| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprdf1 | Structured version Visualization version GIF version | ||
| Description: Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| Ref | Expression |
|---|---|
| dprdf1.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| dprdf1.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| dprdf1.3 | ⊢ (𝜑 → 𝐹:𝐽–1-1→𝐼) |
| Ref | Expression |
|---|---|
| dprdf1 | ⊢ (𝜑 → (𝐺dom DProd (𝑆 ∘ 𝐹) ∧ (𝐺 DProd (𝑆 ∘ 𝐹)) ⊆ (𝐺 DProd 𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdf1.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 2 | dprdf1.2 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 3 | dprdf1.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐽–1-1→𝐼) | |
| 4 | f1f 6727 | . . . . . . . 8 ⊢ (𝐹:𝐽–1-1→𝐼 → 𝐹:𝐽⟶𝐼) | |
| 5 | frn 6666 | . . . . . . . 8 ⊢ (𝐹:𝐽⟶𝐼 → ran 𝐹 ⊆ 𝐼) | |
| 6 | 3, 4, 5 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐼) |
| 7 | 1, 2, 6 | dprdres 19952 | . . . . . 6 ⊢ (𝜑 → (𝐺dom DProd (𝑆 ↾ ran 𝐹) ∧ (𝐺 DProd (𝑆 ↾ ran 𝐹)) ⊆ (𝐺 DProd 𝑆))) |
| 8 | 7 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ ran 𝐹)) |
| 9 | 1, 2 | dprdf2 19931 | . . . . . . 7 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| 10 | 9, 6 | fssresd 6698 | . . . . . 6 ⊢ (𝜑 → (𝑆 ↾ ran 𝐹):ran 𝐹⟶(SubGrp‘𝐺)) |
| 11 | 10 | fdmd 6669 | . . . . 5 ⊢ (𝜑 → dom (𝑆 ↾ ran 𝐹) = ran 𝐹) |
| 12 | f1f1orn 6782 | . . . . . 6 ⊢ (𝐹:𝐽–1-1→𝐼 → 𝐹:𝐽–1-1-onto→ran 𝐹) | |
| 13 | 3, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐽–1-1-onto→ran 𝐹) |
| 14 | 8, 11, 13 | dprdf1o 19956 | . . . 4 ⊢ (𝜑 → (𝐺dom DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹) ∧ (𝐺 DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹)) = (𝐺 DProd (𝑆 ↾ ran 𝐹)))) |
| 15 | 14 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐺dom DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹)) |
| 16 | ssid 3954 | . . . 4 ⊢ ran 𝐹 ⊆ ran 𝐹 | |
| 17 | cores 6204 | . . . 4 ⊢ (ran 𝐹 ⊆ ran 𝐹 → ((𝑆 ↾ ran 𝐹) ∘ 𝐹) = (𝑆 ∘ 𝐹)) | |
| 18 | 16, 17 | ax-mp 5 | . . 3 ⊢ ((𝑆 ↾ ran 𝐹) ∘ 𝐹) = (𝑆 ∘ 𝐹) |
| 19 | 15, 18 | breqtrdi 5136 | . 2 ⊢ (𝜑 → 𝐺dom DProd (𝑆 ∘ 𝐹)) |
| 20 | 18 | oveq2i 7366 | . . . 4 ⊢ (𝐺 DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹)) = (𝐺 DProd (𝑆 ∘ 𝐹)) |
| 21 | 14 | simprd 495 | . . . 4 ⊢ (𝜑 → (𝐺 DProd ((𝑆 ↾ ran 𝐹) ∘ 𝐹)) = (𝐺 DProd (𝑆 ↾ ran 𝐹))) |
| 22 | 20, 21 | eqtr3id 2782 | . . 3 ⊢ (𝜑 → (𝐺 DProd (𝑆 ∘ 𝐹)) = (𝐺 DProd (𝑆 ↾ ran 𝐹))) |
| 23 | 7 | simprd 495 | . . 3 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ ran 𝐹)) ⊆ (𝐺 DProd 𝑆)) |
| 24 | 22, 23 | eqsstrd 3966 | . 2 ⊢ (𝜑 → (𝐺 DProd (𝑆 ∘ 𝐹)) ⊆ (𝐺 DProd 𝑆)) |
| 25 | 19, 24 | jca 511 | 1 ⊢ (𝜑 → (𝐺dom DProd (𝑆 ∘ 𝐹) ∧ (𝐺 DProd (𝑆 ∘ 𝐹)) ⊆ (𝐺 DProd 𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ⊆ wss 3899 class class class wbr 5095 dom cdm 5621 ran crn 5622 ↾ cres 5623 ∘ ccom 5625 ⟶wf 6485 –1-1→wf1 6486 –1-1-onto→wf1o 6488 ‘cfv 6489 (class class class)co 7355 SubGrpcsubg 19043 DProd cdprd 19917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-ixp 8831 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-fsupp 9256 df-oi 9406 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-n0 12392 df-z 12479 df-uz 12743 df-fz 13418 df-fzo 13565 df-seq 13919 df-hash 14248 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-0g 17355 df-gsum 17356 df-mre 17498 df-mrc 17499 df-acs 17501 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-mhm 18701 df-submnd 18702 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18991 df-subg 19046 df-ghm 19135 df-gim 19181 df-cntz 19239 df-oppg 19268 df-cmn 19704 df-dprd 19919 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |