|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > dprdf1 | Structured version Visualization version GIF version | ||
| Description: Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.) | 
| Ref | Expression | 
|---|---|
| dprdf1.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) | 
| dprdf1.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) | 
| dprdf1.3 | ⊢ (𝜑 → 𝐹:𝐽–1-1→𝐼) | 
| Ref | Expression | 
|---|---|
| dprdf1 | ⊢ (𝜑 → (𝐺dom DProd (𝑆 ∘ 𝐹) ∧ (𝐺 DProd (𝑆 ∘ 𝐹)) ⊆ (𝐺 DProd 𝑆))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dprdf1.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 2 | dprdf1.2 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 3 | dprdf1.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐽–1-1→𝐼) | |
| 4 | f1f 6804 | . . . . . . . 8 ⊢ (𝐹:𝐽–1-1→𝐼 → 𝐹:𝐽⟶𝐼) | |
| 5 | frn 6743 | . . . . . . . 8 ⊢ (𝐹:𝐽⟶𝐼 → ran 𝐹 ⊆ 𝐼) | |
| 6 | 3, 4, 5 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐼) | 
| 7 | 1, 2, 6 | dprdres 20048 | . . . . . 6 ⊢ (𝜑 → (𝐺dom DProd (𝑆 ↾ ran 𝐹) ∧ (𝐺 DProd (𝑆 ↾ ran 𝐹)) ⊆ (𝐺 DProd 𝑆))) | 
| 8 | 7 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ ran 𝐹)) | 
| 9 | 1, 2 | dprdf2 20027 | . . . . . . 7 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) | 
| 10 | 9, 6 | fssresd 6775 | . . . . . 6 ⊢ (𝜑 → (𝑆 ↾ ran 𝐹):ran 𝐹⟶(SubGrp‘𝐺)) | 
| 11 | 10 | fdmd 6746 | . . . . 5 ⊢ (𝜑 → dom (𝑆 ↾ ran 𝐹) = ran 𝐹) | 
| 12 | f1f1orn 6859 | . . . . . 6 ⊢ (𝐹:𝐽–1-1→𝐼 → 𝐹:𝐽–1-1-onto→ran 𝐹) | |
| 13 | 3, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐽–1-1-onto→ran 𝐹) | 
| 14 | 8, 11, 13 | dprdf1o 20052 | . . . 4 ⊢ (𝜑 → (𝐺dom DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹) ∧ (𝐺 DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹)) = (𝐺 DProd (𝑆 ↾ ran 𝐹)))) | 
| 15 | 14 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐺dom DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹)) | 
| 16 | ssid 4006 | . . . 4 ⊢ ran 𝐹 ⊆ ran 𝐹 | |
| 17 | cores 6269 | . . . 4 ⊢ (ran 𝐹 ⊆ ran 𝐹 → ((𝑆 ↾ ran 𝐹) ∘ 𝐹) = (𝑆 ∘ 𝐹)) | |
| 18 | 16, 17 | ax-mp 5 | . . 3 ⊢ ((𝑆 ↾ ran 𝐹) ∘ 𝐹) = (𝑆 ∘ 𝐹) | 
| 19 | 15, 18 | breqtrdi 5184 | . 2 ⊢ (𝜑 → 𝐺dom DProd (𝑆 ∘ 𝐹)) | 
| 20 | 18 | oveq2i 7442 | . . . 4 ⊢ (𝐺 DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹)) = (𝐺 DProd (𝑆 ∘ 𝐹)) | 
| 21 | 14 | simprd 495 | . . . 4 ⊢ (𝜑 → (𝐺 DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹)) = (𝐺 DProd (𝑆 ↾ ran 𝐹))) | 
| 22 | 20, 21 | eqtr3id 2791 | . . 3 ⊢ (𝜑 → (𝐺 DProd (𝑆 ∘ 𝐹)) = (𝐺 DProd (𝑆 ↾ ran 𝐹))) | 
| 23 | 7 | simprd 495 | . . 3 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ ran 𝐹)) ⊆ (𝐺 DProd 𝑆)) | 
| 24 | 22, 23 | eqsstrd 4018 | . 2 ⊢ (𝜑 → (𝐺 DProd (𝑆 ∘ 𝐹)) ⊆ (𝐺 DProd 𝑆)) | 
| 25 | 19, 24 | jca 511 | 1 ⊢ (𝜑 → (𝐺dom DProd (𝑆 ∘ 𝐹) ∧ (𝐺 DProd (𝑆 ∘ 𝐹)) ⊆ (𝐺 DProd 𝑆))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3951 class class class wbr 5143 dom cdm 5685 ran crn 5686 ↾ cres 5687 ∘ ccom 5689 ⟶wf 6557 –1-1→wf1 6558 –1-1-onto→wf1o 6560 ‘cfv 6561 (class class class)co 7431 SubGrpcsubg 19138 DProd cdprd 20013 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-fzo 13695 df-seq 14043 df-hash 14370 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-0g 17486 df-gsum 17487 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-subg 19141 df-ghm 19231 df-gim 19277 df-cntz 19335 df-oppg 19364 df-cmn 19800 df-dprd 20015 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |