![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprdf1 | Structured version Visualization version GIF version |
Description: Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprdf1.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dprdf1.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dprdf1.3 | ⊢ (𝜑 → 𝐹:𝐽–1-1→𝐼) |
Ref | Expression |
---|---|
dprdf1 | ⊢ (𝜑 → (𝐺dom DProd (𝑆 ∘ 𝐹) ∧ (𝐺 DProd (𝑆 ∘ 𝐹)) ⊆ (𝐺 DProd 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dprdf1.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
2 | dprdf1.2 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
3 | dprdf1.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐽–1-1→𝐼) | |
4 | f1f 6708 | . . . . . . . 8 ⊢ (𝐹:𝐽–1-1→𝐼 → 𝐹:𝐽⟶𝐼) | |
5 | frn 6645 | . . . . . . . 8 ⊢ (𝐹:𝐽⟶𝐼 → ran 𝐹 ⊆ 𝐼) | |
6 | 3, 4, 5 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐼) |
7 | 1, 2, 6 | dprdres 19706 | . . . . . 6 ⊢ (𝜑 → (𝐺dom DProd (𝑆 ↾ ran 𝐹) ∧ (𝐺 DProd (𝑆 ↾ ran 𝐹)) ⊆ (𝐺 DProd 𝑆))) |
8 | 7 | simpld 495 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ ran 𝐹)) |
9 | 1, 2 | dprdf2 19685 | . . . . . . 7 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
10 | 9, 6 | fssresd 6679 | . . . . . 6 ⊢ (𝜑 → (𝑆 ↾ ran 𝐹):ran 𝐹⟶(SubGrp‘𝐺)) |
11 | 10 | fdmd 6649 | . . . . 5 ⊢ (𝜑 → dom (𝑆 ↾ ran 𝐹) = ran 𝐹) |
12 | f1f1orn 6765 | . . . . . 6 ⊢ (𝐹:𝐽–1-1→𝐼 → 𝐹:𝐽–1-1-onto→ran 𝐹) | |
13 | 3, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐽–1-1-onto→ran 𝐹) |
14 | 8, 11, 13 | dprdf1o 19710 | . . . 4 ⊢ (𝜑 → (𝐺dom DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹) ∧ (𝐺 DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹)) = (𝐺 DProd (𝑆 ↾ ran 𝐹)))) |
15 | 14 | simpld 495 | . . 3 ⊢ (𝜑 → 𝐺dom DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹)) |
16 | ssid 3953 | . . . 4 ⊢ ran 𝐹 ⊆ ran 𝐹 | |
17 | cores 6175 | . . . 4 ⊢ (ran 𝐹 ⊆ ran 𝐹 → ((𝑆 ↾ ran 𝐹) ∘ 𝐹) = (𝑆 ∘ 𝐹)) | |
18 | 16, 17 | ax-mp 5 | . . 3 ⊢ ((𝑆 ↾ ran 𝐹) ∘ 𝐹) = (𝑆 ∘ 𝐹) |
19 | 15, 18 | breqtrdi 5128 | . 2 ⊢ (𝜑 → 𝐺dom DProd (𝑆 ∘ 𝐹)) |
20 | 18 | oveq2i 7328 | . . . 4 ⊢ (𝐺 DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹)) = (𝐺 DProd (𝑆 ∘ 𝐹)) |
21 | 14 | simprd 496 | . . . 4 ⊢ (𝜑 → (𝐺 DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹)) = (𝐺 DProd (𝑆 ↾ ran 𝐹))) |
22 | 20, 21 | eqtr3id 2791 | . . 3 ⊢ (𝜑 → (𝐺 DProd (𝑆 ∘ 𝐹)) = (𝐺 DProd (𝑆 ↾ ran 𝐹))) |
23 | 7 | simprd 496 | . . 3 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ ran 𝐹)) ⊆ (𝐺 DProd 𝑆)) |
24 | 22, 23 | eqsstrd 3969 | . 2 ⊢ (𝜑 → (𝐺 DProd (𝑆 ∘ 𝐹)) ⊆ (𝐺 DProd 𝑆)) |
25 | 19, 24 | jca 512 | 1 ⊢ (𝜑 → (𝐺dom DProd (𝑆 ∘ 𝐹) ∧ (𝐺 DProd (𝑆 ∘ 𝐹)) ⊆ (𝐺 DProd 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ⊆ wss 3897 class class class wbr 5087 dom cdm 5608 ran crn 5609 ↾ cres 5610 ∘ ccom 5612 ⟶wf 6462 –1-1→wf1 6463 –1-1-onto→wf1o 6465 ‘cfv 6466 (class class class)co 7317 SubGrpcsubg 18825 DProd cdprd 19671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-iin 4940 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-se 5564 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-isom 6475 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-of 7575 df-om 7760 df-1st 7878 df-2nd 7879 df-supp 8027 df-tpos 8091 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-1o 8346 df-er 8548 df-map 8667 df-ixp 8736 df-en 8784 df-dom 8785 df-sdom 8786 df-fin 8787 df-fsupp 9206 df-oi 9346 df-card 9775 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-nn 12054 df-2 12116 df-n0 12314 df-z 12400 df-uz 12663 df-fz 13320 df-fzo 13463 df-seq 13802 df-hash 14125 df-sets 16942 df-slot 16960 df-ndx 16972 df-base 16990 df-ress 17019 df-plusg 17052 df-0g 17229 df-gsum 17230 df-mre 17372 df-mrc 17373 df-acs 17375 df-mgm 18403 df-sgrp 18452 df-mnd 18463 df-mhm 18507 df-submnd 18508 df-grp 18656 df-minusg 18657 df-sbg 18658 df-mulg 18777 df-subg 18828 df-ghm 18908 df-gim 18951 df-cntz 18999 df-oppg 19026 df-cmn 19463 df-dprd 19673 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |