Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdss2 Structured version   Visualization version   GIF version

Theorem frmdss2 18087
 Description: A subset of generators is contained in a submonoid iff the set of words on the generators is in the submonoid. This can be viewed as an elementary way of saying "the monoidal closure of 𝐽 is Word 𝐽". (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frmdmnd.m 𝑀 = (freeMnd‘𝐼)
frmdgsum.u 𝑈 = (varFMnd𝐼)
Assertion
Ref Expression
frmdss2 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈𝐽) ⊆ 𝐴 ↔ Word 𝐽𝐴))

Proof of Theorem frmdss2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1189 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝐼𝑉)
2 simpl2 1190 . . . . . . . . 9 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝐽𝐼)
3 sswrd 13914 . . . . . . . . 9 (𝐽𝐼 → Word 𝐽 ⊆ Word 𝐼)
42, 3syl 17 . . . . . . . 8 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → Word 𝐽 ⊆ Word 𝐼)
5 simprr 773 . . . . . . . 8 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝑥 ∈ Word 𝐽)
64, 5sseldd 3894 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝑥 ∈ Word 𝐼)
7 frmdmnd.m . . . . . . . 8 𝑀 = (freeMnd‘𝐼)
8 frmdgsum.u . . . . . . . 8 𝑈 = (varFMnd𝐼)
97, 8frmdgsum 18086 . . . . . . 7 ((𝐼𝑉𝑥 ∈ Word 𝐼) → (𝑀 Σg (𝑈𝑥)) = 𝑥)
101, 6, 9syl2anc 588 . . . . . 6 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → (𝑀 Σg (𝑈𝑥)) = 𝑥)
11 simpl3 1191 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝐴 ∈ (SubMnd‘𝑀))
12 wrdf 13911 . . . . . . . . . . 11 (𝑥 ∈ Word 𝐽𝑥:(0..^(♯‘𝑥))⟶𝐽)
1312ad2antll 729 . . . . . . . . . 10 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝑥:(0..^(♯‘𝑥))⟶𝐽)
1413frnd 6506 . . . . . . . . 9 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → ran 𝑥𝐽)
15 cores 6080 . . . . . . . . 9 (ran 𝑥𝐽 → ((𝑈𝐽) ∘ 𝑥) = (𝑈𝑥))
1614, 15syl 17 . . . . . . . 8 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → ((𝑈𝐽) ∘ 𝑥) = (𝑈𝑥))
178vrmdf 18082 . . . . . . . . . . . . 13 (𝐼𝑉𝑈:𝐼⟶Word 𝐼)
18173ad2ant1 1131 . . . . . . . . . . . 12 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → 𝑈:𝐼⟶Word 𝐼)
1918ffnd 6500 . . . . . . . . . . 11 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → 𝑈 Fn 𝐼)
20 fnssres 6454 . . . . . . . . . . 11 ((𝑈 Fn 𝐼𝐽𝐼) → (𝑈𝐽) Fn 𝐽)
2119, 2, 20syl2an2r 685 . . . . . . . . . 10 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → (𝑈𝐽) Fn 𝐽)
22 df-ima 5538 . . . . . . . . . . 11 (𝑈𝐽) = ran (𝑈𝐽)
23 simprl 771 . . . . . . . . . . 11 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → (𝑈𝐽) ⊆ 𝐴)
2422, 23eqsstrrid 3942 . . . . . . . . . 10 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → ran (𝑈𝐽) ⊆ 𝐴)
25 df-f 6340 . . . . . . . . . 10 ((𝑈𝐽):𝐽𝐴 ↔ ((𝑈𝐽) Fn 𝐽 ∧ ran (𝑈𝐽) ⊆ 𝐴))
2621, 24, 25sylanbrc 587 . . . . . . . . 9 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → (𝑈𝐽):𝐽𝐴)
27 wrdco 14233 . . . . . . . . 9 ((𝑥 ∈ Word 𝐽 ∧ (𝑈𝐽):𝐽𝐴) → ((𝑈𝐽) ∘ 𝑥) ∈ Word 𝐴)
285, 26, 27syl2anc 588 . . . . . . . 8 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → ((𝑈𝐽) ∘ 𝑥) ∈ Word 𝐴)
2916, 28eqeltrrd 2854 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → (𝑈𝑥) ∈ Word 𝐴)
30 gsumwsubmcl 18060 . . . . . . 7 ((𝐴 ∈ (SubMnd‘𝑀) ∧ (𝑈𝑥) ∈ Word 𝐴) → (𝑀 Σg (𝑈𝑥)) ∈ 𝐴)
3111, 29, 30syl2anc 588 . . . . . 6 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → (𝑀 Σg (𝑈𝑥)) ∈ 𝐴)
3210, 31eqeltrrd 2854 . . . . 5 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈𝐽) ⊆ 𝐴𝑥 ∈ Word 𝐽)) → 𝑥𝐴)
3332expr 461 . . . 4 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ (𝑈𝐽) ⊆ 𝐴) → (𝑥 ∈ Word 𝐽𝑥𝐴))
3433ssrdv 3899 . . 3 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ (𝑈𝐽) ⊆ 𝐴) → Word 𝐽𝐴)
3534ex 417 . 2 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈𝐽) ⊆ 𝐴 → Word 𝐽𝐴))
36 simpl1 1189 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥𝐽) → 𝐼𝑉)
37 simp2 1135 . . . . . . . 8 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → 𝐽𝐼)
3837sselda 3893 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥𝐽) → 𝑥𝐼)
398vrmdval 18081 . . . . . . 7 ((𝐼𝑉𝑥𝐼) → (𝑈𝑥) = ⟨“𝑥”⟩)
4036, 38, 39syl2anc 588 . . . . . 6 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥𝐽) → (𝑈𝑥) = ⟨“𝑥”⟩)
41 simpr 489 . . . . . . 7 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥𝐽) → 𝑥𝐽)
4241s1cld 13997 . . . . . 6 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥𝐽) → ⟨“𝑥”⟩ ∈ Word 𝐽)
4340, 42eqeltrd 2853 . . . . 5 (((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥𝐽) → (𝑈𝑥) ∈ Word 𝐽)
4443ralrimiva 3114 . . . 4 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → ∀𝑥𝐽 (𝑈𝑥) ∈ Word 𝐽)
4518ffund 6503 . . . . 5 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → Fun 𝑈)
4618fdmd 6509 . . . . . 6 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → dom 𝑈 = 𝐼)
4737, 46sseqtrrd 3934 . . . . 5 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → 𝐽 ⊆ dom 𝑈)
48 funimass4 6719 . . . . 5 ((Fun 𝑈𝐽 ⊆ dom 𝑈) → ((𝑈𝐽) ⊆ Word 𝐽 ↔ ∀𝑥𝐽 (𝑈𝑥) ∈ Word 𝐽))
4945, 47, 48syl2anc 588 . . . 4 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈𝐽) ⊆ Word 𝐽 ↔ ∀𝑥𝐽 (𝑈𝑥) ∈ Word 𝐽))
5044, 49mpbird 260 . . 3 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → (𝑈𝐽) ⊆ Word 𝐽)
51 sstr2 3900 . . 3 ((𝑈𝐽) ⊆ Word 𝐽 → (Word 𝐽𝐴 → (𝑈𝐽) ⊆ 𝐴))
5250, 51syl 17 . 2 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → (Word 𝐽𝐴 → (𝑈𝐽) ⊆ 𝐴))
5335, 52impbid 215 1 ((𝐼𝑉𝐽𝐼𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈𝐽) ⊆ 𝐴 ↔ Word 𝐽𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 400   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112  ∀wral 3071   ⊆ wss 3859  dom cdm 5525  ran crn 5526   ↾ cres 5527   “ cima 5528   ∘ ccom 5529  Fun wfun 6330   Fn wfn 6331  ⟶wf 6332  ‘cfv 6336  (class class class)co 7151  0cc0 10568  ..^cfzo 13075  ♯chash 13733  Word cword 13906  ⟨“cs1 13989   Σg cgsu 16765  SubMndcsubmnd 18014  freeMndcfrmd 18071  varFMndcvrmd 18072 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-oadd 8117  df-er 8300  df-map 8419  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-card 9394  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-nn 11668  df-2 11730  df-n0 11928  df-xnn0 12000  df-z 12014  df-uz 12276  df-fz 12933  df-fzo 13076  df-seq 13412  df-hash 13734  df-word 13907  df-lsw 13955  df-concat 13963  df-s1 13990  df-substr 14043  df-pfx 14073  df-struct 16536  df-ndx 16537  df-slot 16538  df-base 16540  df-sets 16541  df-ress 16542  df-plusg 16629  df-0g 16766  df-gsum 16767  df-mgm 17911  df-sgrp 17960  df-mnd 17971  df-submnd 18016  df-frmd 18073  df-vrmd 18074 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator