MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdss2 Structured version   Visualization version   GIF version

Theorem frmdss2 18846
Description: A subset of generators is contained in a submonoid iff the set of words on the generators is in the submonoid. This can be viewed as an elementary way of saying "the monoidal closure of 𝐽 is Word 𝐽". (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frmdmnd.m 𝑀 = (freeMnd‘𝐼)
frmdgsum.u 𝑈 = (varFMnd𝐼)
Assertion
Ref Expression
frmdss2 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈𝐽) ⊆ 𝐴 ↔ Word 𝐽𝐴))

Proof of Theorem frmdss2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝐼𝑉)
2 simpl2 1193 . . . . . . . . 9 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝐽𝐼)
3 sswrd 14545 . . . . . . . . 9 (𝐽𝐼 → Word 𝐽 ⊆ Word 𝐼)
42, 3syl 17 . . . . . . . 8 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → Word 𝐽 ⊆ Word 𝐼)
5 simprr 772 . . . . . . . 8 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝑥 ∈ Word 𝐽)
64, 5sseldd 3964 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝑥 ∈ Word 𝐼)
7 frmdmnd.m . . . . . . . 8 𝑀 = (freeMnd‘𝐼)
8 frmdgsum.u . . . . . . . 8 𝑈 = (varFMnd𝐼)
97, 8frmdgsum 18845 . . . . . . 7 ((𝐼𝑉𝑥 ∈ Word 𝐼) → (𝑀 Σg (𝑈𝑥)) = 𝑥)
101, 6, 9syl2anc 584 . . . . . 6 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → (𝑀 Σg (𝑈𝑥)) = 𝑥)
11 simpl3 1194 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝐴 ∈ (SubMnd‘𝑀))
12 wrdf 14541 . . . . . . . . . . 11 (𝑥 ∈ Word 𝐽𝑥:(0..^(♯‘𝑥))⟶𝐽)
1312ad2antll 729 . . . . . . . . . 10 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝑥:(0..^(♯‘𝑥))⟶𝐽)
1413frnd 6719 . . . . . . . . 9 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → ran 𝑥𝐽)
15 cores 6243 . . . . . . . . 9 (ran 𝑥𝐽 → ((𝑈𝐽) ∘ 𝑥) = (𝑈𝑥))
1614, 15syl 17 . . . . . . . 8 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → ((𝑈𝐽) ∘ 𝑥) = (𝑈𝑥))
178vrmdf 18841 . . . . . . . . . . . . 13 (𝐼𝑉𝑈:𝐼⟶Word 𝐼)
18173ad2ant1 1133 . . . . . . . . . . . 12 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → 𝑈:𝐼⟶Word 𝐼)
1918ffnd 6712 . . . . . . . . . . 11 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → 𝑈 Fn 𝐼)
20 fnssres 6666 . . . . . . . . . . 11 ((𝑈 Fn 𝐼𝐽𝐼) → (𝑈𝐽) Fn 𝐽)
2119, 2, 20syl2an2r 685 . . . . . . . . . 10 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → (𝑈𝐽) Fn 𝐽)
22 df-ima 5672 . . . . . . . . . . 11 (𝑈𝐽) = ran (𝑈𝐽)
23 simprl 770 . . . . . . . . . . 11 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → (𝑈𝐽) ⊆ 𝐴)
2422, 23eqsstrrid 4003 . . . . . . . . . 10 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → ran (𝑈𝐽) ⊆ 𝐴)
25 df-f 6540 . . . . . . . . . 10 ((𝑈𝐽):𝐽𝐴 ↔ ((𝑈𝐽) Fn 𝐽 ∧ ran (𝑈𝐽) ⊆ 𝐴))
2621, 24, 25sylanbrc 583 . . . . . . . . 9 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → (𝑈𝐽):𝐽𝐴)
27 wrdco 14855 . . . . . . . . 9 ((𝑥 ∈ Word 𝐽 ∧ (𝑈𝐽):𝐽𝐴) → ((𝑈𝐽) ∘ 𝑥) ∈ Word 𝐴)
285, 26, 27syl2anc 584 . . . . . . . 8 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → ((𝑈𝐽) ∘ 𝑥) ∈ Word 𝐴)
2916, 28eqeltrrd 2836 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → (𝑈𝑥) ∈ Word 𝐴)
30 gsumwsubmcl 18820 . . . . . . 7 ((𝐴 ∈ (SubMnd‘𝑀) ∧ (𝑈𝑥) ∈ Word 𝐴) → (𝑀 Σg (𝑈𝑥)) ∈ 𝐴)
3111, 29, 30syl2anc 584 . . . . . 6 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → (𝑀 Σg (𝑈𝑥)) ∈ 𝐴)
3210, 31eqeltrrd 2836 . . . . 5 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝑥𝐴)
3332expr 456 . . . 4 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ (𝑈𝐽) ⊆ 𝐴) → (𝑥 ∈ Word 𝐽𝑥𝐴))
3433ssrdv 3969 . . 3 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ (𝑈𝐽) ⊆ 𝐴) → Word 𝐽𝐴)
3534ex 412 . 2 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈𝐽) ⊆ 𝐴 → Word 𝐽𝐴))
36 simpl1 1192 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥𝐽) → 𝐼𝑉)
37 simp2 1137 . . . . . . . 8 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → 𝐽𝐼)
3837sselda 3963 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥𝐽) → 𝑥𝐼)
398vrmdval 18840 . . . . . . 7 ((𝐼𝑉𝑥𝐼) → (𝑈𝑥) = ⟨“𝑥”⟩)
4036, 38, 39syl2anc 584 . . . . . 6 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥𝐽) → (𝑈𝑥) = ⟨“𝑥”⟩)
41 simpr 484 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥𝐽) → 𝑥𝐽)
4241s1cld 14626 . . . . . 6 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥𝐽) → ⟨“𝑥”⟩ ∈ Word 𝐽)
4340, 42eqeltrd 2835 . . . . 5 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥𝐽) → (𝑈𝑥) ∈ Word 𝐽)
4443ralrimiva 3133 . . . 4 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → ∀𝑥𝐽 (𝑈𝑥) ∈ Word 𝐽)
4518ffund 6715 . . . . 5 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → Fun 𝑈)
4618fdmd 6721 . . . . . 6 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → dom 𝑈 = 𝐼)
4737, 46sseqtrrd 4001 . . . . 5 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → 𝐽 ⊆ dom 𝑈)
48 funimass4 6948 . . . . 5 ((Fun 𝑈𝐽 ⊆ dom 𝑈) → ((𝑈𝐽) ⊆ Word 𝐽 ↔ ∀𝑥𝐽 (𝑈𝑥) ∈ Word 𝐽))
4945, 47, 48syl2anc 584 . . . 4 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈𝐽) ⊆ Word 𝐽 ↔ ∀𝑥𝐽 (𝑈𝑥) ∈ Word 𝐽))
5044, 49mpbird 257 . . 3 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → (𝑈𝐽) ⊆ Word 𝐽)
51 sstr2 3970 . . 3 ((𝑈𝐽) ⊆ Word 𝐽 → (Word 𝐽𝐴 → (𝑈𝐽) ⊆ 𝐴))
5250, 51syl 17 . 2 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → (Word 𝐽𝐴 → (𝑈𝐽) ⊆ 𝐴))
5335, 52impbid 212 1 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈𝐽) ⊆ 𝐴 ↔ Word 𝐽𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  wss 3931  dom cdm 5659  ran crn 5660  cres 5661  cima 5662  ccom 5663  Fun wfun 6530   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  0cc0 11134  ..^cfzo 13676  chash 14353  Word cword 14536  ⟨“cs1 14618   Σg cgsu 17459  SubMndcsubmnd 18765  freeMndcfrmd 18830  varFMndcvrmd 18831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-word 14537  df-lsw 14586  df-concat 14594  df-s1 14619  df-substr 14664  df-pfx 14694  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-gsum 17461  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-frmd 18832  df-vrmd 18833
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator