![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprdf1 | Structured version Visualization version GIF version |
Description: Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprdf1.1 | β’ (π β πΊdom DProd π) |
dprdf1.2 | β’ (π β dom π = πΌ) |
dprdf1.3 | β’ (π β πΉ:π½β1-1βπΌ) |
Ref | Expression |
---|---|
dprdf1 | β’ (π β (πΊdom DProd (π β πΉ) β§ (πΊ DProd (π β πΉ)) β (πΊ DProd π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dprdf1.1 | . . . . . . 7 β’ (π β πΊdom DProd π) | |
2 | dprdf1.2 | . . . . . . 7 β’ (π β dom π = πΌ) | |
3 | dprdf1.3 | . . . . . . . 8 β’ (π β πΉ:π½β1-1βπΌ) | |
4 | f1f 6787 | . . . . . . . 8 β’ (πΉ:π½β1-1βπΌ β πΉ:π½βΆπΌ) | |
5 | frn 6724 | . . . . . . . 8 β’ (πΉ:π½βΆπΌ β ran πΉ β πΌ) | |
6 | 3, 4, 5 | 3syl 18 | . . . . . . 7 β’ (π β ran πΉ β πΌ) |
7 | 1, 2, 6 | dprdres 19940 | . . . . . 6 β’ (π β (πΊdom DProd (π βΎ ran πΉ) β§ (πΊ DProd (π βΎ ran πΉ)) β (πΊ DProd π))) |
8 | 7 | simpld 494 | . . . . 5 β’ (π β πΊdom DProd (π βΎ ran πΉ)) |
9 | 1, 2 | dprdf2 19919 | . . . . . . 7 β’ (π β π:πΌβΆ(SubGrpβπΊ)) |
10 | 9, 6 | fssresd 6758 | . . . . . 6 β’ (π β (π βΎ ran πΉ):ran πΉβΆ(SubGrpβπΊ)) |
11 | 10 | fdmd 6728 | . . . . 5 β’ (π β dom (π βΎ ran πΉ) = ran πΉ) |
12 | f1f1orn 6844 | . . . . . 6 β’ (πΉ:π½β1-1βπΌ β πΉ:π½β1-1-ontoβran πΉ) | |
13 | 3, 12 | syl 17 | . . . . 5 β’ (π β πΉ:π½β1-1-ontoβran πΉ) |
14 | 8, 11, 13 | dprdf1o 19944 | . . . 4 β’ (π β (πΊdom DProd ((π βΎ ran πΉ) β πΉ) β§ (πΊ DProd ((π βΎ ran πΉ) β πΉ)) = (πΊ DProd (π βΎ ran πΉ)))) |
15 | 14 | simpld 494 | . . 3 β’ (π β πΊdom DProd ((π βΎ ran πΉ) β πΉ)) |
16 | ssid 4004 | . . . 4 β’ ran πΉ β ran πΉ | |
17 | cores 6248 | . . . 4 β’ (ran πΉ β ran πΉ β ((π βΎ ran πΉ) β πΉ) = (π β πΉ)) | |
18 | 16, 17 | ax-mp 5 | . . 3 β’ ((π βΎ ran πΉ) β πΉ) = (π β πΉ) |
19 | 15, 18 | breqtrdi 5189 | . 2 β’ (π β πΊdom DProd (π β πΉ)) |
20 | 18 | oveq2i 7423 | . . . 4 β’ (πΊ DProd ((π βΎ ran πΉ) β πΉ)) = (πΊ DProd (π β πΉ)) |
21 | 14 | simprd 495 | . . . 4 β’ (π β (πΊ DProd ((π βΎ ran πΉ) β πΉ)) = (πΊ DProd (π βΎ ran πΉ))) |
22 | 20, 21 | eqtr3id 2785 | . . 3 β’ (π β (πΊ DProd (π β πΉ)) = (πΊ DProd (π βΎ ran πΉ))) |
23 | 7 | simprd 495 | . . 3 β’ (π β (πΊ DProd (π βΎ ran πΉ)) β (πΊ DProd π)) |
24 | 22, 23 | eqsstrd 4020 | . 2 β’ (π β (πΊ DProd (π β πΉ)) β (πΊ DProd π)) |
25 | 19, 24 | jca 511 | 1 β’ (π β (πΊdom DProd (π β πΉ) β§ (πΊ DProd (π β πΉ)) β (πΊ DProd π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wss 3948 class class class wbr 5148 dom cdm 5676 ran crn 5677 βΎ cres 5678 β ccom 5680 βΆwf 6539 β1-1βwf1 6540 β1-1-ontoβwf1o 6542 βcfv 6543 (class class class)co 7412 SubGrpcsubg 19037 DProd cdprd 19905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7673 df-om 7859 df-1st 7978 df-2nd 7979 df-supp 8150 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-map 8825 df-ixp 8895 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-fsupp 9365 df-oi 9508 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-fzo 13633 df-seq 13972 df-hash 14296 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-0g 17392 df-gsum 17393 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-mhm 18706 df-submnd 18707 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18988 df-subg 19040 df-ghm 19129 df-gim 19174 df-cntz 19223 df-oppg 19252 df-cmn 19692 df-dprd 19907 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |