| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntzrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for elements of the centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| Ref | Expression |
|---|---|
| cntzrcl.b | ⊢ 𝐵 = (Base‘𝑀) |
| cntzrcl.z | ⊢ 𝑍 = (Cntz‘𝑀) |
| Ref | Expression |
|---|---|
| cntzrcl | ⊢ (𝑋 ∈ (𝑍‘𝑆) → (𝑀 ∈ V ∧ 𝑆 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4318 | . . . 4 ⊢ ¬ 𝑋 ∈ ∅ | |
| 2 | cntzrcl.z | . . . . . . . 8 ⊢ 𝑍 = (Cntz‘𝑀) | |
| 3 | fvprc 6878 | . . . . . . . 8 ⊢ (¬ 𝑀 ∈ V → (Cntz‘𝑀) = ∅) | |
| 4 | 2, 3 | eqtrid 2781 | . . . . . . 7 ⊢ (¬ 𝑀 ∈ V → 𝑍 = ∅) |
| 5 | 4 | fveq1d 6888 | . . . . . 6 ⊢ (¬ 𝑀 ∈ V → (𝑍‘𝑆) = (∅‘𝑆)) |
| 6 | 0fv 6930 | . . . . . 6 ⊢ (∅‘𝑆) = ∅ | |
| 7 | 5, 6 | eqtrdi 2785 | . . . . 5 ⊢ (¬ 𝑀 ∈ V → (𝑍‘𝑆) = ∅) |
| 8 | 7 | eleq2d 2819 | . . . 4 ⊢ (¬ 𝑀 ∈ V → (𝑋 ∈ (𝑍‘𝑆) ↔ 𝑋 ∈ ∅)) |
| 9 | 1, 8 | mtbiri 327 | . . 3 ⊢ (¬ 𝑀 ∈ V → ¬ 𝑋 ∈ (𝑍‘𝑆)) |
| 10 | 9 | con4i 114 | . 2 ⊢ (𝑋 ∈ (𝑍‘𝑆) → 𝑀 ∈ V) |
| 11 | cntzrcl.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑀) | |
| 12 | eqid 2734 | . . . . . . . 8 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 13 | 11, 12, 2 | cntzfval 19308 | . . . . . . 7 ⊢ (𝑀 ∈ V → 𝑍 = (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝑀)𝑧) = (𝑧(+g‘𝑀)𝑦)})) |
| 14 | 10, 13 | syl 17 | . . . . . 6 ⊢ (𝑋 ∈ (𝑍‘𝑆) → 𝑍 = (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝑀)𝑧) = (𝑧(+g‘𝑀)𝑦)})) |
| 15 | 14 | dmeqd 5896 | . . . . 5 ⊢ (𝑋 ∈ (𝑍‘𝑆) → dom 𝑍 = dom (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝑀)𝑧) = (𝑧(+g‘𝑀)𝑦)})) |
| 16 | eqid 2734 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝑀)𝑧) = (𝑧(+g‘𝑀)𝑦)}) = (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝑀)𝑧) = (𝑧(+g‘𝑀)𝑦)}) | |
| 17 | 16 | dmmptss 6241 | . . . . 5 ⊢ dom (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝑀)𝑧) = (𝑧(+g‘𝑀)𝑦)}) ⊆ 𝒫 𝐵 |
| 18 | 15, 17 | eqsstrdi 4008 | . . . 4 ⊢ (𝑋 ∈ (𝑍‘𝑆) → dom 𝑍 ⊆ 𝒫 𝐵) |
| 19 | elfvdm 6923 | . . . 4 ⊢ (𝑋 ∈ (𝑍‘𝑆) → 𝑆 ∈ dom 𝑍) | |
| 20 | 18, 19 | sseldd 3964 | . . 3 ⊢ (𝑋 ∈ (𝑍‘𝑆) → 𝑆 ∈ 𝒫 𝐵) |
| 21 | 20 | elpwid 4589 | . 2 ⊢ (𝑋 ∈ (𝑍‘𝑆) → 𝑆 ⊆ 𝐵) |
| 22 | 10, 21 | jca 511 | 1 ⊢ (𝑋 ∈ (𝑍‘𝑆) → (𝑀 ∈ V ∧ 𝑆 ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 {crab 3419 Vcvv 3463 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 ↦ cmpt 5205 dom cdm 5665 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 +gcplusg 17274 Cntzccntz 19303 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-cntz 19305 |
| This theorem is referenced by: cntzssv 19316 cntzi 19317 resscntz 19321 cntzmhm 19329 oppgcntz 19352 |
| Copyright terms: Public domain | W3C validator |