MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdf1 Structured version   Visualization version   GIF version

Theorem dprdf1 20068
Description: Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdf1.1 (𝜑𝐺dom DProd 𝑆)
dprdf1.2 (𝜑 → dom 𝑆 = 𝐼)
dprdf1.3 (𝜑𝐹:𝐽1-1𝐼)
Assertion
Ref Expression
dprdf1 (𝜑 → (𝐺dom DProd (𝑆𝐹) ∧ (𝐺 DProd (𝑆𝐹)) ⊆ (𝐺 DProd 𝑆)))

Proof of Theorem dprdf1
StepHypRef Expression
1 dprdf1.1 . . . . . . 7 (𝜑𝐺dom DProd 𝑆)
2 dprdf1.2 . . . . . . 7 (𝜑 → dom 𝑆 = 𝐼)
3 dprdf1.3 . . . . . . . 8 (𝜑𝐹:𝐽1-1𝐼)
4 f1f 6805 . . . . . . . 8 (𝐹:𝐽1-1𝐼𝐹:𝐽𝐼)
5 frn 6744 . . . . . . . 8 (𝐹:𝐽𝐼 → ran 𝐹𝐼)
63, 4, 53syl 18 . . . . . . 7 (𝜑 → ran 𝐹𝐼)
71, 2, 6dprdres 20063 . . . . . 6 (𝜑 → (𝐺dom DProd (𝑆 ↾ ran 𝐹) ∧ (𝐺 DProd (𝑆 ↾ ran 𝐹)) ⊆ (𝐺 DProd 𝑆)))
87simpld 494 . . . . 5 (𝜑𝐺dom DProd (𝑆 ↾ ran 𝐹))
91, 2dprdf2 20042 . . . . . . 7 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
109, 6fssresd 6776 . . . . . 6 (𝜑 → (𝑆 ↾ ran 𝐹):ran 𝐹⟶(SubGrp‘𝐺))
1110fdmd 6747 . . . . 5 (𝜑 → dom (𝑆 ↾ ran 𝐹) = ran 𝐹)
12 f1f1orn 6860 . . . . . 6 (𝐹:𝐽1-1𝐼𝐹:𝐽1-1-onto→ran 𝐹)
133, 12syl 17 . . . . 5 (𝜑𝐹:𝐽1-1-onto→ran 𝐹)
148, 11, 13dprdf1o 20067 . . . 4 (𝜑 → (𝐺dom DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹) ∧ (𝐺 DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹)) = (𝐺 DProd (𝑆 ↾ ran 𝐹))))
1514simpld 494 . . 3 (𝜑𝐺dom DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹))
16 ssid 4018 . . . 4 ran 𝐹 ⊆ ran 𝐹
17 cores 6271 . . . 4 (ran 𝐹 ⊆ ran 𝐹 → ((𝑆 ↾ ran 𝐹) ∘ 𝐹) = (𝑆𝐹))
1816, 17ax-mp 5 . . 3 ((𝑆 ↾ ran 𝐹) ∘ 𝐹) = (𝑆𝐹)
1915, 18breqtrdi 5189 . 2 (𝜑𝐺dom DProd (𝑆𝐹))
2018oveq2i 7442 . . . 4 (𝐺 DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹)) = (𝐺 DProd (𝑆𝐹))
2114simprd 495 . . . 4 (𝜑 → (𝐺 DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹)) = (𝐺 DProd (𝑆 ↾ ran 𝐹)))
2220, 21eqtr3id 2789 . . 3 (𝜑 → (𝐺 DProd (𝑆𝐹)) = (𝐺 DProd (𝑆 ↾ ran 𝐹)))
237simprd 495 . . 3 (𝜑 → (𝐺 DProd (𝑆 ↾ ran 𝐹)) ⊆ (𝐺 DProd 𝑆))
2422, 23eqsstrd 4034 . 2 (𝜑 → (𝐺 DProd (𝑆𝐹)) ⊆ (𝐺 DProd 𝑆))
2519, 24jca 511 1 (𝜑 → (𝐺dom DProd (𝑆𝐹) ∧ (𝐺 DProd (𝑆𝐹)) ⊆ (𝐺 DProd 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wss 3963   class class class wbr 5148  dom cdm 5689  ran crn 5690  cres 5691  ccom 5693  wf 6559  1-1wf1 6560  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  SubGrpcsubg 19151   DProd cdprd 20028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-gsum 17489  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-gim 19290  df-cntz 19348  df-oppg 19377  df-cmn 19815  df-dprd 20030
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator