MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamcvg2 Structured version   Visualization version   GIF version

Theorem lgamcvg2 26981
Description: The series 𝐺 converges to log Γ(𝐴 + 1). (Contributed by Mario Carneiro, 9-Jul-2017.)
Hypotheses
Ref Expression
lgamcvg.g 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
lgamcvg.a (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
Assertion
Ref Expression
lgamcvg2 (𝜑 → seq1( + , 𝐺) ⇝ (log Γ‘(𝐴 + 1)))
Distinct variable groups:   𝐴,𝑚   𝜑,𝑚
Allowed substitution hint:   𝐺(𝑚)

Proof of Theorem lgamcvg2
Dummy variables 𝑘 𝑛 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12796 . . 3 ℕ = (ℤ‘1)
2 1zzd 12524 . . 3 (𝜑 → 1 ∈ ℤ)
3 eqid 2729 . . . 4 (𝑚 ∈ ℕ ↦ (((𝐴 + 1) · (log‘((𝑚 + 1) / 𝑚))) − (log‘(((𝐴 + 1) / 𝑚) + 1)))) = (𝑚 ∈ ℕ ↦ (((𝐴 + 1) · (log‘((𝑚 + 1) / 𝑚))) − (log‘(((𝐴 + 1) / 𝑚) + 1))))
4 lgamcvg.a . . . . 5 (𝜑𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
5 1nn0 12418 . . . . . 6 1 ∈ ℕ0
65a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ0)
74, 6dmgmaddnn0 26953 . . . 4 (𝜑 → (𝐴 + 1) ∈ (ℂ ∖ (ℤ ∖ ℕ)))
83, 7lgamcvg 26980 . . 3 (𝜑 → seq1( + , (𝑚 ∈ ℕ ↦ (((𝐴 + 1) · (log‘((𝑚 + 1) / 𝑚))) − (log‘(((𝐴 + 1) / 𝑚) + 1))))) ⇝ ((log Γ‘(𝐴 + 1)) + (log‘(𝐴 + 1))))
9 seqex 13928 . . . 4 seq1( + , 𝐺) ∈ V
109a1i 11 . . 3 (𝜑 → seq1( + , 𝐺) ∈ V)
114eldifad 3917 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1211abscld 15364 . . . . . . 7 (𝜑 → (abs‘𝐴) ∈ ℝ)
13 arch 12399 . . . . . . 7 ((abs‘𝐴) ∈ ℝ → ∃𝑟 ∈ ℕ (abs‘𝐴) < 𝑟)
1412, 13syl 17 . . . . . 6 (𝜑 → ∃𝑟 ∈ ℕ (abs‘𝐴) < 𝑟)
15 eqid 2729 . . . . . . . . 9 (ℤ𝑟) = (ℤ𝑟)
16 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → 𝑟 ∈ ℕ)
1716nnzd 12516 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → 𝑟 ∈ ℤ)
18 eqid 2729 . . . . . . . . . . 11 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
1918logcn 26572 . . . . . . . . . 10 (log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ)
2019a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → (log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ))
21 eqid 2729 . . . . . . . . . . . 12 (1(ball‘(abs ∘ − ))1) = (1(ball‘(abs ∘ − ))1)
2221dvlog2lem 26577 . . . . . . . . . . 11 (1(ball‘(abs ∘ − ))1) ⊆ (ℂ ∖ (-∞(,]0))
2311ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → 𝐴 ∈ ℂ)
24 eluznn 12837 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 ∈ ℕ ∧ 𝑚 ∈ (ℤ𝑟)) → 𝑚 ∈ ℕ)
2524ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ ℕ → (𝑚 ∈ (ℤ𝑟) → 𝑚 ∈ ℕ))
2625ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → (𝑚 ∈ (ℤ𝑟) → 𝑚 ∈ ℕ))
2726imp 406 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → 𝑚 ∈ ℕ)
2827nncnd 12162 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → 𝑚 ∈ ℂ)
29 1cnd 11129 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → 1 ∈ ℂ)
3028, 29addcld 11153 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → (𝑚 + 1) ∈ ℂ)
3127peano2nnd 12163 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → (𝑚 + 1) ∈ ℕ)
3231nnne0d 12196 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → (𝑚 + 1) ≠ 0)
3323, 30, 32divcld 11918 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → (𝐴 / (𝑚 + 1)) ∈ ℂ)
3433, 29addcld 11153 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → ((𝐴 / (𝑚 + 1)) + 1) ∈ ℂ)
35 ax-1cn 11086 . . . . . . . . . . . . . . 15 1 ∈ ℂ
36 eqid 2729 . . . . . . . . . . . . . . . 16 (abs ∘ − ) = (abs ∘ − )
3736cnmetdval 24674 . . . . . . . . . . . . . . 15 ((((𝐴 / (𝑚 + 1)) + 1) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴 / (𝑚 + 1)) + 1)(abs ∘ − )1) = (abs‘(((𝐴 / (𝑚 + 1)) + 1) − 1)))
3834, 35, 37sylancl 586 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → (((𝐴 / (𝑚 + 1)) + 1)(abs ∘ − )1) = (abs‘(((𝐴 / (𝑚 + 1)) + 1) − 1)))
3933, 29pncand 11494 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → (((𝐴 / (𝑚 + 1)) + 1) − 1) = (𝐴 / (𝑚 + 1)))
4039fveq2d 6830 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → (abs‘(((𝐴 / (𝑚 + 1)) + 1) − 1)) = (abs‘(𝐴 / (𝑚 + 1))))
4123, 30, 32absdivd 15383 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → (abs‘(𝐴 / (𝑚 + 1))) = ((abs‘𝐴) / (abs‘(𝑚 + 1))))
4231nnred 12161 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → (𝑚 + 1) ∈ ℝ)
4331nnrpd 12953 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → (𝑚 + 1) ∈ ℝ+)
4443rpge0d 12959 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → 0 ≤ (𝑚 + 1))
4542, 44absidd 15348 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → (abs‘(𝑚 + 1)) = (𝑚 + 1))
4645oveq2d 7369 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → ((abs‘𝐴) / (abs‘(𝑚 + 1))) = ((abs‘𝐴) / (𝑚 + 1)))
4741, 46eqtrd 2764 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → (abs‘(𝐴 / (𝑚 + 1))) = ((abs‘𝐴) / (𝑚 + 1)))
4838, 40, 473eqtrd 2768 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → (((𝐴 / (𝑚 + 1)) + 1)(abs ∘ − )1) = ((abs‘𝐴) / (𝑚 + 1)))
4912ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → (abs‘𝐴) ∈ ℝ)
5016adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → 𝑟 ∈ ℕ)
5150nnred 12161 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → 𝑟 ∈ ℝ)
52 simplrr 777 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → (abs‘𝐴) < 𝑟)
53 eluzle 12766 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ𝑟) → 𝑟𝑚)
5453adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → 𝑟𝑚)
55 nnleltp1 12549 . . . . . . . . . . . . . . . . . 18 ((𝑟 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (𝑟𝑚𝑟 < (𝑚 + 1)))
5650, 27, 55syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → (𝑟𝑚𝑟 < (𝑚 + 1)))
5754, 56mpbid 232 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → 𝑟 < (𝑚 + 1))
5849, 51, 42, 52, 57lttrd 11295 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → (abs‘𝐴) < (𝑚 + 1))
5930mulridd 11151 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → ((𝑚 + 1) · 1) = (𝑚 + 1))
6058, 59breqtrrd 5123 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → (abs‘𝐴) < ((𝑚 + 1) · 1))
61 1red 11135 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → 1 ∈ ℝ)
6249, 61, 43ltdivmuld 13006 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → (((abs‘𝐴) / (𝑚 + 1)) < 1 ↔ (abs‘𝐴) < ((𝑚 + 1) · 1)))
6360, 62mpbird 257 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → ((abs‘𝐴) / (𝑚 + 1)) < 1)
6448, 63eqbrtrd 5117 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → (((𝐴 / (𝑚 + 1)) + 1)(abs ∘ − )1) < 1)
65 cnxmet 24676 . . . . . . . . . . . . . 14 (abs ∘ − ) ∈ (∞Met‘ℂ)
6665a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
67 1rp 12915 . . . . . . . . . . . . . 14 1 ∈ ℝ+
68 rpxr 12921 . . . . . . . . . . . . . 14 (1 ∈ ℝ+ → 1 ∈ ℝ*)
6967, 68mp1i 13 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → 1 ∈ ℝ*)
70 elbl3 24296 . . . . . . . . . . . . 13 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (1 ∈ ℂ ∧ ((𝐴 / (𝑚 + 1)) + 1) ∈ ℂ)) → (((𝐴 / (𝑚 + 1)) + 1) ∈ (1(ball‘(abs ∘ − ))1) ↔ (((𝐴 / (𝑚 + 1)) + 1)(abs ∘ − )1) < 1))
7166, 69, 29, 34, 70syl22anc 838 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → (((𝐴 / (𝑚 + 1)) + 1) ∈ (1(ball‘(abs ∘ − ))1) ↔ (((𝐴 / (𝑚 + 1)) + 1)(abs ∘ − )1) < 1))
7264, 71mpbird 257 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → ((𝐴 / (𝑚 + 1)) + 1) ∈ (1(ball‘(abs ∘ − ))1))
7322, 72sselid 3935 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → ((𝐴 / (𝑚 + 1)) + 1) ∈ (ℂ ∖ (-∞(,]0)))
7473fmpttd 7053 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → (𝑚 ∈ (ℤ𝑟) ↦ ((𝐴 / (𝑚 + 1)) + 1)):(ℤ𝑟)⟶(ℂ ∖ (-∞(,]0)))
7526ssrdv 3943 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → (ℤ𝑟) ⊆ ℕ)
7675resmptd 5995 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → ((𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) ↾ (ℤ𝑟)) = (𝑚 ∈ (ℤ𝑟) ↦ ((𝐴 / (𝑚 + 1)) + 1)))
77 nnex 12152 . . . . . . . . . . . . . . . . 17 ℕ ∈ V
7877mptex 7163 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ ↦ (𝐴 / (𝑚 + 1))) ∈ V
7978a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝑚 ∈ ℕ ↦ (𝐴 / (𝑚 + 1))) ∈ V)
80 oveq1 7360 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
8180oveq2d 7369 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → (𝐴 / (𝑚 + 1)) = (𝐴 / (𝑛 + 1)))
82 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ ↦ (𝐴 / (𝑚 + 1))) = (𝑚 ∈ ℕ ↦ (𝐴 / (𝑚 + 1)))
83 ovex 7386 . . . . . . . . . . . . . . . . 17 (𝐴 / (𝑛 + 1)) ∈ V
8481, 82, 83fvmpt 6934 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (𝐴 / (𝑚 + 1)))‘𝑛) = (𝐴 / (𝑛 + 1)))
8584adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝐴 / (𝑚 + 1)))‘𝑛) = (𝐴 / (𝑛 + 1)))
861, 2, 11, 2, 79, 85divcnvshft 15780 . . . . . . . . . . . . . 14 (𝜑 → (𝑚 ∈ ℕ ↦ (𝐴 / (𝑚 + 1))) ⇝ 0)
87 1cnd 11129 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℂ)
8877mptex 7163 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) ∈ V
8988a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) ∈ V)
9011adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℂ)
91 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
9291nncnd 12162 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
93 1cnd 11129 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → 1 ∈ ℂ)
9492, 93addcld 11153 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℂ)
9591peano2nnd 12163 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
9695nnne0d 12196 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ≠ 0)
9790, 94, 96divcld 11918 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (𝑛 + 1)) ∈ ℂ)
9885, 97eqeltrd 2828 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝐴 / (𝑚 + 1)))‘𝑛) ∈ ℂ)
9981oveq1d 7368 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → ((𝐴 / (𝑚 + 1)) + 1) = ((𝐴 / (𝑛 + 1)) + 1))
100 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) = (𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1))
101 ovex 7386 . . . . . . . . . . . . . . . . 17 ((𝐴 / (𝑛 + 1)) + 1) ∈ V
10299, 100, 101fvmpt 6934 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1))‘𝑛) = ((𝐴 / (𝑛 + 1)) + 1))
103102adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1))‘𝑛) = ((𝐴 / (𝑛 + 1)) + 1))
10485oveq1d 7368 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (((𝑚 ∈ ℕ ↦ (𝐴 / (𝑚 + 1)))‘𝑛) + 1) = ((𝐴 / (𝑛 + 1)) + 1))
105103, 104eqtr4d 2767 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1))‘𝑛) = (((𝑚 ∈ ℕ ↦ (𝐴 / (𝑚 + 1)))‘𝑛) + 1))
1061, 2, 86, 87, 89, 98, 105climaddc1 15560 . . . . . . . . . . . . 13 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) ⇝ (0 + 1))
107 0p1e1 12263 . . . . . . . . . . . . 13 (0 + 1) = 1
108106, 107breqtrdi 5136 . . . . . . . . . . . 12 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) ⇝ 1)
109108adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → (𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) ⇝ 1)
110 climres 15500 . . . . . . . . . . . 12 ((𝑟 ∈ ℤ ∧ (𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) ∈ V) → (((𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) ↾ (ℤ𝑟)) ⇝ 1 ↔ (𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) ⇝ 1))
11117, 88, 110sylancl 586 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → (((𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) ↾ (ℤ𝑟)) ⇝ 1 ↔ (𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) ⇝ 1))
112109, 111mpbird 257 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → ((𝑚 ∈ ℕ ↦ ((𝐴 / (𝑚 + 1)) + 1)) ↾ (ℤ𝑟)) ⇝ 1)
11376, 112eqbrtrrd 5119 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → (𝑚 ∈ (ℤ𝑟) ↦ ((𝐴 / (𝑚 + 1)) + 1)) ⇝ 1)
11467a1i 11 . . . . . . . . . . 11 (1 ∈ ℝ → 1 ∈ ℝ+)
11518ellogdm 26564 . . . . . . . . . . 11 (1 ∈ (ℂ ∖ (-∞(,]0)) ↔ (1 ∈ ℂ ∧ (1 ∈ ℝ → 1 ∈ ℝ+)))
11635, 114, 115mpbir2an 711 . . . . . . . . . 10 1 ∈ (ℂ ∖ (-∞(,]0))
117116a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → 1 ∈ (ℂ ∖ (-∞(,]0)))
11815, 17, 20, 74, 113, 117climcncf 24809 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → ((log ↾ (ℂ ∖ (-∞(,]0))) ∘ (𝑚 ∈ (ℤ𝑟) ↦ ((𝐴 / (𝑚 + 1)) + 1))) ⇝ ((log ↾ (ℂ ∖ (-∞(,]0)))‘1))
119 logf1o 26489 . . . . . . . . . . 11 log:(ℂ ∖ {0})–1-1-onto→ran log
120 f1of 6768 . . . . . . . . . . 11 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
121119, 120mp1i 13 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → log:(ℂ ∖ {0})⟶ran log)
12218logdmss 26567 . . . . . . . . . . 11 (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0})
123122, 73sselid 3935 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) ∧ 𝑚 ∈ (ℤ𝑟)) → ((𝐴 / (𝑚 + 1)) + 1) ∈ (ℂ ∖ {0}))
124121, 123cofmpt 7070 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → (log ∘ (𝑚 ∈ (ℤ𝑟) ↦ ((𝐴 / (𝑚 + 1)) + 1))) = (𝑚 ∈ (ℤ𝑟) ↦ (log‘((𝐴 / (𝑚 + 1)) + 1))))
125 frn 6663 . . . . . . . . . 10 ((𝑚 ∈ (ℤ𝑟) ↦ ((𝐴 / (𝑚 + 1)) + 1)):(ℤ𝑟)⟶(ℂ ∖ (-∞(,]0)) → ran (𝑚 ∈ (ℤ𝑟) ↦ ((𝐴 / (𝑚 + 1)) + 1)) ⊆ (ℂ ∖ (-∞(,]0)))
126 cores 6202 . . . . . . . . . 10 (ran (𝑚 ∈ (ℤ𝑟) ↦ ((𝐴 / (𝑚 + 1)) + 1)) ⊆ (ℂ ∖ (-∞(,]0)) → ((log ↾ (ℂ ∖ (-∞(,]0))) ∘ (𝑚 ∈ (ℤ𝑟) ↦ ((𝐴 / (𝑚 + 1)) + 1))) = (log ∘ (𝑚 ∈ (ℤ𝑟) ↦ ((𝐴 / (𝑚 + 1)) + 1))))
12774, 125, 1263syl 18 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → ((log ↾ (ℂ ∖ (-∞(,]0))) ∘ (𝑚 ∈ (ℤ𝑟) ↦ ((𝐴 / (𝑚 + 1)) + 1))) = (log ∘ (𝑚 ∈ (ℤ𝑟) ↦ ((𝐴 / (𝑚 + 1)) + 1))))
12875resmptd 5995 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → ((𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1))) ↾ (ℤ𝑟)) = (𝑚 ∈ (ℤ𝑟) ↦ (log‘((𝐴 / (𝑚 + 1)) + 1))))
129124, 127, 1283eqtr4d 2774 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → ((log ↾ (ℂ ∖ (-∞(,]0))) ∘ (𝑚 ∈ (ℤ𝑟) ↦ ((𝐴 / (𝑚 + 1)) + 1))) = ((𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1))) ↾ (ℤ𝑟)))
130 fvres 6845 . . . . . . . . . 10 (1 ∈ (ℂ ∖ (-∞(,]0)) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘1) = (log‘1))
131116, 130mp1i 13 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘1) = (log‘1))
132 log1 26510 . . . . . . . . 9 (log‘1) = 0
133131, 132eqtrdi 2780 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘1) = 0)
134118, 129, 1333brtr3d 5126 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → ((𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1))) ↾ (ℤ𝑟)) ⇝ 0)
13577mptex 7163 . . . . . . . 8 (𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1))) ∈ V
136 climres 15500 . . . . . . . 8 ((𝑟 ∈ ℤ ∧ (𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1))) ∈ V) → (((𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1))) ↾ (ℤ𝑟)) ⇝ 0 ↔ (𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1))) ⇝ 0))
13717, 135, 136sylancl 586 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → (((𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1))) ↾ (ℤ𝑟)) ⇝ 0 ↔ (𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1))) ⇝ 0))
138134, 137mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ℕ ∧ (abs‘𝐴) < 𝑟)) → (𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1))) ⇝ 0)
13914, 138rexlimddv 3136 . . . . 5 (𝜑 → (𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1))) ⇝ 0)
14011, 87addcld 11153 . . . . . 6 (𝜑 → (𝐴 + 1) ∈ ℂ)
1417dmgmn0 26952 . . . . . 6 (𝜑 → (𝐴 + 1) ≠ 0)
142140, 141logcld 26495 . . . . 5 (𝜑 → (log‘(𝐴 + 1)) ∈ ℂ)
14377mptex 7163 . . . . . 6 (𝑚 ∈ ℕ ↦ ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑚 + 1)) + 1)))) ∈ V
144143a1i 11 . . . . 5 (𝜑 → (𝑚 ∈ ℕ ↦ ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑚 + 1)) + 1)))) ∈ V)
14581fvoveq1d 7375 . . . . . . . 8 (𝑚 = 𝑛 → (log‘((𝐴 / (𝑚 + 1)) + 1)) = (log‘((𝐴 / (𝑛 + 1)) + 1)))
146 eqid 2729 . . . . . . . 8 (𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1))) = (𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1)))
147 fvex 6839 . . . . . . . 8 (log‘((𝐴 / (𝑛 + 1)) + 1)) ∈ V
148145, 146, 147fvmpt 6934 . . . . . . 7 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1)))‘𝑛) = (log‘((𝐴 / (𝑛 + 1)) + 1)))
149148adantl 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1)))‘𝑛) = (log‘((𝐴 / (𝑛 + 1)) + 1)))
15097, 93addcld 11153 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝐴 / (𝑛 + 1)) + 1) ∈ ℂ)
1514adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
152151, 95dmgmdivn0 26954 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝐴 / (𝑛 + 1)) + 1) ≠ 0)
153150, 152logcld 26495 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (log‘((𝐴 / (𝑛 + 1)) + 1)) ∈ ℂ)
154149, 153eqeltrd 2828 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1)))‘𝑛) ∈ ℂ)
155145oveq2d 7369 . . . . . . . 8 (𝑚 = 𝑛 → ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑚 + 1)) + 1))) = ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑛 + 1)) + 1))))
156 eqid 2729 . . . . . . . 8 (𝑚 ∈ ℕ ↦ ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑚 + 1)) + 1)))) = (𝑚 ∈ ℕ ↦ ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑚 + 1)) + 1))))
157 ovex 7386 . . . . . . . 8 ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑛 + 1)) + 1))) ∈ V
158155, 156, 157fvmpt 6934 . . . . . . 7 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑚 + 1)) + 1))))‘𝑛) = ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑛 + 1)) + 1))))
159158adantl 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑚 + 1)) + 1))))‘𝑛) = ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑛 + 1)) + 1))))
160149oveq2d 7369 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((log‘(𝐴 + 1)) − ((𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1)))‘𝑛)) = ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑛 + 1)) + 1))))
161159, 160eqtr4d 2767 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑚 + 1)) + 1))))‘𝑛) = ((log‘(𝐴 + 1)) − ((𝑚 ∈ ℕ ↦ (log‘((𝐴 / (𝑚 + 1)) + 1)))‘𝑛)))
1621, 2, 139, 142, 144, 154, 161climsubc2 15564 . . . 4 (𝜑 → (𝑚 ∈ ℕ ↦ ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑚 + 1)) + 1)))) ⇝ ((log‘(𝐴 + 1)) − 0))
163142subid1d 11482 . . . 4 (𝜑 → ((log‘(𝐴 + 1)) − 0) = (log‘(𝐴 + 1)))
164162, 163breqtrd 5121 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑚 + 1)) + 1)))) ⇝ (log‘(𝐴 + 1)))
165 elfznn 13474 . . . . . . 7 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
166165adantl 481 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
167 oveq1 7360 . . . . . . . . . . 11 (𝑚 = 𝑘 → (𝑚 + 1) = (𝑘 + 1))
168 id 22 . . . . . . . . . . 11 (𝑚 = 𝑘𝑚 = 𝑘)
169167, 168oveq12d 7371 . . . . . . . . . 10 (𝑚 = 𝑘 → ((𝑚 + 1) / 𝑚) = ((𝑘 + 1) / 𝑘))
170169fveq2d 6830 . . . . . . . . 9 (𝑚 = 𝑘 → (log‘((𝑚 + 1) / 𝑚)) = (log‘((𝑘 + 1) / 𝑘)))
171170oveq2d 7369 . . . . . . . 8 (𝑚 = 𝑘 → ((𝐴 + 1) · (log‘((𝑚 + 1) / 𝑚))) = ((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))))
172 oveq2 7361 . . . . . . . . 9 (𝑚 = 𝑘 → ((𝐴 + 1) / 𝑚) = ((𝐴 + 1) / 𝑘))
173172fvoveq1d 7375 . . . . . . . 8 (𝑚 = 𝑘 → (log‘(((𝐴 + 1) / 𝑚) + 1)) = (log‘(((𝐴 + 1) / 𝑘) + 1)))
174171, 173oveq12d 7371 . . . . . . 7 (𝑚 = 𝑘 → (((𝐴 + 1) · (log‘((𝑚 + 1) / 𝑚))) − (log‘(((𝐴 + 1) / 𝑚) + 1))) = (((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))))
175 ovex 7386 . . . . . . 7 (((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) ∈ V
176174, 3, 175fvmpt 6934 . . . . . 6 (𝑘 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (((𝐴 + 1) · (log‘((𝑚 + 1) / 𝑚))) − (log‘(((𝐴 + 1) / 𝑚) + 1))))‘𝑘) = (((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))))
177166, 176syl 17 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝑚 ∈ ℕ ↦ (((𝐴 + 1) · (log‘((𝑚 + 1) / 𝑚))) − (log‘(((𝐴 + 1) / 𝑚) + 1))))‘𝑘) = (((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))))
17891, 1eleqtrdi 2838 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
17911ad2antrr 726 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ ℂ)
180 1cnd 11129 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 1 ∈ ℂ)
181179, 180addcld 11153 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝐴 + 1) ∈ ℂ)
182166peano2nnd 12163 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑘 + 1) ∈ ℕ)
183182nnrpd 12953 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑘 + 1) ∈ ℝ+)
184166nnrpd 12953 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℝ+)
185183, 184rpdivcld 12972 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝑘 + 1) / 𝑘) ∈ ℝ+)
186185relogcld 26548 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘((𝑘 + 1) / 𝑘)) ∈ ℝ)
187186recnd 11162 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘((𝑘 + 1) / 𝑘)) ∈ ℂ)
188181, 187mulcld 11154 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) ∈ ℂ)
