MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdss2 Structured version   Visualization version   GIF version

Theorem frmdss2 18087
Description: A subset of generators is contained in a submonoid iff the set of words on the generators is in the submonoid. This can be viewed as an elementary way of saying "the monoidal closure of 𝐽 is Word 𝐽". (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frmdmnd.m 𝑀 = (freeMnd‘𝐼)
frmdgsum.u 𝑈 = (varFMnd𝐼)
Assertion
Ref Expression
frmdss2 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈𝐽) ⊆ 𝐴 ↔ Word 𝐽𝐴))

Proof of Theorem frmdss2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1189 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝐼𝑉)
2 simpl2 1190 . . . . . . . . 9 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝐽𝐼)
3 sswrd 13914 . . . . . . . . 9 (𝐽𝐼 → Word 𝐽 ⊆ Word 𝐼)
42, 3syl 17 . . . . . . . 8 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → Word 𝐽 ⊆ Word 𝐼)
5 simprr 773 . . . . . . . 8 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝑥 ∈ Word 𝐽)
64, 5sseldd 3894 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝑥 ∈ Word 𝐼)
7 frmdmnd.m . . . . . . . 8 𝑀 = (freeMnd‘𝐼)
8 frmdgsum.u . . . . . . . 8 𝑈 = (varFMnd𝐼)
97, 8frmdgsum 18086 . . . . . . 7 ((𝐼𝑉𝑥 ∈ Word 𝐼) → (𝑀 Σg (𝑈𝑥)) = 𝑥)
101, 6, 9syl2anc 588 . . . . . 6 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → (𝑀 Σg (𝑈𝑥)) = 𝑥)
11 simpl3 1191 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝐴 ∈ (SubMnd‘𝑀))
12 wrdf 13911 . . . . . . . . . . 11 (𝑥 ∈ Word 𝐽𝑥:(0..^(♯‘𝑥))⟶𝐽)
1312ad2antll 729 . . . . . . . . . 10 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝑥:(0..^(♯‘𝑥))⟶𝐽)
1413frnd 6506 . . . . . . . . 9 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → ran 𝑥𝐽)
15 cores 6080 . . . . . . . . 9 (ran 𝑥𝐽 → ((𝑈𝐽) ∘ 𝑥) = (𝑈𝑥))
1614, 15syl 17 . . . . . . . 8 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → ((𝑈𝐽) ∘ 𝑥) = (𝑈𝑥))
178vrmdf 18082 . . . . . . . . . . . . 13 (𝐼𝑉𝑈:𝐼⟶Word 𝐼)
18173ad2ant1 1131 . . . . . . . . . . . 12 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → 𝑈:𝐼⟶Word 𝐼)
1918ffnd 6500 . . . . . . . . . . 11 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → 𝑈 Fn 𝐼)
20 fnssres 6454 . . . . . . . . . . 11 ((𝑈 Fn 𝐼𝐽𝐼) → (𝑈𝐽) Fn 𝐽)
2119, 2, 20syl2an2r 685 . . . . . . . . . 10 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → (𝑈𝐽) Fn 𝐽)
22 df-ima 5538 . . . . . . . . . . 11 (𝑈𝐽) = ran (𝑈𝐽)
23 simprl 771 . . . . . . . . . . 11 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → (𝑈𝐽) ⊆ 𝐴)
2422, 23eqsstrrid 3942 . . . . . . . . . 10 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → ran (𝑈𝐽) ⊆ 𝐴)
25 df-f 6340 . . . . . . . . . 10 ((𝑈𝐽):𝐽𝐴 ↔ ((𝑈𝐽) Fn 𝐽 ∧ ran (𝑈𝐽) ⊆ 𝐴))
2621, 24, 25sylanbrc 587 . . . . . . . . 9 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → (𝑈𝐽):𝐽𝐴)
27 wrdco 14233 . . . . . . . . 9 ((𝑥 ∈ Word 𝐽 ∧ (𝑈𝐽):𝐽𝐴) → ((𝑈𝐽) ∘ 𝑥) ∈ Word 𝐴)
285, 26, 27syl2anc 588 . . . . . . . 8 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → ((𝑈𝐽) ∘ 𝑥) ∈ Word 𝐴)
2916, 28eqeltrrd 2854 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → (𝑈𝑥) ∈ Word 𝐴)
30 gsumwsubmcl 18060 . . . . . . 7 ((𝐴 ∈ (SubMnd‘𝑀) ∧ (𝑈𝑥) ∈ Word 𝐴) → (𝑀 Σg (𝑈𝑥)) ∈ 𝐴)
