Step | Hyp | Ref
| Expression |
1 | | nnuz 12550 |
. . 3
⊢ ℕ =
(ℤ≥‘1) |
2 | | 1zzd 12281 |
. . 3
⊢ (𝜑 → 1 ∈
ℤ) |
3 | | eqid 2738 |
. . . 4
⊢ (𝑚 ∈ ℕ ↦ (((𝐴 + 1) ·
(log‘((𝑚 + 1) / 𝑚))) − (log‘(((𝐴 + 1) / 𝑚) + 1)))) = (𝑚 ∈ ℕ ↦ (((𝐴 + 1) · (log‘((𝑚 + 1) / 𝑚))) − (log‘(((𝐴 + 1) / 𝑚) + 1)))) |
4 | | lgamcvg.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ (ℂ ∖ (ℤ ∖
ℕ))) |
5 | | 1nn0 12179 |
. . . . . 6
⊢ 1 ∈
ℕ0 |
6 | 5 | a1i 11 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℕ0) |
7 | 4, 6 | dmgmaddnn0 26081 |
. . . 4
⊢ (𝜑 → (𝐴 + 1) ∈ (ℂ ∖ (ℤ
∖ ℕ))) |
8 | 3, 7 | lgamcvg 26108 |
. . 3
⊢ (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (((𝐴 + 1) ·
(log‘((𝑚 + 1) / 𝑚))) − (log‘(((𝐴 + 1) / 𝑚) + 1))))) ⇝ ((log Γ‘(𝐴 + 1)) + (log‘(𝐴 + 1)))) |
9 | | seqex 13651 |
. . . 4
⊢ seq1( + ,
𝐺) ∈
V |
10 | 9 | a1i 11 |
. . 3
⊢ (𝜑 → seq1( + , 𝐺) ∈ V) |
11 | 4 | eldifad 3895 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℂ) |
12 | 11 | abscld 15076 |
. . . . . . 7
⊢ (𝜑 → (abs‘𝐴) ∈
ℝ) |
13 | | arch 12160 |
. . . . . . 7
⊢
((abs‘𝐴)
∈ ℝ → ∃𝑟 ∈ ℕ (abs‘𝐴) < 𝑟) |
14 | 12, 13 | syl 17 |
. . . . . 6
⊢ (𝜑 → ∃𝑟 ∈ ℕ (abs‘𝐴) < 𝑟) |
15 | | eqid 2738 |
. . . . . . . . 9
⊢
(ℤ≥‘𝑟) = (ℤ≥‘𝑟) |
16 | | simprl 767 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → 𝑟 ∈ ℕ) |
17 | 16 | nnzd 12354 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → 𝑟 ∈ ℤ) |
18 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (ℂ
∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0)) |
19 | 18 | logcn 25707 |
. . . . . . . . . 10
⊢ (log
↾ (ℂ ∖ (-∞(,]0))) ∈ ((ℂ ∖
(-∞(,]0))–cn→ℂ) |
20 | 19 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → (log ↾ (ℂ ∖
(-∞(,]0))) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ)) |
21 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(1(ball‘(abs ∘ − ))1) = (1(ball‘(abs ∘
− ))1) |
22 | 21 | dvlog2lem 25712 |
. . . . . . . . . . 11
⊢
(1(ball‘(abs ∘ − ))1) ⊆ (ℂ ∖
(-∞(,]0)) |
23 | 11 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → 𝐴 ∈ ℂ) |
24 | | eluznn 12587 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑟 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘𝑟)) → 𝑚 ∈ ℕ) |
25 | 24 | ex 412 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑟 ∈ ℕ → (𝑚 ∈
(ℤ≥‘𝑟) → 𝑚 ∈ ℕ)) |
26 | 25 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → (𝑚 ∈ (ℤ≥‘𝑟) → 𝑚 ∈ ℕ)) |
27 | 26 | imp 406 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → 𝑚 ∈ ℕ) |
28 | 27 | nncnd 11919 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → 𝑚 ∈ ℂ) |
29 | | 1cnd 10901 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → 1 ∈
ℂ) |
30 | 28, 29 | addcld 10925 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → (𝑚 + 1) ∈ ℂ) |
31 | 27 | peano2nnd 11920 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → (𝑚 + 1) ∈ ℕ) |
32 | 31 | nnne0d 11953 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → (𝑚 + 1) ≠ 0) |
33 | 23, 30, 32 | divcld 11681 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → (𝐴 / (𝑚 + 1)) ∈ ℂ) |
34 | 33, 29 | addcld 10925 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → ((𝐴 / (𝑚 + 1)) + 1) ∈ ℂ) |
35 | | ax-1cn 10860 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
36 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (abs
∘ − ) = (abs ∘ − ) |
37 | 36 | cnmetdval 23840 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 / (𝑚 + 1)) + 1) ∈ ℂ ∧ 1 ∈
ℂ) → (((𝐴 /
(𝑚 + 1)) + 1)(abs ∘
− )1) = (abs‘(((𝐴 / (𝑚 + 1)) + 1) − 1))) |
38 | 34, 35, 37 | sylancl 585 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → (((𝐴 / (𝑚 + 1)) + 1)(abs ∘ − )1) =
(abs‘(((𝐴 / (𝑚 + 1)) + 1) −
1))) |
39 | 33, 29 | pncand 11263 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → (((𝐴 / (𝑚 + 1)) + 1) − 1) = (𝐴 / (𝑚 + 1))) |
40 | 39 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → (abs‘(((𝐴 / (𝑚 + 1)) + 1) − 1)) = (abs‘(𝐴 / (𝑚 + 1)))) |
41 | 23, 30, 32 | absdivd 15095 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → (abs‘(𝐴 / (𝑚 + 1))) = ((abs‘𝐴) / (abs‘(𝑚 + 1)))) |
42 | 31 | nnred 11918 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → (𝑚 + 1) ∈ ℝ) |
43 | 31 | nnrpd 12699 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → (𝑚 + 1) ∈
ℝ+) |
44 | 43 | rpge0d 12705 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → 0 ≤ (𝑚 + 1)) |
45 | 42, 44 | absidd 15062 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → (abs‘(𝑚 + 1)) = (𝑚 + 1)) |
46 | 45 | oveq2d 7271 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → ((abs‘𝐴) / (abs‘(𝑚 + 1))) = ((abs‘𝐴) / (𝑚 + 1))) |
47 | 41, 46 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → (abs‘(𝐴 / (𝑚 + 1))) = ((abs‘𝐴) / (𝑚 + 1))) |
48 | 38, 40, 47 | 3eqtrd 2782 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → (((𝐴 / (𝑚 + 1)) + 1)(abs ∘ − )1) =
((abs‘𝐴) / (𝑚 + 1))) |
49 | 12 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → (abs‘𝐴) ∈
ℝ) |
50 | 16 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → 𝑟 ∈ ℕ) |
51 | 50 | nnred 11918 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → 𝑟 ∈ ℝ) |
52 | | simplrr 774 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → (abs‘𝐴) < 𝑟) |
53 | | eluzle 12524 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈
(ℤ≥‘𝑟) → 𝑟 ≤ 𝑚) |
54 | 53 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → 𝑟 ≤ 𝑚) |
55 | | nnleltp1 12305 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑟 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (𝑟 ≤ 𝑚 ↔ 𝑟 < (𝑚 + 1))) |
56 | 50, 27, 55 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → (𝑟 ≤ 𝑚 ↔ 𝑟 < (𝑚 + 1))) |
57 | 54, 56 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → 𝑟 < (𝑚 + 1)) |
58 | 49, 51, 42, 52, 57 | lttrd 11066 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → (abs‘𝐴) < (𝑚 + 1)) |
59 | 30 | mulid1d 10923 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → ((𝑚 + 1) · 1) = (𝑚 + 1)) |
60 | 58, 59 | breqtrrd 5098 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → (abs‘𝐴) < ((𝑚 + 1) · 1)) |
61 | | 1red 10907 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → 1 ∈
ℝ) |
62 | 49, 61, 43 | ltdivmuld 12752 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → (((abs‘𝐴) / (𝑚 + 1)) < 1 ↔ (abs‘𝐴) < ((𝑚 + 1) · 1))) |
63 | 60, 62 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → ((abs‘𝐴) / (𝑚 + 1)) < 1) |
64 | 48, 63 | eqbrtrd 5092 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → (((𝐴 / (𝑚 + 1)) + 1)(abs ∘ − )1) <
1) |
65 | | cnxmet 23842 |
. . . . . . . . . . . . . 14
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
66 | 65 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → (abs ∘ − )
∈ (∞Met‘ℂ)) |
67 | | 1rp 12663 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℝ+ |
68 | | rpxr 12668 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
ℝ+ → 1 ∈ ℝ*) |
69 | 67, 68 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → 1 ∈
ℝ*) |
70 | | elbl3 23453 |
. . . . . . . . . . . . 13
⊢ ((((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈
ℝ*) ∧ (1 ∈ ℂ ∧ ((𝐴 / (𝑚 + 1)) + 1) ∈ ℂ)) → (((𝐴 / (𝑚 + 1)) + 1) ∈ (1(ball‘(abs ∘
− ))1) ↔ (((𝐴 /
(𝑚 + 1)) + 1)(abs ∘
− )1) < 1)) |
71 | 66, 69, 29, 34, 70 | syl22anc 835 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → (((𝐴 / (𝑚 + 1)) + 1) ∈ (1(ball‘(abs ∘
− ))1) ↔ (((𝐴 /
(𝑚 + 1)) + 1)(abs ∘
− )1) < 1)) |
72 | 64, 71 | mpbird 256 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → ((𝐴 / (𝑚 + 1)) + 1) ∈ (1(ball‘(abs ∘
− ))1)) |
73 | 22, 72 | sselid 3915 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → ((𝐴 / (𝑚 + 1)) + 1) ∈ (ℂ ∖
(-∞(,]0))) |
74 | 73 | fmpttd 6971 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → (𝑚 ∈ (ℤ≥‘𝑟) ↦ ((𝐴 / (𝑚 + 1)) +
1)):(ℤ≥‘𝑟)⟶(ℂ ∖
(-∞(,]0))) |
75 | 26 | ssrdv 3923 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → (ℤ≥‘𝑟) ⊆
ℕ) |
76 | 75 | resmptd 5937 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → ((𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) ↾
(ℤ≥‘𝑟)) = (𝑚 ∈ (ℤ≥‘𝑟) ↦ ((𝐴 / (𝑚 + 1)) + 1))) |
77 | | nnex 11909 |
. . . . . . . . . . . . . . . . 17
⊢ ℕ
∈ V |
78 | 77 | mptex 7081 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℕ ↦ (𝐴 / (𝑚 + 1))) ∈ V |
79 | 78 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ (𝐴 / (𝑚 + 1))) ∈ V) |
80 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1)) |
81 | 80 | oveq2d 7271 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑛 → (𝐴 / (𝑚 + 1)) = (𝐴 / (𝑛 + 1))) |
82 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ ℕ ↦ (𝐴 / (𝑚 + 1))) = (𝑚 ∈ ℕ ↦ (𝐴 / (𝑚 + 1))) |
83 | | ovex 7288 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 / (𝑛 + 1)) ∈ V |
84 | 81, 82, 83 | fvmpt 6857 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (𝐴 / (𝑚 + 1)))‘𝑛) = (𝐴 / (𝑛 + 1))) |
85 | 84 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝐴 / (𝑚 + 1)))‘𝑛) = (𝐴 / (𝑛 + 1))) |
86 | 1, 2, 11, 2, 79, 85 | divcnvshft 15495 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ (𝐴 / (𝑚 + 1))) ⇝ 0) |
87 | | 1cnd 10901 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ∈
ℂ) |
88 | 77 | mptex 7081 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) ∈ V |
89 | 88 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) ∈ V) |
90 | 11 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℂ) |
91 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
92 | 91 | nncnd 11919 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ) |
93 | | 1cnd 10901 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 1 ∈
ℂ) |
94 | 92, 93 | addcld 10925 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℂ) |
95 | 91 | peano2nnd 11920 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ) |
96 | 95 | nnne0d 11953 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ≠ 0) |
97 | 90, 94, 96 | divcld 11681 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 / (𝑛 + 1)) ∈ ℂ) |
98 | 85, 97 | eqeltrd 2839 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝐴 / (𝑚 + 1)))‘𝑛) ∈ ℂ) |
99 | 81 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑛 → ((𝐴 / (𝑚 + 1)) + 1) = ((𝐴 / (𝑛 + 1)) + 1)) |
100 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) = (𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) |
101 | | ovex 7288 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 / (𝑛 + 1)) + 1) ∈ V |
102 | 99, 100, 101 | fvmpt 6857 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1))‘𝑛) = ((𝐴 / (𝑛 + 1)) + 1)) |
103 | 102 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1))‘𝑛) = ((𝐴 / (𝑛 + 1)) + 1)) |
104 | 85 | oveq1d 7270 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((𝑚 ∈ ℕ ↦ (𝐴 / (𝑚 + 1)))‘𝑛) + 1) = ((𝐴 / (𝑛 + 1)) + 1)) |
105 | 103, 104 | eqtr4d 2781 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1))‘𝑛) = (((𝑚 ∈ ℕ ↦ (𝐴 / (𝑚 + 1)))‘𝑛) + 1)) |
106 | 1, 2, 86, 87, 89, 98, 105 | climaddc1 15272 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) ⇝ (0 +
1)) |
107 | | 0p1e1 12025 |
. . . . . . . . . . . . 13
⊢ (0 + 1) =
1 |
108 | 106, 107 | breqtrdi 5111 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) ⇝ 1) |
109 | 108 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → (𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) ⇝ 1) |
110 | | climres 15212 |
. . . . . . . . . . . 12
⊢ ((𝑟 ∈ ℤ ∧ (𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) ∈ V) → (((𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) ↾
(ℤ≥‘𝑟)) ⇝ 1 ↔ (𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) ⇝ 1)) |
111 | 17, 88, 110 | sylancl 585 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → (((𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) ↾
(ℤ≥‘𝑟)) ⇝ 1 ↔ (𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) ⇝ 1)) |
112 | 109, 111 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → ((𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) ↾
(ℤ≥‘𝑟)) ⇝ 1) |
113 | 76, 112 | eqbrtrrd 5094 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → (𝑚 ∈ (ℤ≥‘𝑟) ↦ ((𝐴 / (𝑚 + 1)) + 1)) ⇝ 1) |
114 | 67 | a1i 11 |
. . . . . . . . . . 11
⊢ (1 ∈
ℝ → 1 ∈ ℝ+) |
115 | 18 | ellogdm 25699 |
. . . . . . . . . . 11
⊢ (1 ∈
(ℂ ∖ (-∞(,]0)) ↔ (1 ∈ ℂ ∧ (1 ∈
ℝ → 1 ∈ ℝ+))) |
116 | 35, 114, 115 | mpbir2an 707 |
. . . . . . . . . 10
⊢ 1 ∈
(ℂ ∖ (-∞(,]0)) |
117 | 116 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → 1 ∈ (ℂ ∖
(-∞(,]0))) |
118 | 15, 17, 20, 74, 113, 117 | climcncf 23969 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → ((log ↾ (ℂ ∖
(-∞(,]0))) ∘ (𝑚
∈ (ℤ≥‘𝑟) ↦ ((𝐴 / (𝑚 + 1)) + 1))) ⇝ ((log ↾ (ℂ
∖ (-∞(,]0)))‘1)) |
119 | | logf1o 25625 |
. . . . . . . . . . 11
⊢
log:(ℂ ∖ {0})–1-1-onto→ran
log |
120 | | f1of 6700 |
. . . . . . . . . . 11
⊢
(log:(ℂ ∖ {0})–1-1-onto→ran
log → log:(ℂ ∖ {0})⟶ran log) |
121 | 119, 120 | mp1i 13 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → log:(ℂ ∖
{0})⟶ran log) |
122 | 18 | logdmss 25702 |
. . . . . . . . . . 11
⊢ (ℂ
∖ (-∞(,]0)) ⊆ (ℂ ∖ {0}) |
123 | 122, 73 | sselid 3915 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ≥‘𝑟)) → ((𝐴 / (𝑚 + 1)) + 1) ∈ (ℂ ∖
{0})) |
124 | 121, 123 | cofmpt 6986 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → (log ∘ (𝑚 ∈ (ℤ≥‘𝑟) ↦ ((𝐴 / (𝑚 + 1)) + 1))) = (𝑚 ∈ (ℤ≥‘𝑟) ↦ (log‘((𝐴 / (𝑚 + 1)) + 1)))) |
125 | | frn 6591 |
. . . . . . . . . 10
⊢ ((𝑚 ∈
(ℤ≥‘𝑟) ↦ ((𝐴 / (𝑚 + 1)) +
1)):(ℤ≥‘𝑟)⟶(ℂ ∖ (-∞(,]0))
→ ran (𝑚 ∈
(ℤ≥‘𝑟) ↦ ((𝐴 / (𝑚 + 1)) + 1)) ⊆ (ℂ ∖
(-∞(,]0))) |
126 | | cores 6142 |
. . . . . . . . . 10
⊢ (ran
(𝑚 ∈
(ℤ≥‘𝑟) ↦ ((𝐴 / (𝑚 + 1)) + 1)) ⊆ (ℂ ∖
(-∞(,]0)) → ((log ↾ (ℂ ∖ (-∞(,]0))) ∘
(𝑚 ∈
(ℤ≥‘𝑟) ↦ ((𝐴 / (𝑚 + 1)) + 1))) = (log ∘ (𝑚 ∈
(ℤ≥‘𝑟) ↦ ((𝐴 / (𝑚 + 1)) + 1)))) |
127 | 74, 125, 126 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → ((log ↾ (ℂ ∖
(-∞(,]0))) ∘ (𝑚
∈ (ℤ≥‘𝑟) ↦ ((𝐴 / (𝑚 + 1)) + 1))) = (log ∘ (𝑚 ∈
(ℤ≥‘𝑟) ↦ ((𝐴 / (𝑚 + 1)) + 1)))) |
128 | 75 | resmptd 5937 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → ((𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1))) ↾
(ℤ≥‘𝑟)) = (𝑚 ∈ (ℤ≥‘𝑟) ↦ (log‘((𝐴 / (𝑚 + 1)) + 1)))) |
129 | 124, 127,
128 | 3eqtr4d 2788 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → ((log ↾ (ℂ ∖
(-∞(,]0))) ∘ (𝑚
∈ (ℤ≥‘𝑟) ↦ ((𝐴 / (𝑚 + 1)) + 1))) = ((𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1))) ↾
(ℤ≥‘𝑟))) |
130 | | fvres 6775 |
. . . . . . . . . 10
⊢ (1 ∈
(ℂ ∖ (-∞(,]0)) → ((log ↾ (ℂ ∖
(-∞(,]0)))‘1) = (log‘1)) |
131 | 116, 130 | mp1i 13 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → ((log ↾ (ℂ ∖
(-∞(,]0)))‘1) = (log‘1)) |
132 | | log1 25646 |
. . . . . . . . 9
⊢
(log‘1) = 0 |
133 | 131, 132 | eqtrdi 2795 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → ((log ↾ (ℂ ∖
(-∞(,]0)))‘1) = 0) |
134 | 118, 129,
133 | 3brtr3d 5101 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → ((𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1))) ↾
(ℤ≥‘𝑟)) ⇝ 0) |
135 | 77 | mptex 7081 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ ↦
(log‘((𝐴 / (𝑚 + 1)) + 1))) ∈
V |
136 | | climres 15212 |
. . . . . . . 8
⊢ ((𝑟 ∈ ℤ ∧ (𝑚 ∈ ℕ ↦
(log‘((𝐴 / (𝑚 + 1)) + 1))) ∈ V) →
(((𝑚 ∈ ℕ ↦
(log‘((𝐴 / (𝑚 + 1)) + 1))) ↾
(ℤ≥‘𝑟)) ⇝ 0 ↔ (𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1))) ⇝ 0)) |
137 | 17, 135, 136 | sylancl 585 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → (((𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1))) ↾
(ℤ≥‘𝑟)) ⇝ 0 ↔ (𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1))) ⇝ 0)) |
138 | 134, 137 | mpbid 231 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → (𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1))) ⇝ 0) |
139 | 14, 138 | rexlimddv 3219 |
. . . . 5
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1))) ⇝ 0) |
140 | 11, 87 | addcld 10925 |
. . . . . 6
⊢ (𝜑 → (𝐴 + 1) ∈ ℂ) |
141 | 7 | dmgmn0 26080 |
. . . . . 6
⊢ (𝜑 → (𝐴 + 1) ≠ 0) |
142 | 140, 141 | logcld 25631 |
. . . . 5
⊢ (𝜑 → (log‘(𝐴 + 1)) ∈
ℂ) |
143 | 77 | mptex 7081 |
. . . . . 6
⊢ (𝑚 ∈ ℕ ↦
((log‘(𝐴 + 1))
− (log‘((𝐴 /
(𝑚 + 1)) + 1)))) ∈
V |
144 | 143 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ ((log‘(𝐴 + 1)) −
(log‘((𝐴 / (𝑚 + 1)) + 1)))) ∈
V) |
145 | 81 | fvoveq1d 7277 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (log‘((𝐴 / (𝑚 + 1)) + 1)) = (log‘((𝐴 / (𝑛 + 1)) + 1))) |
146 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ ↦
(log‘((𝐴 / (𝑚 + 1)) + 1))) = (𝑚 ∈ ℕ ↦
(log‘((𝐴 / (𝑚 + 1)) + 1))) |
147 | | fvex 6769 |
. . . . . . . 8
⊢
(log‘((𝐴 /
(𝑛 + 1)) + 1)) ∈
V |
148 | 145, 146,
147 | fvmpt 6857 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦
(log‘((𝐴 / (𝑚 + 1)) + 1)))‘𝑛) = (log‘((𝐴 / (𝑛 + 1)) + 1))) |
149 | 148 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1)))‘𝑛) = (log‘((𝐴 / (𝑛 + 1)) + 1))) |
150 | 97, 93 | addcld 10925 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴 / (𝑛 + 1)) + 1) ∈ ℂ) |
151 | 4 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ (ℂ ∖ (ℤ ∖
ℕ))) |
152 | 151, 95 | dmgmdivn0 26082 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴 / (𝑛 + 1)) + 1) ≠ 0) |
153 | 150, 152 | logcld 25631 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (log‘((𝐴 / (𝑛 + 1)) + 1)) ∈ ℂ) |
154 | 149, 153 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1)))‘𝑛) ∈ ℂ) |
155 | 145 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑚 + 1)) + 1))) = ((log‘(𝐴 + 1)) −
(log‘((𝐴 / (𝑛 + 1)) + 1)))) |
156 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ ↦
((log‘(𝐴 + 1))
− (log‘((𝐴 /
(𝑚 + 1)) + 1)))) = (𝑚 ∈ ℕ ↦
((log‘(𝐴 + 1))
− (log‘((𝐴 /
(𝑚 + 1)) +
1)))) |
157 | | ovex 7288 |
. . . . . . . 8
⊢
((log‘(𝐴 + 1))
− (log‘((𝐴 /
(𝑛 + 1)) + 1))) ∈
V |
158 | 155, 156,
157 | fvmpt 6857 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦
((log‘(𝐴 + 1))
− (log‘((𝐴 /
(𝑚 + 1)) +
1))))‘𝑛) =
((log‘(𝐴 + 1))
− (log‘((𝐴 /
(𝑛 + 1)) +
1)))) |
159 | 158 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((log‘(𝐴 + 1)) −
(log‘((𝐴 / (𝑚 + 1)) + 1))))‘𝑛) = ((log‘(𝐴 + 1)) −
(log‘((𝐴 / (𝑛 + 1)) + 1)))) |
160 | 149 | oveq2d 7271 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((log‘(𝐴 + 1)) − ((𝑚 ∈ ℕ ↦
(log‘((𝐴 / (𝑚 + 1)) + 1)))‘𝑛)) = ((log‘(𝐴 + 1)) −
(log‘((𝐴 / (𝑛 + 1)) + 1)))) |
161 | 159, 160 | eqtr4d 2781 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((log‘(𝐴 + 1)) −
(log‘((𝐴 / (𝑚 + 1)) + 1))))‘𝑛) = ((log‘(𝐴 + 1)) − ((𝑚 ∈ ℕ ↦
(log‘((𝐴 / (𝑚 + 1)) + 1)))‘𝑛))) |
162 | 1, 2, 139, 142, 144, 154, 161 | climsubc2 15276 |
. . . 4
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ ((log‘(𝐴 + 1)) −
(log‘((𝐴 / (𝑚 + 1)) + 1)))) ⇝
((log‘(𝐴 + 1))
− 0)) |
163 | 142 | subid1d 11251 |
. . . 4
⊢ (𝜑 → ((log‘(𝐴 + 1)) − 0) =
(log‘(𝐴 +
1))) |
164 | 162, 163 | breqtrd 5096 |
. . 3
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ ((log‘(𝐴 + 1)) −
(log‘((𝐴 / (𝑚 + 1)) + 1)))) ⇝
(log‘(𝐴 +
1))) |
165 | | elfznn 13214 |
. . . . . . 7
⊢ (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ) |
166 | 165 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ) |
167 | | oveq1 7262 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑘 → (𝑚 + 1) = (𝑘 + 1)) |
168 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑘 → 𝑚 = 𝑘) |
169 | 167, 168 | oveq12d 7273 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑘 → ((𝑚 + 1) / 𝑚) = ((𝑘 + 1) / 𝑘)) |
170 | 169 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝑚 = 𝑘 → (log‘((𝑚 + 1) / 𝑚)) = (log‘((𝑘 + 1) / 𝑘))) |
171 | 170 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑚 = 𝑘 → ((𝐴 + 1) · (log‘((𝑚 + 1) / 𝑚))) = ((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘)))) |
172 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑚 = 𝑘 → ((𝐴 + 1) / 𝑚) = ((𝐴 + 1) / 𝑘)) |
173 | 172 | fvoveq1d 7277 |
. . . . . . . 8
⊢ (𝑚 = 𝑘 → (log‘(((𝐴 + 1) / 𝑚) + 1)) = (log‘(((𝐴 + 1) / 𝑘) + 1))) |
174 | 171, 173 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑚 = 𝑘 → (((𝐴 + 1) · (log‘((𝑚 + 1) / 𝑚))) − (log‘(((𝐴 + 1) / 𝑚) + 1))) = (((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1)))) |
175 | | ovex 7288 |
. . . . . . 7
⊢ (((𝐴 + 1) ·
(log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) ∈ V |
176 | 174, 3, 175 | fvmpt 6857 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (((𝐴 + 1) ·
(log‘((𝑚 + 1) / 𝑚))) − (log‘(((𝐴 + 1) / 𝑚) + 1))))‘𝑘) = (((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1)))) |
177 | 166, 176 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝑚 ∈ ℕ ↦ (((𝐴 + 1) · (log‘((𝑚 + 1) / 𝑚))) − (log‘(((𝐴 + 1) / 𝑚) + 1))))‘𝑘) = (((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1)))) |
178 | 91, 1 | eleqtrdi 2849 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈
(ℤ≥‘1)) |
179 | 11 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ ℂ) |
180 | | 1cnd 10901 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 1 ∈ ℂ) |
181 | 179, 180 | addcld 10925 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝐴 + 1) ∈ ℂ) |
182 | 166 | peano2nnd 11920 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑘 + 1) ∈ ℕ) |
183 | 182 | nnrpd 12699 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑘 + 1) ∈
ℝ+) |
184 | 166 | nnrpd 12699 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℝ+) |
185 | 183, 184 | rpdivcld 12718 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝑘 + 1) / 𝑘) ∈
ℝ+) |
186 | 185 | relogcld 25683 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘((𝑘 + 1) / 𝑘)) ∈ ℝ) |
187 | 186 | recnd 10934 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘((𝑘 + 1) / 𝑘)) ∈ ℂ) |
188 | 181, 187 | mulcld 10926 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) ∈ ℂ) |
189 | 166 | nncnd 11919 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℂ) |
190 | 166 | nnne0d 11953 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ≠ 0) |
191 | 181, 189,
190 | divcld 11681 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐴 + 1) / 𝑘) ∈ ℂ) |
192 | 191, 180 | addcld 10925 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴 + 1) / 𝑘) + 1) ∈ ℂ) |
193 | 7 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝐴 + 1) ∈ (ℂ ∖ (ℤ
∖ ℕ))) |
194 | 193, 166 | dmgmdivn0 26082 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴 + 1) / 𝑘) + 1) ≠ 0) |
195 | 192, 194 | logcld 25631 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘(((𝐴 + 1) / 𝑘) + 1)) ∈ ℂ) |
196 | 188, 195 | subcld 11262 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) ∈ ℂ) |
197 | 177, 178,
196 | fsumser 15370 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)(((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) = (seq1( + , (𝑚 ∈ ℕ ↦ (((𝐴 + 1) · (log‘((𝑚 + 1) / 𝑚))) − (log‘(((𝐴 + 1) / 𝑚) + 1)))))‘𝑛)) |
198 | | fzfid 13621 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin) |
199 | 198, 196 | fsumcl 15373 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)(((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) ∈ ℂ) |
200 | 197, 199 | eqeltrrd 2840 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (seq1( + , (𝑚 ∈ ℕ ↦ (((𝐴 + 1) ·
(log‘((𝑚 + 1) / 𝑚))) − (log‘(((𝐴 + 1) / 𝑚) + 1)))))‘𝑛) ∈ ℂ) |
201 | 142 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (log‘(𝐴 + 1)) ∈
ℂ) |
202 | 201, 153 | subcld 11262 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((log‘(𝐴 + 1)) −
(log‘((𝐴 / (𝑛 + 1)) + 1))) ∈
ℂ) |
203 | 159, 202 | eqeltrd 2839 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((log‘(𝐴 + 1)) −
(log‘((𝐴 / (𝑚 + 1)) + 1))))‘𝑛) ∈
ℂ) |
204 | 179, 187 | mulcld 10926 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝐴 · (log‘((𝑘 + 1) / 𝑘))) ∈ ℂ) |
205 | 179, 189,
190 | divcld 11681 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝐴 / 𝑘) ∈ ℂ) |
206 | 205, 180 | addcld 10925 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐴 / 𝑘) + 1) ∈ ℂ) |
207 | 4 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (ℂ ∖ (ℤ ∖
ℕ))) |
208 | 207, 166 | dmgmdivn0 26082 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐴 / 𝑘) + 1) ≠ 0) |
209 | 206, 208 | logcld 25631 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘((𝐴 / 𝑘) + 1)) ∈ ℂ) |
210 | 204, 209 | subcld 11262 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) ∈ ℂ) |
211 | 198, 210 | fsumcl 15373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) ∈ ℂ) |
212 | 199, 211 | nncand 11267 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (Σ𝑘 ∈ (1...𝑛)(((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) − (Σ𝑘 ∈ (1...𝑛)(((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) − Σ𝑘 ∈ (1...𝑛)((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))) = Σ𝑘 ∈ (1...𝑛)((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) |
213 | 188, 195,
204, 209 | sub4d 11311 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) − ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = ((((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (𝐴 · (log‘((𝑘 + 1) / 𝑘)))) − ((log‘(((𝐴 + 1) / 𝑘) + 1)) − (log‘((𝐴 / 𝑘) + 1))))) |
214 | 179, 180 | pncan2d 11264 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐴 + 1) − 𝐴) = 1) |
215 | 214 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴 + 1) − 𝐴) · (log‘((𝑘 + 1) / 𝑘))) = (1 · (log‘((𝑘 + 1) / 𝑘)))) |
216 | 181, 179,
187 | subdird 11362 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴 + 1) − 𝐴) · (log‘((𝑘 + 1) / 𝑘))) = (((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (𝐴 · (log‘((𝑘 + 1) / 𝑘))))) |
217 | 187 | mulid2d 10924 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (1 · (log‘((𝑘 + 1) / 𝑘))) = (log‘((𝑘 + 1) / 𝑘))) |
218 | 215, 216,
217 | 3eqtr3d 2786 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (𝐴 · (log‘((𝑘 + 1) / 𝑘)))) = (log‘((𝑘 + 1) / 𝑘))) |
219 | 218 | oveq1d 7270 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (𝐴 · (log‘((𝑘 + 1) / 𝑘)))) − ((log‘(((𝐴 + 1) / 𝑘) + 1)) − (log‘((𝐴 / 𝑘) + 1)))) = ((log‘((𝑘 + 1) / 𝑘)) − ((log‘(((𝐴 + 1) / 𝑘) + 1)) − (log‘((𝐴 / 𝑘) + 1))))) |
220 | 187, 195,
209 | subsubd 11290 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((log‘((𝑘 + 1) / 𝑘)) − ((log‘(((𝐴 + 1) / 𝑘) + 1)) − (log‘((𝐴 / 𝑘) + 1)))) = (((log‘((𝑘 + 1) / 𝑘)) − (log‘(((𝐴 + 1) / 𝑘) + 1))) + (log‘((𝐴 / 𝑘) + 1)))) |
221 | 187, 195 | subcld 11262 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((log‘((𝑘 + 1) / 𝑘)) − (log‘(((𝐴 + 1) / 𝑘) + 1))) ∈ ℂ) |
222 | 221, 209 | addcomd 11107 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((log‘((𝑘 + 1) / 𝑘)) − (log‘(((𝐴 + 1) / 𝑘) + 1))) + (log‘((𝐴 / 𝑘) + 1))) = ((log‘((𝐴 / 𝑘) + 1)) + ((log‘((𝑘 + 1) / 𝑘)) − (log‘(((𝐴 + 1) / 𝑘) + 1))))) |
223 | 209, 195,
187 | subsub2d 11291 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((log‘((𝐴 / 𝑘) + 1)) − ((log‘(((𝐴 + 1) / 𝑘) + 1)) − (log‘((𝑘 + 1) / 𝑘)))) = ((log‘((𝐴 / 𝑘) + 1)) + ((log‘((𝑘 + 1) / 𝑘)) − (log‘(((𝐴 + 1) / 𝑘) + 1))))) |
224 | 182 | nncnd 11919 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑘 + 1) ∈ ℂ) |
225 | 179, 224 | addcld 10925 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝐴 + (𝑘 + 1)) ∈ ℂ) |
226 | 182 | nnnn0d 12223 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑘 + 1) ∈
ℕ0) |
227 | | dmgmaddn0 26077 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ (ℂ ∖
(ℤ ∖ ℕ)) ∧ (𝑘 + 1) ∈ ℕ0) →
(𝐴 + (𝑘 + 1)) ≠ 0) |
228 | 207, 226,
227 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝐴 + (𝑘 + 1)) ≠ 0) |
229 | 225, 228 | logcld 25631 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘(𝐴 + (𝑘 + 1))) ∈ ℂ) |
230 | 183 | relogcld 25683 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘(𝑘 + 1)) ∈ ℝ) |
231 | 230 | recnd 10934 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘(𝑘 + 1)) ∈ ℂ) |
232 | 184 | relogcld 25683 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘𝑘) ∈ ℝ) |
233 | 232 | recnd 10934 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘𝑘) ∈ ℂ) |
234 | 229, 231,
233 | nnncan2d 11297 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((log‘(𝐴 + (𝑘 + 1))) − (log‘𝑘)) − ((log‘(𝑘 + 1)) − (log‘𝑘))) = ((log‘(𝐴 + (𝑘 + 1))) − (log‘(𝑘 + 1)))) |
235 | 181, 189,
189, 190 | divdird 11719 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴 + 1) + 𝑘) / 𝑘) = (((𝐴 + 1) / 𝑘) + (𝑘 / 𝑘))) |
236 | 179, 189,
180 | add32d 11132 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐴 + 𝑘) + 1) = ((𝐴 + 1) + 𝑘)) |
237 | 179, 189,
180 | addassd 10928 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐴 + 𝑘) + 1) = (𝐴 + (𝑘 + 1))) |
238 | 236, 237 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐴 + 1) + 𝑘) = (𝐴 + (𝑘 + 1))) |
239 | 238 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴 + 1) + 𝑘) / 𝑘) = ((𝐴 + (𝑘 + 1)) / 𝑘)) |
240 | 189, 190 | dividd 11679 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑘 / 𝑘) = 1) |
241 | 240 | oveq2d 7271 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴 + 1) / 𝑘) + (𝑘 / 𝑘)) = (((𝐴 + 1) / 𝑘) + 1)) |
242 | 235, 239,
241 | 3eqtr3rd 2787 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴 + 1) / 𝑘) + 1) = ((𝐴 + (𝑘 + 1)) / 𝑘)) |
243 | 242 | fveq2d 6760 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘(((𝐴 + 1) / 𝑘) + 1)) = (log‘((𝐴 + (𝑘 + 1)) / 𝑘))) |
244 | | logdiv2 25677 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 + (𝑘 + 1)) ∈ ℂ ∧ (𝐴 + (𝑘 + 1)) ≠ 0 ∧ 𝑘 ∈ ℝ+) →
(log‘((𝐴 + (𝑘 + 1)) / 𝑘)) = ((log‘(𝐴 + (𝑘 + 1))) − (log‘𝑘))) |
245 | 225, 228,
184, 244 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘((𝐴 + (𝑘 + 1)) / 𝑘)) = ((log‘(𝐴 + (𝑘 + 1))) − (log‘𝑘))) |
246 | 243, 245 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘(((𝐴 + 1) / 𝑘) + 1)) = ((log‘(𝐴 + (𝑘 + 1))) − (log‘𝑘))) |
247 | 183, 184 | relogdivd 25686 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘((𝑘 + 1) / 𝑘)) = ((log‘(𝑘 + 1)) − (log‘𝑘))) |
248 | 246, 247 | oveq12d 7273 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((log‘(((𝐴 + 1) / 𝑘) + 1)) − (log‘((𝑘 + 1) / 𝑘))) = (((log‘(𝐴 + (𝑘 + 1))) − (log‘𝑘)) − ((log‘(𝑘 + 1)) − (log‘𝑘)))) |
249 | 182 | nnne0d 11953 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑘 + 1) ≠ 0) |
250 | 179, 224,
224, 249 | divdird 11719 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐴 + (𝑘 + 1)) / (𝑘 + 1)) = ((𝐴 / (𝑘 + 1)) + ((𝑘 + 1) / (𝑘 + 1)))) |
251 | 224, 249 | dividd 11679 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝑘 + 1) / (𝑘 + 1)) = 1) |
252 | 251 | oveq2d 7271 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐴 / (𝑘 + 1)) + ((𝑘 + 1) / (𝑘 + 1))) = ((𝐴 / (𝑘 + 1)) + 1)) |
253 | 250, 252 | eqtr2d 2779 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐴 / (𝑘 + 1)) + 1) = ((𝐴 + (𝑘 + 1)) / (𝑘 + 1))) |
254 | 253 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘((𝐴 / (𝑘 + 1)) + 1)) = (log‘((𝐴 + (𝑘 + 1)) / (𝑘 + 1)))) |
255 | | logdiv2 25677 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 + (𝑘 + 1)) ∈ ℂ ∧ (𝐴 + (𝑘 + 1)) ≠ 0 ∧ (𝑘 + 1) ∈ ℝ+) →
(log‘((𝐴 + (𝑘 + 1)) / (𝑘 + 1))) = ((log‘(𝐴 + (𝑘 + 1))) − (log‘(𝑘 + 1)))) |
256 | 225, 228,
183, 255 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘((𝐴 + (𝑘 + 1)) / (𝑘 + 1))) = ((log‘(𝐴 + (𝑘 + 1))) − (log‘(𝑘 + 1)))) |
257 | 254, 256 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘((𝐴 / (𝑘 + 1)) + 1)) = ((log‘(𝐴 + (𝑘 + 1))) − (log‘(𝑘 + 1)))) |
258 | 234, 248,
257 | 3eqtr4d 2788 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((log‘(((𝐴 + 1) / 𝑘) + 1)) − (log‘((𝑘 + 1) / 𝑘))) = (log‘((𝐴 / (𝑘 + 1)) + 1))) |
259 | 258 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((log‘((𝐴 / 𝑘) + 1)) − ((log‘(((𝐴 + 1) / 𝑘) + 1)) − (log‘((𝑘 + 1) / 𝑘)))) = ((log‘((𝐴 / 𝑘) + 1)) − (log‘((𝐴 / (𝑘 + 1)) + 1)))) |
260 | 223, 259 | eqtr3d 2780 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((log‘((𝐴 / 𝑘) + 1)) + ((log‘((𝑘 + 1) / 𝑘)) − (log‘(((𝐴 + 1) / 𝑘) + 1)))) = ((log‘((𝐴 / 𝑘) + 1)) − (log‘((𝐴 / (𝑘 + 1)) + 1)))) |
261 | 220, 222,
260 | 3eqtrd 2782 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((log‘((𝑘 + 1) / 𝑘)) − ((log‘(((𝐴 + 1) / 𝑘) + 1)) − (log‘((𝐴 / 𝑘) + 1)))) = ((log‘((𝐴 / 𝑘) + 1)) − (log‘((𝐴 / (𝑘 + 1)) + 1)))) |
262 | 213, 219,
261 | 3eqtrd 2782 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) − ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = ((log‘((𝐴 / 𝑘) + 1)) − (log‘((𝐴 / (𝑘 + 1)) + 1)))) |
263 | 262 | sumeq2dv 15343 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)((((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) − ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = Σ𝑘 ∈ (1...𝑛)((log‘((𝐴 / 𝑘) + 1)) − (log‘((𝐴 / (𝑘 + 1)) + 1)))) |
264 | 198, 196,
210 | fsumsub 15428 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)((((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) − ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = (Σ𝑘 ∈ (1...𝑛)(((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) − Σ𝑘 ∈ (1...𝑛)((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))) |
265 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑘 → (𝐴 / 𝑥) = (𝐴 / 𝑘)) |
266 | 265 | fvoveq1d 7277 |
. . . . . . . . 9
⊢ (𝑥 = 𝑘 → (log‘((𝐴 / 𝑥) + 1)) = (log‘((𝐴 / 𝑘) + 1))) |
267 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑘 + 1) → (𝐴 / 𝑥) = (𝐴 / (𝑘 + 1))) |
268 | 267 | fvoveq1d 7277 |
. . . . . . . . 9
⊢ (𝑥 = (𝑘 + 1) → (log‘((𝐴 / 𝑥) + 1)) = (log‘((𝐴 / (𝑘 + 1)) + 1))) |
269 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑥 = 1 → (𝐴 / 𝑥) = (𝐴 / 1)) |
270 | 269 | fvoveq1d 7277 |
. . . . . . . . 9
⊢ (𝑥 = 1 → (log‘((𝐴 / 𝑥) + 1)) = (log‘((𝐴 / 1) + 1))) |
271 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑛 + 1) → (𝐴 / 𝑥) = (𝐴 / (𝑛 + 1))) |
272 | 271 | fvoveq1d 7277 |
. . . . . . . . 9
⊢ (𝑥 = (𝑛 + 1) → (log‘((𝐴 / 𝑥) + 1)) = (log‘((𝐴 / (𝑛 + 1)) + 1))) |
273 | 91 | nnzd 12354 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ) |
274 | 95, 1 | eleqtrdi 2849 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈
(ℤ≥‘1)) |
275 | 11 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑛 + 1))) → 𝐴 ∈ ℂ) |
276 | | elfznn 13214 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (1...(𝑛 + 1)) → 𝑥 ∈ ℕ) |
277 | 276 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑛 + 1))) → 𝑥 ∈ ℕ) |
278 | 277 | nncnd 11919 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑛 + 1))) → 𝑥 ∈ ℂ) |
279 | 277 | nnne0d 11953 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑛 + 1))) → 𝑥 ≠ 0) |
280 | 275, 278,
279 | divcld 11681 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑛 + 1))) → (𝐴 / 𝑥) ∈ ℂ) |
281 | | 1cnd 10901 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑛 + 1))) → 1 ∈
ℂ) |
282 | 280, 281 | addcld 10925 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑛 + 1))) → ((𝐴 / 𝑥) + 1) ∈ ℂ) |
283 | 4 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑛 + 1))) → 𝐴 ∈ (ℂ ∖ (ℤ ∖
ℕ))) |
284 | 283, 277 | dmgmdivn0 26082 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑛 + 1))) → ((𝐴 / 𝑥) + 1) ≠ 0) |
285 | 282, 284 | logcld 25631 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑛 + 1))) → (log‘((𝐴 / 𝑥) + 1)) ∈ ℂ) |
286 | 266, 268,
270, 272, 273, 274, 285 | telfsum 15444 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)((log‘((𝐴 / 𝑘) + 1)) − (log‘((𝐴 / (𝑘 + 1)) + 1))) = ((log‘((𝐴 / 1) + 1)) −
(log‘((𝐴 / (𝑛 + 1)) + 1)))) |
287 | 90 | div1d 11673 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 / 1) = 𝐴) |
288 | 287 | fvoveq1d 7277 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (log‘((𝐴 / 1) + 1)) = (log‘(𝐴 + 1))) |
289 | 288 | oveq1d 7270 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((log‘((𝐴 / 1) + 1)) −
(log‘((𝐴 / (𝑛 + 1)) + 1))) =
((log‘(𝐴 + 1))
− (log‘((𝐴 /
(𝑛 + 1)) +
1)))) |
290 | 286, 289 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)((log‘((𝐴 / 𝑘) + 1)) − (log‘((𝐴 / (𝑘 + 1)) + 1))) = ((log‘(𝐴 + 1)) −
(log‘((𝐴 / (𝑛 + 1)) + 1)))) |
291 | 263, 264,
290 | 3eqtr3d 2786 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (Σ𝑘 ∈ (1...𝑛)(((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) − Σ𝑘 ∈ (1...𝑛)((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑛 + 1)) + 1)))) |
292 | 291 | oveq2d 7271 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (Σ𝑘 ∈ (1...𝑛)(((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) − (Σ𝑘 ∈ (1...𝑛)(((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) − Σ𝑘 ∈ (1...𝑛)((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))) = (Σ𝑘 ∈ (1...𝑛)(((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) − ((log‘(𝐴 + 1)) −
(log‘((𝐴 / (𝑛 + 1)) + 1))))) |
293 | 212, 292 | eqtr3d 2780 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) = (Σ𝑘 ∈ (1...𝑛)(((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) − ((log‘(𝐴 + 1)) −
(log‘((𝐴 / (𝑛 + 1)) + 1))))) |
294 | 170 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑚 = 𝑘 → (𝐴 · (log‘((𝑚 + 1) / 𝑚))) = (𝐴 · (log‘((𝑘 + 1) / 𝑘)))) |
295 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑚 = 𝑘 → (𝐴 / 𝑚) = (𝐴 / 𝑘)) |
296 | 295 | fvoveq1d 7277 |
. . . . . . . 8
⊢ (𝑚 = 𝑘 → (log‘((𝐴 / 𝑚) + 1)) = (log‘((𝐴 / 𝑘) + 1))) |
297 | 294, 296 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑚 = 𝑘 → ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))) = ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) |
298 | | lgamcvg.g |
. . . . . . 7
⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1)))) |
299 | | ovex 7288 |
. . . . . . 7
⊢ ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) ∈ V |
300 | 297, 298,
299 | fvmpt 6857 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → (𝐺‘𝑘) = ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) |
301 | 166, 300 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝐺‘𝑘) = ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) |
302 | 301, 178,
210 | fsumser 15370 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) = (seq1( + , 𝐺)‘𝑛)) |
303 | 159 | eqcomd 2744 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((log‘(𝐴 + 1)) −
(log‘((𝐴 / (𝑛 + 1)) + 1))) = ((𝑚 ∈ ℕ ↦
((log‘(𝐴 + 1))
− (log‘((𝐴 /
(𝑚 + 1)) +
1))))‘𝑛)) |
304 | 197, 303 | oveq12d 7273 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (Σ𝑘 ∈ (1...𝑛)(((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) − ((log‘(𝐴 + 1)) −
(log‘((𝐴 / (𝑛 + 1)) + 1)))) = ((seq1( + ,
(𝑚 ∈ ℕ ↦
(((𝐴 + 1) ·
(log‘((𝑚 + 1) / 𝑚))) − (log‘(((𝐴 + 1) / 𝑚) + 1)))))‘𝑛) − ((𝑚 ∈ ℕ ↦ ((log‘(𝐴 + 1)) −
(log‘((𝐴 / (𝑚 + 1)) + 1))))‘𝑛))) |
305 | 293, 302,
304 | 3eqtr3d 2786 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (seq1( + , 𝐺)‘𝑛) = ((seq1( + , (𝑚 ∈ ℕ ↦ (((𝐴 + 1) · (log‘((𝑚 + 1) / 𝑚))) − (log‘(((𝐴 + 1) / 𝑚) + 1)))))‘𝑛) − ((𝑚 ∈ ℕ ↦ ((log‘(𝐴 + 1)) −
(log‘((𝐴 / (𝑚 + 1)) + 1))))‘𝑛))) |
306 | 1, 2, 8, 10, 164, 200, 203, 305 | climsub 15271 |
. 2
⊢ (𝜑 → seq1( + , 𝐺) ⇝ (((log
Γ‘(𝐴 + 1)) +
(log‘(𝐴 + 1)))
− (log‘(𝐴 +
1)))) |
307 | | lgamcl 26095 |
. . . 4
⊢ ((𝐴 + 1) ∈ (ℂ ∖
(ℤ ∖ ℕ)) → (log Γ‘(𝐴 + 1)) ∈ ℂ) |
308 | 7, 307 | syl 17 |
. . 3
⊢ (𝜑 → (log Γ‘(𝐴 + 1)) ∈
ℂ) |
309 | 308, 142 | pncand 11263 |
. 2
⊢ (𝜑 → (((log
Γ‘(𝐴 + 1)) +
(log‘(𝐴 + 1)))
− (log‘(𝐴 +
1))) = (log Γ‘(𝐴 + 1))) |
310 | 306, 309 | breqtrd 5096 |
1
⊢ (𝜑 → seq1( + , 𝐺) ⇝ (log
Γ‘(𝐴 +
1))) |