ∈ V → (𝑍‘𝑆) = ∅) |
| 8 | 7 | eleq2d 2817 | . . . 4 ⊢ (¬ 𝑀 ∈ V → (𝑋 ∈ (𝑍‘𝑆) ↔ 𝑋 ∈ ∅)) |
| 9 | 1, 8 | mtbiri 327 | . . 3 ⊢ (¬ 𝑀 ∈ V → ¬ 𝑋 ∈ (𝑍‘𝑆)) |
| 10 | 9 | con4i 114 | . 2 ⊢ (𝑋 ∈ (𝑍‘𝑆) → 𝑀 ∈ V) |
| 11 | cntzrcl.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑀) | |
| 12 | eqid 2731 | . . . . . . . 8 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 13 | 11, 12, 2 | cntzfval 19232 | . . . . . . 7 ⊢ (𝑀 ∈ V → 𝑍 = (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝑀)𝑧) = (𝑧(+g‘𝑀)𝑦)})) |
| 14 | 10, 13 | syl 17 | . . . . . 6 ⊢ (𝑋 ∈ (𝑍‘𝑆) → 𝑍 = (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝑀)𝑧) = (𝑧(+g‘𝑀)𝑦)})) |
| 15 | 14 | dmeqd 5844 | . . . . 5 ⊢ (𝑋 ∈ (𝑍‘𝑆) → dom 𝑍 = dom (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝑀)𝑧) = (𝑧(+g‘𝑀)𝑦)})) |
| 16 | eqid 2731 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝑀)𝑧) = (𝑧(+g‘𝑀)𝑦)}) = (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝑀)𝑧) = (𝑧(+g‘𝑀)𝑦)}) | |
| 17 | 16 | dmmptss 6188 | . . . . 5 ⊢ dom (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝑀)𝑧) = (𝑧(+g‘𝑀)𝑦)}) ⊆ 𝒫 𝐵 |
| 18 | 15, 17 | eqsstrdi 3974 | . . . 4 ⊢ (𝑋 ∈ (𝑍‘𝑆) → dom 𝑍 ⊆ 𝒫 𝐵) |
| 19 | elfvdm 6856 | . . . 4 ⊢ (𝑋 ∈ (𝑍‘𝑆) → 𝑆 ∈ dom 𝑍) | |
| 20 | 18, 19 | sseldd 3930 | . . 3 ⊢ (𝑋 ∈ (𝑍‘𝑆) → 𝑆 ∈ 𝒫 𝐵) |
| 21 | 20 | elpwid 4556 | . 2 ⊢ (𝑋 ∈ (𝑍‘𝑆) → 𝑆 ⊆ 𝐵) |
| 22 | 10, 21 | jca 511 | 1 ⊢ (𝑋 ∈ (𝑍‘𝑆) → (𝑀 ∈ V ∧ 𝑆 ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 Vcvv 3436 ⊆ wss 3897 ∅c0 4280 𝒫 cpw 4547 ↦ cmpt 5170 dom cdm 5614 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 Cntzccntz 19227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-cntz 19229 |
| This theorem is referenced by: cntzssv 19240 cntzi 19241 resscntz 19245 cntzmhm 19253 oppgcntz 19276 |
| Copyright terms: Public domain | W3C validator |