MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzrcl Structured version   Visualization version   GIF version

Theorem cntzrcl 18848
Description: Reverse closure for elements of the centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
cntzrcl.b 𝐵 = (Base‘𝑀)
cntzrcl.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzrcl (𝑋 ∈ (𝑍𝑆) → (𝑀 ∈ V ∧ 𝑆𝐵))

Proof of Theorem cntzrcl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 4261 . . . 4 ¬ 𝑋 ∈ ∅
2 cntzrcl.z . . . . . . . 8 𝑍 = (Cntz‘𝑀)
3 fvprc 6748 . . . . . . . 8 𝑀 ∈ V → (Cntz‘𝑀) = ∅)
42, 3eqtrid 2790 . . . . . . 7 𝑀 ∈ V → 𝑍 = ∅)
54fveq1d 6758 . . . . . 6 𝑀 ∈ V → (𝑍𝑆) = (∅‘𝑆))
6 0fv 6795 . . . . . 6 (∅‘𝑆) = ∅
75, 6eqtrdi 2795 . . . . 5 𝑀 ∈ V → (𝑍𝑆) = ∅)
87eleq2d 2824 . . . 4 𝑀 ∈ V → (𝑋 ∈ (𝑍𝑆) ↔ 𝑋 ∈ ∅))
91, 8mtbiri 326 . . 3 𝑀 ∈ V → ¬ 𝑋 ∈ (𝑍𝑆))
109con4i 114 . 2 (𝑋 ∈ (𝑍𝑆) → 𝑀 ∈ V)
11 cntzrcl.b . . . . . . . 8 𝐵 = (Base‘𝑀)
12 eqid 2738 . . . . . . . 8 (+g𝑀) = (+g𝑀)
1311, 12, 2cntzfval 18841 . . . . . . 7 (𝑀 ∈ V → 𝑍 = (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦𝐵 ∣ ∀𝑧𝑥 (𝑦(+g𝑀)𝑧) = (𝑧(+g𝑀)𝑦)}))
1410, 13syl 17 . . . . . 6 (𝑋 ∈ (𝑍𝑆) → 𝑍 = (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦𝐵 ∣ ∀𝑧𝑥 (𝑦(+g𝑀)𝑧) = (𝑧(+g𝑀)𝑦)}))
1514dmeqd 5803 . . . . 5 (𝑋 ∈ (𝑍𝑆) → dom 𝑍 = dom (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦𝐵 ∣ ∀𝑧𝑥 (𝑦(+g𝑀)𝑧) = (𝑧(+g𝑀)𝑦)}))
16 eqid 2738 . . . . . 6 (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦𝐵 ∣ ∀𝑧𝑥 (𝑦(+g𝑀)𝑧) = (𝑧(+g𝑀)𝑦)}) = (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦𝐵 ∣ ∀𝑧𝑥 (𝑦(+g𝑀)𝑧) = (𝑧(+g𝑀)𝑦)})
1716dmmptss 6133 . . . . 5 dom (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦𝐵 ∣ ∀𝑧𝑥 (𝑦(+g𝑀)𝑧) = (𝑧(+g𝑀)𝑦)}) ⊆ 𝒫 𝐵
1815, 17eqsstrdi 3971 . . . 4 (𝑋 ∈ (𝑍𝑆) → dom 𝑍 ⊆ 𝒫 𝐵)
19 elfvdm 6788 . . . 4 (𝑋 ∈ (𝑍𝑆) → 𝑆 ∈ dom 𝑍)
2018, 19sseldd 3918 . . 3 (𝑋 ∈ (𝑍𝑆) → 𝑆 ∈ 𝒫 𝐵)
2120elpwid 4541 . 2 (𝑋 ∈ (𝑍𝑆) → 𝑆𝐵)
2210, 21jca 511 1 (𝑋 ∈ (𝑍𝑆) → (𝑀 ∈ V ∧ 𝑆𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  wss 3883  c0 4253  𝒫 cpw 4530  cmpt 5153  dom cdm 5580  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Cntzccntz 18836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-cntz 18838
This theorem is referenced by:  cntzssv  18849  cntzi  18850  resscntz  18853  cntzmhm  18860  oppgcntz  18886
  Copyright terms: Public domain W3C validator