MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdss2 Structured version   Visualization version   GIF version

Theorem frmdss2 18502
Description: A subset of generators is contained in a submonoid iff the set of words on the generators is in the submonoid. This can be viewed as an elementary way of saying "the monoidal closure of 𝐽 is Word 𝐽". (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frmdmnd.m 𝑀 = (freeMnd‘𝐼)
frmdgsum.u 𝑈 = (varFMnd𝐼)
Assertion
Ref Expression
frmdss2 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈𝐽) ⊆ 𝐴 ↔ Word 𝐽𝐴))

Proof of Theorem frmdss2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1190 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝐼𝑉)
2 simpl2 1191 . . . . . . . . 9 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝐽𝐼)
3 sswrd 14225 . . . . . . . . 9 (𝐽𝐼 → Word 𝐽 ⊆ Word 𝐼)
42, 3syl 17 . . . . . . . 8 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → Word 𝐽 ⊆ Word 𝐼)
5 simprr 770 . . . . . . . 8 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝑥 ∈ Word 𝐽)
64, 5sseldd 3922 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝑥 ∈ Word 𝐼)
7 frmdmnd.m . . . . . . . 8 𝑀 = (freeMnd‘𝐼)
8 frmdgsum.u . . . . . . . 8 𝑈 = (varFMnd𝐼)
97, 8frmdgsum 18501 . . . . . . 7 ((𝐼𝑉𝑥 ∈ Word 𝐼) → (𝑀 Σg (𝑈𝑥)) = 𝑥)
101, 6, 9syl2anc 584 . . . . . 6 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → (𝑀 Σg (𝑈𝑥)) = 𝑥)
11 simpl3 1192 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝐴 ∈ (SubMnd‘𝑀))
12 wrdf 14222 . . . . . . . . . . 11 (𝑥 ∈ Word 𝐽𝑥:(0..^(♯‘𝑥))⟶𝐽)
1312ad2antll 726 . . . . . . . . . 10 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝑥:(0..^(♯‘𝑥))⟶𝐽)
1413frnd 6608 . . . . . . . . 9 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → ran 𝑥𝐽)
15 cores 6153 . . . . . . . . 9 (ran 𝑥𝐽 → ((𝑈𝐽) ∘ 𝑥) = (𝑈𝑥))
1614, 15syl 17 . . . . . . . 8 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → ((𝑈𝐽) ∘ 𝑥) = (𝑈𝑥))
178vrmdf 18497 . . . . . . . . . . . . 13 (𝐼𝑉𝑈:𝐼⟶Word 𝐼)
18173ad2ant1 1132 . . . . . . . . . . . 12 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → 𝑈:𝐼⟶Word 𝐼)
1918ffnd 6601 . . . . . . . . . . 11 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → 𝑈 Fn 𝐼)
20 fnssres 6555 . . . . . . . . . . 11 ((𝑈 Fn 𝐼𝐽𝐼) → (𝑈𝐽) Fn 𝐽)
2119, 2, 20syl2an2r 682 . . . . . . . . . 10 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → (𝑈𝐽) Fn 𝐽)
22 df-ima 5602 . . . . . . . . . . 11 (𝑈𝐽) = ran (𝑈𝐽)
23 simprl 768 . . . . . . . . . . 11 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → (𝑈𝐽) ⊆ 𝐴)
2422, 23eqsstrrid 3970 . . . . . . . . . 10 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → ran (𝑈𝐽) ⊆ 𝐴)
25 df-f 6437 . . . . . . . . . 10 ((𝑈𝐽):𝐽𝐴 ↔ ((𝑈𝐽) Fn 𝐽 ∧ ran (𝑈𝐽) ⊆ 𝐴))
2621, 24, 25sylanbrc 583 . . . . . . . . 9 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → (𝑈𝐽):𝐽𝐴)
27 wrdco 14544 . . . . . . . . 9 ((𝑥 ∈ Word 𝐽 ∧ (𝑈𝐽):𝐽𝐴) → ((𝑈𝐽) ∘ 𝑥) ∈ Word 𝐴)
285, 26, 27syl2anc 584 . . . . . . . 8 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → ((𝑈𝐽) ∘ 𝑥) ∈ Word 𝐴)
2916, 28eqeltrrd 2840 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → (𝑈𝑥) ∈ Word 𝐴)
30 gsumwsubmcl 18475 . . . . . . 7 ((𝐴 ∈ (SubMnd‘𝑀) ∧ (𝑈𝑥) ∈ Word 𝐴) → (𝑀 Σg (𝑈𝑥)) ∈ 𝐴)
3111, 29, 30syl2anc 584 . . . . . 6 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → (𝑀 Σg (𝑈𝑥)) ∈ 𝐴)
3210, 31eqeltrrd 2840 . . . . 5 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝑥𝐴)
3332expr 457 . . . 4 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ (𝑈𝐽) ⊆ 𝐴) → (𝑥 ∈ Word 𝐽𝑥𝐴))
3433ssrdv 3927 . . 3 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ (𝑈𝐽) ⊆ 𝐴) → Word 𝐽𝐴)
3534ex 413 . 2 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈𝐽) ⊆ 𝐴 → Word 𝐽𝐴))
36 simpl1 1190 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥𝐽) → 𝐼𝑉)
37 simp2 1136 . . . . . . . 8 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → 𝐽𝐼)
3837sselda 3921 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥𝐽) → 𝑥𝐼)
398vrmdval 18496 . . . . . . 7 ((𝐼𝑉𝑥𝐼) → (𝑈𝑥) = ⟨“𝑥”⟩)
4036, 38, 39syl2anc 584 . . . . . 6 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥𝐽) → (𝑈𝑥) = ⟨“𝑥”⟩)
41 simpr 485 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥𝐽) → 𝑥𝐽)
4241s1cld 14308 . . . . . 6 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥𝐽) → ⟨“𝑥”⟩ ∈ Word 𝐽)
4340, 42eqeltrd 2839 . . . . 5 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥𝐽) → (𝑈𝑥) ∈ Word 𝐽)
4443ralrimiva 3103 . . . 4 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → ∀𝑥𝐽 (𝑈𝑥) ∈ Word 𝐽)
4518ffund 6604 . . . . 5 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → Fun 𝑈)
4618fdmd 6611 . . . . . 6 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → dom 𝑈 = 𝐼)
4737, 46sseqtrrd 3962 . . . . 5 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → 𝐽 ⊆ dom 𝑈)
48 funimass4 6834 . . . . 5 ((Fun 𝑈𝐽 ⊆ dom 𝑈) → ((𝑈𝐽) ⊆ Word 𝐽 ↔ ∀𝑥𝐽 (𝑈𝑥) ∈ Word 𝐽))
4945, 47, 48syl2anc 584 . . . 4 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈𝐽) ⊆ Word 𝐽 ↔ ∀𝑥𝐽 (𝑈𝑥) ∈ Word 𝐽))
5044, 49mpbird 256 . . 3 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → (𝑈𝐽) ⊆ Word 𝐽)
51 sstr2 3928 . . 3 ((𝑈𝐽) ⊆ Word 𝐽 → (Word 𝐽𝐴 → (𝑈𝐽) ⊆ 𝐴))
5250, 51syl 17 . 2 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → (Word 𝐽𝐴 → (𝑈𝐽) ⊆ 𝐴))
5335, 52impbid 211 1 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈𝐽) ⊆ 𝐴 ↔ Word 𝐽𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wss 3887  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  ccom 5593  Fun wfun 6427   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  0cc0 10871  ..^cfzo 13382  chash 14044  Word cword 14217  ⟨“cs1 14300   Σg cgsu 17151  SubMndcsubmnd 18429  freeMndcfrmd 18486  varFMndcvrmd 18487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-gsum 17153  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-frmd 18488  df-vrmd 18489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator