| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl1 1191 | . . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → 𝐼 ∈ 𝑉) | 
| 2 |  | simpl2 1192 | . . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → 𝐽 ⊆ 𝐼) | 
| 3 |  | sswrd 14561 | . . . . . . . . 9
⊢ (𝐽 ⊆ 𝐼 → Word 𝐽 ⊆ Word 𝐼) | 
| 4 | 2, 3 | syl 17 | . . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → Word 𝐽 ⊆ Word 𝐼) | 
| 5 |  | simprr 772 | . . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → 𝑥 ∈ Word 𝐽) | 
| 6 | 4, 5 | sseldd 3983 | . . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → 𝑥 ∈ Word 𝐼) | 
| 7 |  | frmdmnd.m | . . . . . . . 8
⊢ 𝑀 = (freeMnd‘𝐼) | 
| 8 |  | frmdgsum.u | . . . . . . . 8
⊢ 𝑈 =
(varFMnd‘𝐼) | 
| 9 | 7, 8 | frmdgsum 18876 | . . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word 𝐼) → (𝑀 Σg (𝑈 ∘ 𝑥)) = 𝑥) | 
| 10 | 1, 6, 9 | syl2anc 584 | . . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → (𝑀 Σg (𝑈 ∘ 𝑥)) = 𝑥) | 
| 11 |  | simpl3 1193 | . . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → 𝐴 ∈ (SubMnd‘𝑀)) | 
| 12 |  | wrdf 14558 | . . . . . . . . . . 11
⊢ (𝑥 ∈ Word 𝐽 → 𝑥:(0..^(♯‘𝑥))⟶𝐽) | 
| 13 | 12 | ad2antll 729 | . . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → 𝑥:(0..^(♯‘𝑥))⟶𝐽) | 
| 14 | 13 | frnd 6743 | . . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → ran 𝑥 ⊆ 𝐽) | 
| 15 |  | cores 6268 | . . . . . . . . 9
⊢ (ran
𝑥 ⊆ 𝐽 → ((𝑈 ↾ 𝐽) ∘ 𝑥) = (𝑈 ∘ 𝑥)) | 
| 16 | 14, 15 | syl 17 | . . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → ((𝑈 ↾ 𝐽) ∘ 𝑥) = (𝑈 ∘ 𝑥)) | 
| 17 | 8 | vrmdf 18872 | . . . . . . . . . . . . 13
⊢ (𝐼 ∈ 𝑉 → 𝑈:𝐼⟶Word 𝐼) | 
| 18 | 17 | 3ad2ant1 1133 | . . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → 𝑈:𝐼⟶Word 𝐼) | 
| 19 | 18 | ffnd 6736 | . . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → 𝑈 Fn 𝐼) | 
| 20 |  | fnssres 6690 | . . . . . . . . . . 11
⊢ ((𝑈 Fn 𝐼 ∧ 𝐽 ⊆ 𝐼) → (𝑈 ↾ 𝐽) Fn 𝐽) | 
| 21 | 19, 2, 20 | syl2an2r 685 | . . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → (𝑈 ↾ 𝐽) Fn 𝐽) | 
| 22 |  | df-ima 5697 | . . . . . . . . . . 11
⊢ (𝑈 “ 𝐽) = ran (𝑈 ↾ 𝐽) | 
| 23 |  | simprl 770 | . . . . . . . . . . 11
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → (𝑈 “ 𝐽) ⊆ 𝐴) | 
| 24 | 22, 23 | eqsstrrid 4022 | . . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → ran (𝑈 ↾ 𝐽) ⊆ 𝐴) | 
| 25 |  | df-f 6564 | . . . . . . . . . 10
⊢ ((𝑈 ↾ 𝐽):𝐽⟶𝐴 ↔ ((𝑈 ↾ 𝐽) Fn 𝐽 ∧ ran (𝑈 ↾ 𝐽) ⊆ 𝐴)) | 
| 26 | 21, 24, 25 | sylanbrc 583 | . . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → (𝑈 ↾ 𝐽):𝐽⟶𝐴) | 
| 27 |  | wrdco 14871 | . . . . . . . . 9
⊢ ((𝑥 ∈ Word 𝐽 ∧ (𝑈 ↾ 𝐽):𝐽⟶𝐴) → ((𝑈 ↾ 𝐽) ∘ 𝑥) ∈ Word 𝐴) | 
| 28 | 5, 26, 27 | syl2anc 584 | . . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → ((𝑈 ↾ 𝐽) ∘ 𝑥) ∈ Word 𝐴) | 
| 29 | 16, 28 | eqeltrrd 2841 | . . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → (𝑈 ∘ 𝑥) ∈ Word 𝐴) | 
| 30 |  | gsumwsubmcl 18851 | . . . . . . 7
⊢ ((𝐴 ∈ (SubMnd‘𝑀) ∧ (𝑈 ∘ 𝑥) ∈ Word 𝐴) → (𝑀 Σg (𝑈 ∘ 𝑥)) ∈ 𝐴) | 
| 31 | 11, 29, 30 | syl2anc 584 | . . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → (𝑀 Σg (𝑈 ∘ 𝑥)) ∈ 𝐴) | 
| 32 | 10, 31 | eqeltrrd 2841 | . . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → 𝑥 ∈ 𝐴) | 
| 33 | 32 | expr 456 | . . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ (𝑈 “ 𝐽) ⊆ 𝐴) → (𝑥 ∈ Word 𝐽 → 𝑥 ∈ 𝐴)) | 
| 34 | 33 | ssrdv 3988 | . . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ (𝑈 “ 𝐽) ⊆ 𝐴) → Word 𝐽 ⊆ 𝐴) | 
| 35 | 34 | ex 412 | . 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈 “ 𝐽) ⊆ 𝐴 → Word 𝐽 ⊆ 𝐴)) | 
| 36 |  | simpl1 1191 | . . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥 ∈ 𝐽) → 𝐼 ∈ 𝑉) | 
| 37 |  | simp2 1137 | . . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → 𝐽 ⊆ 𝐼) | 
| 38 | 37 | sselda 3982 | . . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥 ∈ 𝐽) → 𝑥 ∈ 𝐼) | 
| 39 | 8 | vrmdval 18871 | . . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → (𝑈‘𝑥) = 〈“𝑥”〉) | 
| 40 | 36, 38, 39 | syl2anc 584 | . . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥 ∈ 𝐽) → (𝑈‘𝑥) = 〈“𝑥”〉) | 
| 41 |  | simpr 484 | . . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥 ∈ 𝐽) → 𝑥 ∈ 𝐽) | 
| 42 | 41 | s1cld 14642 | . . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥 ∈ 𝐽) → 〈“𝑥”〉 ∈ Word 𝐽) | 
| 43 | 40, 42 | eqeltrd 2840 | . . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥 ∈ 𝐽) → (𝑈‘𝑥) ∈ Word 𝐽) | 
| 44 | 43 | ralrimiva 3145 | . . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → ∀𝑥 ∈ 𝐽 (𝑈‘𝑥) ∈ Word 𝐽) | 
| 45 | 18 | ffund 6739 | . . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → Fun 𝑈) | 
| 46 | 18 | fdmd 6745 | . . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → dom 𝑈 = 𝐼) | 
| 47 | 37, 46 | sseqtrrd 4020 | . . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → 𝐽 ⊆ dom 𝑈) | 
| 48 |  | funimass4 6972 | . . . . 5
⊢ ((Fun
𝑈 ∧ 𝐽 ⊆ dom 𝑈) → ((𝑈 “ 𝐽) ⊆ Word 𝐽 ↔ ∀𝑥 ∈ 𝐽 (𝑈‘𝑥) ∈ Word 𝐽)) | 
| 49 | 45, 47, 48 | syl2anc 584 | . . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈 “ 𝐽) ⊆ Word 𝐽 ↔ ∀𝑥 ∈ 𝐽 (𝑈‘𝑥) ∈ Word 𝐽)) | 
| 50 | 44, 49 | mpbird 257 | . . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → (𝑈 “ 𝐽) ⊆ Word 𝐽) | 
| 51 |  | sstr2 3989 | . . 3
⊢ ((𝑈 “ 𝐽) ⊆ Word 𝐽 → (Word 𝐽 ⊆ 𝐴 → (𝑈 “ 𝐽) ⊆ 𝐴)) | 
| 52 | 50, 51 | syl 17 | . 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → (Word 𝐽 ⊆ 𝐴 → (𝑈 “ 𝐽) ⊆ 𝐴)) | 
| 53 | 35, 52 | impbid 212 | 1
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈 “ 𝐽) ⊆ 𝐴 ↔ Word 𝐽 ⊆ 𝐴)) |