3111, 29, 30syl2anc 588 . . . . . 6 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → (𝑀 Σg (𝑈𝑥)) ∈ 𝐴)
3210, 31eqeltrrd 2854 . . . . 5 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝑥𝐴)
3332expr 461 . . . 4 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ (𝑈𝐽) ⊆ 𝐴) → (𝑥 ∈ Word 𝐽𝑥𝐴))
3433ssrdv 3899 . . 3 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ (𝑈𝐽) ⊆ 𝐴) → Word 𝐽𝐴)
3534ex 417 . 2 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈𝐽) ⊆ 𝐴 → Word 𝐽𝐴))
36 simpl1 1189 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥𝐽) → 𝐼𝑉)
37 simp2 1135 . . . . . . . 8 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → 𝐽𝐼)
3837sselda 3893 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥𝐽) → 𝑥𝐼)
398vrmdval 18081 . . . . . . 7 ((𝐼𝑉𝑥𝐼) → (𝑈𝑥) = ⟨“𝑥”⟩)
4036, 38, 39syl2anc 588 . . . . . 6 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥𝐽) → (𝑈𝑥) = ⟨“𝑥”⟩)
41 simpr 489 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥𝐽) → 𝑥𝐽)
4241s1cld 13997 . . . . . 6 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥𝐽) → ⟨“𝑥”⟩ ∈ Word 𝐽)
4340, 42eqeltrd 2853 . . . . 5 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥𝐽) → (𝑈𝑥) ∈ Word 𝐽)
4443ralrimiva 3114 . . . 4 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → ∀𝑥𝐽 (𝑈𝑥) ∈ Word 𝐽)
4518ffund 6503 . . . . 5 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → Fun 𝑈)
4618fdmd 6509 . . . . . 6 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → dom 𝑈 = 𝐼)
4737, 46sseqtrrd 3934 . . . . 5 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → 𝐽 ⊆ dom 𝑈)
48 funimass4 6719 . . . . 5 ((Fun 𝑈𝐽 ⊆ dom 𝑈) → ((𝑈𝐽) ⊆ Word 𝐽 ↔ ∀𝑥𝐽 (𝑈𝑥) ∈ Word 𝐽))
4945, 47, 48syl2anc 588 . . . 4 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈𝐽) ⊆ Word 𝐽 ↔ ∀𝑥𝐽 (𝑈𝑥) ∈ Word 𝐽))
5044, 49mpbird 260 . . 3 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → (𝑈𝐽) ⊆ Word 𝐽)
51 sstr2 3900 . . 3 ((𝑈𝐽) ⊆ Word 𝐽 → (Word 𝐽𝐴 → (𝑈𝐽) ⊆ 𝐴))
5250, 51syl 17 . 2 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → (Word 𝐽𝐴 → (𝑈𝐽) ⊆ 𝐴))
5335, 52impbid 215 1 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈𝐽) ⊆ 𝐴 ↔ Word 𝐽𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wcel 2112  wral 3071  wss 3859  dom cdm 5525  ran crn 5526  cres 5527  cima 5528  ccom 5529  Fun wfun 6330   Fn wfn 6331  wf 6332  cfv 6336  (class class class)co 7151  0cc0 10568  ..^cfzo 13075  chash 13733  Word cword 13906  ⟨“cs1 13989   Σg cgsu 16765  SubMndcsubmnd 18014  freeMndcfrmd 18071  varFMndcvrmd 18072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-oadd 8117  df-er 8300  df-map 8419  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-card 9394  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-nn 11668  df-2 11730  df-n0 11928  df-xnn0 12000  df-z 12014  df-uz 12276  df-fz 12933  df-fzo 13076  df-seq 13412  df-hash 13734  df-word 13907  df-lsw 13955  df-concat 13963  df-s1 13990  df-substr 14043  df-pfx 14073  df-struct 16536  df-ndx 16537  df-slot 16538  df-base 16540  df-sets 16541  df-ress 16542  df-plusg 16629  df-0g 16766  df-gsum 16767  df-mgm 17911  df-sgrp 17960  df-mnd 17971  df-submnd 18016  df-frmd 18073  df-vrmd 18074
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator