MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzrcl Structured version   Visualization version   GIF version

Theorem cntzrcl 18675
Description: Reverse closure for elements of the centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
cntzrcl.b 𝐵 = (Base‘𝑀)
cntzrcl.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzrcl (𝑋 ∈ (𝑍𝑆) → (𝑀 ∈ V ∧ 𝑆𝐵))

Proof of Theorem cntzrcl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 4231 . . . 4 ¬ 𝑋 ∈ ∅
2 cntzrcl.z . . . . . . . 8 𝑍 = (Cntz‘𝑀)
3 fvprc 6687 . . . . . . . 8 𝑀 ∈ V → (Cntz‘𝑀) = ∅)
42, 3syl5eq 2783 . . . . . . 7 𝑀 ∈ V → 𝑍 = ∅)
54fveq1d 6697 . . . . . 6 𝑀 ∈ V → (𝑍𝑆) = (∅‘𝑆))
6 0fv 6734 . . . . . 6 (∅‘𝑆) = ∅
75, 6eqtrdi 2787 . . . . 5 𝑀 ∈ V → (𝑍𝑆) = ∅)
87eleq2d 2816 . . . 4 𝑀 ∈ V → (𝑋 ∈ (𝑍𝑆) ↔ 𝑋 ∈ ∅))
91, 8mtbiri 330 . . 3 𝑀 ∈ V → ¬ 𝑋 ∈ (𝑍𝑆))
109con4i 114 . 2 (𝑋 ∈ (𝑍𝑆) → 𝑀 ∈ V)
11 cntzrcl.b . . . . . . . 8 𝐵 = (Base‘𝑀)
12 eqid 2736 . . . . . . . 8 (+g𝑀) = (+g𝑀)
1311, 12, 2cntzfval 18668 . . . . . . 7 (𝑀 ∈ V → 𝑍 = (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦𝐵 ∣ ∀𝑧𝑥 (𝑦(+g𝑀)𝑧) = (𝑧(+g𝑀)𝑦)}))
1410, 13syl 17 . . . . . 6 (𝑋 ∈ (𝑍𝑆) → 𝑍 = (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦𝐵 ∣ ∀𝑧𝑥 (𝑦(+g𝑀)𝑧) = (𝑧(+g𝑀)𝑦)}))
1514dmeqd 5759 . . . . 5 (𝑋 ∈ (𝑍𝑆) → dom 𝑍 = dom (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦𝐵 ∣ ∀𝑧𝑥 (𝑦(+g𝑀)𝑧) = (𝑧(+g𝑀)𝑦)}))
16 eqid 2736 . . . . . 6 (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦𝐵 ∣ ∀𝑧𝑥 (𝑦(+g𝑀)𝑧) = (𝑧(+g𝑀)𝑦)}) = (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦𝐵 ∣ ∀𝑧𝑥 (𝑦(+g𝑀)𝑧) = (𝑧(+g𝑀)𝑦)})
1716dmmptss 6084 . . . . 5 dom (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦𝐵 ∣ ∀𝑧𝑥 (𝑦(+g𝑀)𝑧) = (𝑧(+g𝑀)𝑦)}) ⊆ 𝒫 𝐵
1815, 17eqsstrdi 3941 . . . 4 (𝑋 ∈ (𝑍𝑆) → dom 𝑍 ⊆ 𝒫 𝐵)
19 elfvdm 6727 . . . 4 (𝑋 ∈ (𝑍𝑆) → 𝑆 ∈ dom 𝑍)
2018, 19sseldd 3888 . . 3 (𝑋 ∈ (𝑍𝑆) → 𝑆 ∈ 𝒫 𝐵)
2120elpwid 4510 . 2 (𝑋 ∈ (𝑍𝑆) → 𝑆𝐵)
2210, 21jca 515 1 (𝑋 ∈ (𝑍𝑆) → (𝑀 ∈ V ∧ 𝑆𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2112  wral 3051  {crab 3055  Vcvv 3398  wss 3853  c0 4223  𝒫 cpw 4499  cmpt 5120  dom cdm 5536  cfv 6358  (class class class)co 7191  Basecbs 16666  +gcplusg 16749  Cntzccntz 18663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-cntz 18665
This theorem is referenced by:  cntzssv  18676  cntzi  18677  resscntz  18680  cntzmhm  18687  oppgcntz  18710
  Copyright terms: Public domain W3C validator