![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzrcl | Structured version Visualization version GIF version |
Description: Reverse closure for elements of the centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
cntzrcl.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzrcl.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
cntzrcl | ⊢ (𝑋 ∈ (𝑍‘𝑆) → (𝑀 ∈ V ∧ 𝑆 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4360 | . . . 4 ⊢ ¬ 𝑋 ∈ ∅ | |
2 | cntzrcl.z | . . . . . . . 8 ⊢ 𝑍 = (Cntz‘𝑀) | |
3 | fvprc 6912 | . . . . . . . 8 ⊢ (¬ 𝑀 ∈ V → (Cntz‘𝑀) = ∅) | |
4 | 2, 3 | eqtrid 2792 | . . . . . . 7 ⊢ (¬ 𝑀 ∈ V → 𝑍 = ∅) |
5 | 4 | fveq1d 6922 | . . . . . 6 ⊢ (¬ 𝑀 ∈ V → (𝑍‘𝑆) = (∅‘𝑆)) |
6 | 0fv 6964 | . . . . . 6 ⊢ (∅‘𝑆) = ∅ | |
7 | 5, 6 | eqtrdi 2796 | . . . . 5 ⊢ (¬ 𝑀 ∈ V → (𝑍‘𝑆) = ∅) |
8 | 7 | eleq2d 2830 | . . . 4 ⊢ (¬ 𝑀 ∈ V → (𝑋 ∈ (𝑍‘𝑆) ↔ 𝑋 ∈ ∅)) |
9 | 1, 8 | mtbiri 327 | . . 3 ⊢ (¬ 𝑀 ∈ V → ¬ 𝑋 ∈ (𝑍‘𝑆)) |
10 | 9 | con4i 114 | . 2 ⊢ (𝑋 ∈ (𝑍‘𝑆) → 𝑀 ∈ V) |
11 | cntzrcl.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑀) | |
12 | eqid 2740 | . . . . . . . 8 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
13 | 11, 12, 2 | cntzfval 19360 | . . . . . . 7 ⊢ (𝑀 ∈ V → 𝑍 = (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝑀)𝑧) = (𝑧(+g‘𝑀)𝑦)})) |
14 | 10, 13 | syl 17 | . . . . . 6 ⊢ (𝑋 ∈ (𝑍‘𝑆) → 𝑍 = (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝑀)𝑧) = (𝑧(+g‘𝑀)𝑦)})) |
15 | 14 | dmeqd 5930 | . . . . 5 ⊢ (𝑋 ∈ (𝑍‘𝑆) → dom 𝑍 = dom (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝑀)𝑧) = (𝑧(+g‘𝑀)𝑦)})) |
16 | eqid 2740 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝑀)𝑧) = (𝑧(+g‘𝑀)𝑦)}) = (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝑀)𝑧) = (𝑧(+g‘𝑀)𝑦)}) | |
17 | 16 | dmmptss 6272 | . . . . 5 ⊢ dom (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝑀)𝑧) = (𝑧(+g‘𝑀)𝑦)}) ⊆ 𝒫 𝐵 |
18 | 15, 17 | eqsstrdi 4063 | . . . 4 ⊢ (𝑋 ∈ (𝑍‘𝑆) → dom 𝑍 ⊆ 𝒫 𝐵) |
19 | elfvdm 6957 | . . . 4 ⊢ (𝑋 ∈ (𝑍‘𝑆) → 𝑆 ∈ dom 𝑍) | |
20 | 18, 19 | sseldd 4009 | . . 3 ⊢ (𝑋 ∈ (𝑍‘𝑆) → 𝑆 ∈ 𝒫 𝐵) |
21 | 20 | elpwid 4631 | . 2 ⊢ (𝑋 ∈ (𝑍‘𝑆) → 𝑆 ⊆ 𝐵) |
22 | 10, 21 | jca 511 | 1 ⊢ (𝑋 ∈ (𝑍‘𝑆) → (𝑀 ∈ V ∧ 𝑆 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 ↦ cmpt 5249 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Cntzccntz 19355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-cntz 19357 |
This theorem is referenced by: cntzssv 19368 cntzi 19369 resscntz 19373 cntzmhm 19381 oppgcntz 19407 |
Copyright terms: Public domain | W3C validator |