MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzrcl Structured version   Visualization version   GIF version

Theorem cntzrcl 19262
Description: Reverse closure for elements of the centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
cntzrcl.b 𝐵 = (Base‘𝑀)
cntzrcl.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzrcl (𝑋 ∈ (𝑍𝑆) → (𝑀 ∈ V ∧ 𝑆𝐵))

Proof of Theorem cntzrcl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 4326 . . . 4 ¬ 𝑋 ∈ ∅
2 cntzrcl.z . . . . . . . 8 𝑍 = (Cntz‘𝑀)
3 fvprc 6883 . . . . . . . 8 𝑀 ∈ V → (Cntz‘𝑀) = ∅)
42, 3eqtrid 2779 . . . . . . 7 𝑀 ∈ V → 𝑍 = ∅)
54fveq1d 6893 . . . . . 6 𝑀 ∈ V → (𝑍𝑆) = (∅‘𝑆))
6 0fv 6935 . . . . . 6 (∅‘𝑆) = ∅
75, 6eqtrdi 2783 . . . . 5 𝑀 ∈ V → (𝑍𝑆) = ∅)
87eleq2d 2814 . . . 4 𝑀 ∈ V → (𝑋 ∈ (𝑍𝑆) ↔ 𝑋 ∈ ∅))
91, 8mtbiri 327 . . 3 𝑀 ∈ V → ¬ 𝑋 ∈ (𝑍𝑆))
109con4i 114 . 2 (𝑋 ∈ (𝑍𝑆) → 𝑀 ∈ V)
11 cntzrcl.b . . . . . . . 8 𝐵 = (Base‘𝑀)
12 eqid 2727 . . . . . . . 8 (+g𝑀) = (+g𝑀)
1311, 12, 2cntzfval 19255 . . . . . . 7 (𝑀 ∈ V → 𝑍 = (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦𝐵 ∣ ∀𝑧𝑥 (𝑦(+g𝑀)𝑧) = (𝑧(+g𝑀)𝑦)}))
1410, 13syl 17 . . . . . 6 (𝑋 ∈ (𝑍𝑆) → 𝑍 = (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦𝐵 ∣ ∀𝑧𝑥 (𝑦(+g𝑀)𝑧) = (𝑧(+g𝑀)𝑦)}))
1514dmeqd 5902 . . . . 5 (𝑋 ∈ (𝑍𝑆) → dom 𝑍 = dom (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦𝐵 ∣ ∀𝑧𝑥 (𝑦(+g𝑀)𝑧) = (𝑧(+g𝑀)𝑦)}))
16 eqid 2727 . . . . . 6 (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦𝐵 ∣ ∀𝑧𝑥 (𝑦(+g𝑀)𝑧) = (𝑧(+g𝑀)𝑦)}) = (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦𝐵 ∣ ∀𝑧𝑥 (𝑦(+g𝑀)𝑧) = (𝑧(+g𝑀)𝑦)})
1716dmmptss 6239 . . . . 5 dom (𝑥 ∈ 𝒫 𝐵 ↦ {𝑦𝐵 ∣ ∀𝑧𝑥 (𝑦(+g𝑀)𝑧) = (𝑧(+g𝑀)𝑦)}) ⊆ 𝒫 𝐵
1815, 17eqsstrdi 4032 . . . 4 (𝑋 ∈ (𝑍𝑆) → dom 𝑍 ⊆ 𝒫 𝐵)
19 elfvdm 6928 . . . 4 (𝑋 ∈ (𝑍𝑆) → 𝑆 ∈ dom 𝑍)
2018, 19sseldd 3979 . . 3 (𝑋 ∈ (𝑍𝑆) → 𝑆 ∈ 𝒫 𝐵)
2120elpwid 4607 . 2 (𝑋 ∈ (𝑍𝑆) → 𝑆𝐵)
2210, 21jca 511 1 (𝑋 ∈ (𝑍𝑆) → (𝑀 ∈ V ∧ 𝑆𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3056  {crab 3427  Vcvv 3469  wss 3944  c0 4318  𝒫 cpw 4598  cmpt 5225  dom cdm 5672  cfv 6542  (class class class)co 7414  Basecbs 17165  +gcplusg 17218  Cntzccntz 19250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-cntz 19252
This theorem is referenced by:  cntzssv  19263  cntzi  19264  resscntz  19268  cntzmhm  19276  oppgcntz  19302
  Copyright terms: Public domain W3C validator