Step | Hyp | Ref
| Expression |
1 | | simpl1 1189 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → 𝐼 ∈ 𝑉) |
2 | | simpl2 1190 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → 𝐽 ⊆ 𝐼) |
3 | | sswrd 13914 |
. . . . . . . . 9
⊢ (𝐽 ⊆ 𝐼 → Word 𝐽 ⊆ Word 𝐼) |
4 | 2, 3 | syl 17 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → Word 𝐽 ⊆ Word 𝐼) |
5 | | simprr 773 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → 𝑥 ∈ Word 𝐽) |
6 | 4, 5 | sseldd 3894 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → 𝑥 ∈ Word 𝐼) |
7 | | frmdmnd.m |
. . . . . . . 8
⊢ 𝑀 = (freeMnd‘𝐼) |
8 | | frmdgsum.u |
. . . . . . . 8
⊢ 𝑈 =
(varFMnd‘𝐼) |
9 | 7, 8 | frmdgsum 18086 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word 𝐼) → (𝑀 Σg (𝑈 ∘ 𝑥)) = 𝑥) |
10 | 1, 6, 9 | syl2anc 588 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → (𝑀 Σg (𝑈 ∘ 𝑥)) = 𝑥) |
11 | | simpl3 1191 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → 𝐴 ∈ (SubMnd‘𝑀)) |
12 | | wrdf 13911 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ Word 𝐽 → 𝑥:(0..^(♯‘𝑥))⟶𝐽) |
13 | 12 | ad2antll 729 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → 𝑥:(0..^(♯‘𝑥))⟶𝐽) |
14 | 13 | frnd 6506 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → ran 𝑥 ⊆ 𝐽) |
15 | | cores 6080 |
. . . . . . . . 9
⊢ (ran
𝑥 ⊆ 𝐽 → ((𝑈 ↾ 𝐽) ∘ 𝑥) = (𝑈 ∘ 𝑥)) |
16 | 14, 15 | syl 17 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → ((𝑈 ↾ 𝐽) ∘ 𝑥) = (𝑈 ∘ 𝑥)) |
17 | 8 | vrmdf 18082 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∈ 𝑉 → 𝑈:𝐼⟶Word 𝐼) |
18 | 17 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → 𝑈:𝐼⟶Word 𝐼) |
19 | 18 | ffnd 6500 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → 𝑈 Fn 𝐼) |
20 | | fnssres 6454 |
. . . . . . . . . . 11
⊢ ((𝑈 Fn 𝐼 ∧ 𝐽 ⊆ 𝐼) → (𝑈 ↾ 𝐽) Fn 𝐽) |
21 | 19, 2, 20 | syl2an2r 685 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → (𝑈 ↾ 𝐽) Fn 𝐽) |
22 | | df-ima 5538 |
. . . . . . . . . . 11
⊢ (𝑈 “ 𝐽) = ran (𝑈 ↾ 𝐽) |
23 | | simprl 771 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → (𝑈 “ 𝐽) ⊆ 𝐴) |
24 | 22, 23 | eqsstrrid 3942 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → ran (𝑈 ↾ 𝐽) ⊆ 𝐴) |
25 | | df-f 6340 |
. . . . . . . . . 10
⊢ ((𝑈 ↾ 𝐽):𝐽⟶𝐴 ↔ ((𝑈 ↾ 𝐽) Fn 𝐽 ∧ ran (𝑈 ↾ 𝐽) ⊆ 𝐴)) |
26 | 21, 24, 25 | sylanbrc 587 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → (𝑈 ↾ 𝐽):𝐽⟶𝐴) |
27 | | wrdco 14233 |
. . . . . . . . 9
⊢ ((𝑥 ∈ Word 𝐽 ∧ (𝑈 ↾ 𝐽):𝐽⟶𝐴) → ((𝑈 ↾ 𝐽) ∘ 𝑥) ∈ Word 𝐴) |
28 | 5, 26, 27 | syl2anc 588 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → ((𝑈 ↾ 𝐽) ∘ 𝑥) ∈ Word 𝐴) |
29 | 16, 28 | eqeltrrd 2854 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → (𝑈 ∘ 𝑥) ∈ Word 𝐴) |
30 | | gsumwsubmcl 18060 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubMnd‘𝑀) ∧ (𝑈 ∘ 𝑥) ∈ Word 𝐴) → (𝑀 Σg (𝑈 ∘ 𝑥)) ∈ 𝐴) |
31 | 11, 29, 30 | syl2anc 588 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → (𝑀 Σg (𝑈 ∘ 𝑥)) ∈ 𝐴) |
32 | 10, 31 | eqeltrrd 2854 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → 𝑥 ∈ 𝐴) |
33 | 32 | expr 461 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ (𝑈 “ 𝐽) ⊆ 𝐴) → (𝑥 ∈ Word 𝐽 → 𝑥 ∈ 𝐴)) |
34 | 33 | ssrdv 3899 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ (𝑈 “ 𝐽) ⊆ 𝐴) → Word 𝐽 ⊆ 𝐴) |
35 | 34 | ex 417 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈 “ 𝐽) ⊆ 𝐴 → Word 𝐽 ⊆ 𝐴)) |
36 | | simpl1 1189 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥 ∈ 𝐽) → 𝐼 ∈ 𝑉) |
37 | | simp2 1135 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → 𝐽 ⊆ 𝐼) |
38 | 37 | sselda 3893 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥 ∈ 𝐽) → 𝑥 ∈ 𝐼) |
39 | 8 | vrmdval 18081 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → (𝑈‘𝑥) = 〈“𝑥”〉) |
40 | 36, 38, 39 | syl2anc 588 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥 ∈ 𝐽) → (𝑈‘𝑥) = 〈“𝑥”〉) |
41 | | simpr 489 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥 ∈ 𝐽) → 𝑥 ∈ 𝐽) |
42 | 41 | s1cld 13997 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥 ∈ 𝐽) → 〈“𝑥”〉 ∈ Word 𝐽) |
43 | 40, 42 | eqeltrd 2853 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥 ∈ 𝐽) → (𝑈‘𝑥) ∈ Word 𝐽) |
44 | 43 | ralrimiva 3114 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → ∀𝑥 ∈ 𝐽 (𝑈‘𝑥) ∈ Word 𝐽) |
45 | 18 | ffund 6503 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → Fun 𝑈) |
46 | 18 | fdmd 6509 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → dom 𝑈 = 𝐼) |
47 | 37, 46 | sseqtrrd 3934 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → 𝐽 ⊆ dom 𝑈) |
48 | | funimass4 6719 |
. . . . 5
⊢ ((Fun
𝑈 ∧ 𝐽 ⊆ dom 𝑈) → ((𝑈 “ 𝐽) ⊆ Word 𝐽 ↔ ∀𝑥 ∈ 𝐽 (𝑈‘𝑥) ∈ Word 𝐽)) |
49 | 45, 47, 48 | syl2anc 588 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈 “ 𝐽) ⊆ Word 𝐽 ↔ ∀𝑥 ∈ 𝐽 (𝑈‘𝑥) ∈ Word 𝐽)) |
50 | 44, 49 | mpbird 260 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → (𝑈 “ 𝐽) ⊆ Word 𝐽) |
51 | | sstr2 3900 |
. . 3
⊢ ((𝑈 “ 𝐽) ⊆ Word 𝐽 → (Word 𝐽 ⊆ 𝐴 → (𝑈 “ 𝐽) ⊆ 𝐴)) |
52 | 50, 51 | syl 17 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → (Word 𝐽 ⊆ 𝐴 → (𝑈 “ 𝐽) ⊆ 𝐴)) |
53 | 35, 52 | impbid 215 |
1
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈 “ 𝐽) ⊆ 𝐴 ↔ Word 𝐽 ⊆ 𝐴)) |