![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzrcl | Structured version Visualization version GIF version |
Description: Reverse closure for elements of the centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
cntzrcl.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzrcl.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
cntzrcl | ⊢ (𝑋 ∈ (𝑍‘𝑆) → (𝑀 ∈ V ∧ 𝑆 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4326 | . . . 4 ⊢ ¬ 𝑋 ∈ ∅ | |
2 | cntzrcl.z | . . . . . . . 8 ⊢ 𝑍 = (Cntz‘𝑀) | |
3 | fvprc 6883 | . . . . . . . 8 ⊢ (¬ 𝑀 ∈ V → (Cntz‘𝑀) = ∅) | |
4 | 2, 3 | eqtrid 2779 | . . . . . . 7 ⊢ (¬ 𝑀 ∈ V → 𝑍 = ∅) |
5 | 4 | fveq1d 6893 | . . . . . 6 ⊢ (¬ 𝑀 ∈ V → (𝑍‘𝑆) = (∅‘𝑆)) |
6 | 0fv 6935 | . . . . . 6 ⊢ (∅‘𝑆) = ∅ | |
7 | 5, 6 | eqtrdi 2783 | . . . . 5 ⊢ (¬ 𝑀 ∈ V → (𝑍‘𝑆) = ∅) |
8 | 7 | eleq2d 2814 | . . . 4 ⊢ (¬ 𝑀 ∈ V → (𝑋 ∈ (𝑍‘𝑆) ↔ 𝑋 ∈ ∅)) |
9 | 1, 8 | mtbiri 327 | . . 3 ⊢ (¬ 𝑀 ∈ V → ¬ 𝑋 ∈ (𝑍‘𝑆)) |
10 | 9 | con4i 114 | . 2 ⊢ (𝑋 ∈ (𝑍‘𝑆) → 𝑀 ∈ V) |
11 | cntzrcl.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑀) | |
12 | eqid 2727 | . . . . . . . 8 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
13 | 11, 12, 2 | cntzfval 19255 | . . . . . . 7 ⊢ (𝑀 ∈ V → 𝑍 = (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝑀)𝑧) = (𝑧(+g‘𝑀)𝑦)})) |
14 | 10, 13 | syl 17 | . . . . . 6 ⊢ (𝑋 ∈ (𝑍‘𝑆) → 𝑍 = (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝑀)𝑧) = (𝑧(+g‘𝑀)𝑦)})) |
15 | 14 | dmeqd 5902 | . . . . 5 ⊢ (𝑋 ∈ (𝑍‘𝑆) → dom 𝑍 = dom (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝑀)𝑧) = (𝑧(+g‘𝑀)𝑦)})) |
16 | eqid 2727 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝑀)𝑧) = (𝑧(+g‘𝑀)𝑦)}) = (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝑀)𝑧) = (𝑧(+g‘𝑀)𝑦)}) | |
17 | 16 | dmmptss 6239 | . . . . 5 ⊢ dom (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ∀𝑧 ∈ 𝑥 (𝑦(+g‘𝑀)𝑧) = (𝑧(+g‘𝑀)𝑦)}) ⊆ 𝒫 𝐵 |
18 | 15, 17 | eqsstrdi 4032 | . . . 4 ⊢ (𝑋 ∈ (𝑍‘𝑆) → dom 𝑍 ⊆ 𝒫 𝐵) |
19 | elfvdm 6928 | . . . 4 ⊢ (𝑋 ∈ (𝑍‘𝑆) → 𝑆 ∈ dom 𝑍) | |
20 | 18, 19 | sseldd 3979 | . . 3 ⊢ (𝑋 ∈ (𝑍‘𝑆) → 𝑆 ∈ 𝒫 𝐵) |
21 | 20 | elpwid 4607 | . 2 ⊢ (𝑋 ∈ (𝑍‘𝑆) → 𝑆 ⊆ 𝐵) |
22 | 10, 21 | jca 511 | 1 ⊢ (𝑋 ∈ (𝑍‘𝑆) → (𝑀 ∈ V ∧ 𝑆 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3056 {crab 3427 Vcvv 3469 ⊆ wss 3944 ∅c0 4318 𝒫 cpw 4598 ↦ cmpt 5225 dom cdm 5672 ‘cfv 6542 (class class class)co 7414 Basecbs 17165 +gcplusg 17218 Cntzccntz 19250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-cntz 19252 |
This theorem is referenced by: cntzssv 19263 cntzi 19264 resscntz 19268 cntzmhm 19276 oppgcntz 19302 |
Copyright terms: Public domain | W3C validator |