| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprdf1 | Structured version Visualization version GIF version | ||
| Description: Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| Ref | Expression |
|---|---|
| dprdf1.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| dprdf1.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| dprdf1.3 | ⊢ (𝜑 → 𝐹:𝐽–1-1→𝐼) |
| Ref | Expression |
|---|---|
| dprdf1 | ⊢ (𝜑 → (𝐺dom DProd (𝑆 ∘ 𝐹) ∧ (𝐺 DProd (𝑆 ∘ 𝐹)) ⊆ (𝐺 DProd 𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdf1.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 2 | dprdf1.2 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 3 | dprdf1.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐽–1-1→𝐼) | |
| 4 | f1f 6779 | . . . . . . . 8 ⊢ (𝐹:𝐽–1-1→𝐼 → 𝐹:𝐽⟶𝐼) | |
| 5 | frn 6718 | . . . . . . . 8 ⊢ (𝐹:𝐽⟶𝐼 → ran 𝐹 ⊆ 𝐼) | |
| 6 | 3, 4, 5 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐼) |
| 7 | 1, 2, 6 | dprdres 20016 | . . . . . 6 ⊢ (𝜑 → (𝐺dom DProd (𝑆 ↾ ran 𝐹) ∧ (𝐺 DProd (𝑆 ↾ ran 𝐹)) ⊆ (𝐺 DProd 𝑆))) |
| 8 | 7 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ ran 𝐹)) |
| 9 | 1, 2 | dprdf2 19995 | . . . . . . 7 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| 10 | 9, 6 | fssresd 6750 | . . . . . 6 ⊢ (𝜑 → (𝑆 ↾ ran 𝐹):ran 𝐹⟶(SubGrp‘𝐺)) |
| 11 | 10 | fdmd 6721 | . . . . 5 ⊢ (𝜑 → dom (𝑆 ↾ ran 𝐹) = ran 𝐹) |
| 12 | f1f1orn 6834 | . . . . . 6 ⊢ (𝐹:𝐽–1-1→𝐼 → 𝐹:𝐽–1-1-onto→ran 𝐹) | |
| 13 | 3, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐽–1-1-onto→ran 𝐹) |
| 14 | 8, 11, 13 | dprdf1o 20020 | . . . 4 ⊢ (𝜑 → (𝐺dom DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹) ∧ (𝐺 DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹)) = (𝐺 DProd (𝑆 ↾ ran 𝐹)))) |
| 15 | 14 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐺dom DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹)) |
| 16 | ssid 3986 | . . . 4 ⊢ ran 𝐹 ⊆ ran 𝐹 | |
| 17 | cores 6243 | . . . 4 ⊢ (ran 𝐹 ⊆ ran 𝐹 → ((𝑆 ↾ ran 𝐹) ∘ 𝐹) = (𝑆 ∘ 𝐹)) | |
| 18 | 16, 17 | ax-mp 5 | . . 3 ⊢ ((𝑆 ↾ ran 𝐹) ∘ 𝐹) = (𝑆 ∘ 𝐹) |
| 19 | 15, 18 | breqtrdi 5165 | . 2 ⊢ (𝜑 → 𝐺dom DProd (𝑆 ∘ 𝐹)) |
| 20 | 18 | oveq2i 7421 | . . . 4 ⊢ (𝐺 DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹)) = (𝐺 DProd (𝑆 ∘ 𝐹)) |
| 21 | 14 | simprd 495 | . . . 4 ⊢ (𝜑 → (𝐺 DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹)) = (𝐺 DProd (𝑆 ↾ ran 𝐹))) |
| 22 | 20, 21 | eqtr3id 2785 | . . 3 ⊢ (𝜑 → (𝐺 DProd (𝑆 ∘ 𝐹)) = (𝐺 DProd (𝑆 ↾ ran 𝐹))) |
| 23 | 7 | simprd 495 | . . 3 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ ran 𝐹)) ⊆ (𝐺 DProd 𝑆)) |
| 24 | 22, 23 | eqsstrd 3998 | . 2 ⊢ (𝜑 → (𝐺 DProd (𝑆 ∘ 𝐹)) ⊆ (𝐺 DProd 𝑆)) |
| 25 | 19, 24 | jca 511 | 1 ⊢ (𝜑 → (𝐺dom DProd (𝑆 ∘ 𝐹) ∧ (𝐺 DProd (𝑆 ∘ 𝐹)) ⊆ (𝐺 DProd 𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3931 class class class wbr 5124 dom cdm 5659 ran crn 5660 ↾ cres 5661 ∘ ccom 5663 ⟶wf 6532 –1-1→wf1 6533 –1-1-onto→wf1o 6535 ‘cfv 6536 (class class class)co 7410 SubGrpcsubg 19108 DProd cdprd 19981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14354 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-0g 17460 df-gsum 17461 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-ghm 19201 df-gim 19247 df-cntz 19305 df-oppg 19334 df-cmn 19768 df-dprd 19983 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |