MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzrcl Structured version   Visualization version   GIF version

Theorem cntzrcl 19266
Description: Reverse closure for elements of the centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
cntzrcl.b 𝐵 = (Base‘𝑀)
cntzrcl.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzrcl (𝑋 ∈ (𝑍𝑆) → (𝑀 ∈ V ∧ 𝑆𝐵))

Proof of Theorem cntzrcl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 4304 . . . 4 ¬ 𝑋 ∈ ∅
2 cntzrcl.z . . . . . . . 8 𝑍 = (Cntz‘𝑀)
3 fvprc 6853 . . . . . . . 8 𝑀 ∈ V → (Cntz‘𝑀) = ∅)
42, 3eqtrid 2777 . . . . . . 7 𝑀 ∈ V → 𝑍 = ∅)
54fveq1d 6863 . . . . . 6 𝑀 ∈ V → (𝑍𝑆) = (∅‘𝑆))
6 0fv 6905 . . . . . 6 (∅‘𝑆) = ∅
75, 6eqtrdi 2781 . . . . 5 𝑀 ∈ V → (𝑍𝑆) = ∅)
87eleq2d 2815 . . . 4 𝑀 ∈ V → (𝑋 ∈ (𝑍𝑆) ↔ 𝑋 ∈ ∅))
91, 8mtbiri 327 . . 3 𝑀 ∈ V → ¬ 𝑋 ∈ (𝑍𝑆))
109con4i 114 . 2 (𝑋 ∈ (𝑍𝑆) → 𝑀 ∈ V)
11 cntzrcl.b . . . . . . . 8 𝐵 = (Base‘𝑀)
12 eqid 2730 . . . . . . . 8 (+g𝑀) = (+g𝑀)
1311, 12, 2cntzfval 19259 . . . . . . 7 (𝑀 ∈ V → 𝑍 = (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦𝐵 ∣ ∀𝑧𝑥 (𝑦(+g𝑀)𝑧) = (𝑧(+g𝑀)𝑦)}))
1410, 13syl 17 . . . . . 6 (𝑋 ∈ (𝑍𝑆) → 𝑍 = (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦𝐵 ∣ ∀𝑧𝑥 (𝑦(+g𝑀)𝑧) = (𝑧(+g𝑀)𝑦)}))
1514dmeqd 5872 . . . . 5 (𝑋 ∈ (𝑍𝑆) → dom 𝑍 = dom (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦𝐵 ∣ ∀𝑧𝑥 (𝑦(+g𝑀)𝑧) = (𝑧(+g𝑀)𝑦)}))
16 eqid 2730 . . . . . 6 (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦𝐵 ∣ ∀𝑧𝑥 (𝑦(+g𝑀)𝑧) = (𝑧(+g𝑀)𝑦)}) = (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦𝐵 ∣ ∀𝑧𝑥 (𝑦(+g𝑀)𝑧) = (𝑧(+g𝑀)𝑦)})
1716dmmptss 6217 . . . . 5 dom (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦𝐵 ∣ ∀𝑧𝑥 (𝑦(+g𝑀)𝑧) = (𝑧(+g𝑀)𝑦)}) ⊆ 𝒫 𝐵
1815, 17eqsstrdi 3994 . . . 4 (𝑋 ∈ (𝑍𝑆) → dom 𝑍 ⊆ 𝒫 𝐵)
19 elfvdm 6898 . . . 4 (𝑋 ∈ (𝑍𝑆) → 𝑆 ∈ dom 𝑍)
2018, 19sseldd 3950 . . 3 (𝑋 ∈ (𝑍𝑆) → 𝑆 ∈ 𝒫 𝐵)
2120elpwid 4575 . 2 (𝑋 ∈ (𝑍𝑆) → 𝑆𝐵)
2210, 21jca 511 1 (𝑋 ∈ (𝑍𝑆) → (𝑀 ∈ V ∧ 𝑆𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  wss 3917  c0 4299  𝒫 cpw 4566  cmpt 5191  dom cdm 5641  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  Cntzccntz 19254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-cntz 19256
This theorem is referenced by:  cntzssv  19267  cntzi  19268  resscntz  19272  cntzmhm  19280  oppgcntz  19303
  Copyright terms: Public domain W3C validator