189166nncnd 12162 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℂ)
190166nnne0d 12196 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ≠ 0)
191181, 189, 190divcld 11918 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐴 + 1) / 𝑘) ∈ ℂ)
192191, 180addcld 11153 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴 + 1) / 𝑘) + 1) ∈ ℂ)
1937ad2antrr 726 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝐴 + 1) ∈ (ℂ ∖ (ℤ ∖ ℕ)))
194193, 166dmgmdivn0 26954 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴 + 1) / 𝑘) + 1) ≠ 0)
195192, 194logcld 26495 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘(((𝐴 + 1) / 𝑘) + 1)) ∈ ℂ)
196188, 195subcld 11493 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) ∈ ℂ)
197177, 178, 196fsumser 15655 . . . 4 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)(((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) = (seq1( + , (𝑚 ∈ ℕ ↦ (((𝐴 + 1) · (log‘((𝑚 + 1) / 𝑚))) − (log‘(((𝐴 + 1) / 𝑚) + 1)))))‘𝑛))
198 fzfid 13898 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin)
199198, 196fsumcl 15658 . . . 4 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)(((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) ∈ ℂ)
200197, 199eqeltrrd 2829 . . 3 ((𝜑𝑛 ∈ ℕ) → (seq1( + , (𝑚 ∈ ℕ ↦ (((𝐴 + 1) · (log‘((𝑚 + 1) / 𝑚))) − (log‘(((𝐴 + 1) / 𝑚) + 1)))))‘𝑛) ∈ ℂ)
201142adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (log‘(𝐴 + 1)) ∈ ℂ)
202201, 153subcld 11493 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑛 + 1)) + 1))) ∈ ℂ)
203159, 202eqeltrd 2828 . . 3 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑚 + 1)) + 1))))‘𝑛) ∈ ℂ)
204179, 187mulcld 11154 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝐴 · (log‘((𝑘 + 1) / 𝑘))) ∈ ℂ)
205179, 189, 190divcld 11918 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝐴 / 𝑘) ∈ ℂ)
206205, 180addcld 11153 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐴 / 𝑘) + 1) ∈ ℂ)
2074ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
208207, 166dmgmdivn0 26954 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐴 / 𝑘) + 1) ≠ 0)
209206, 208logcld 26495 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘((𝐴 / 𝑘) + 1)) ∈ ℂ)
210204, 209subcld 11493 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) ∈ ℂ)
211198, 210fsumcl 15658 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) ∈ ℂ)
212199, 211nncand 11498 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (Σ𝑘 ∈ (1...𝑛)(((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) − (Σ𝑘 ∈ (1...𝑛)(((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) − Σ𝑘 ∈ (1...𝑛)((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))) = Σ𝑘 ∈ (1...𝑛)((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))
213188, 195, 204, 209sub4d 11542 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) − ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = ((((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (𝐴 · (log‘((𝑘 + 1) / 𝑘)))) − ((log‘(((𝐴 + 1) / 𝑘) + 1)) − (log‘((𝐴 / 𝑘) + 1)))))
214179, 180pncan2d 11495 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐴 + 1) − 𝐴) = 1)
215214oveq1d 7368 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴 + 1) − 𝐴) · (log‘((𝑘 + 1) / 𝑘))) = (1 · (log‘((𝑘 + 1) / 𝑘))))
216181, 179, 187subdird 11595 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴 + 1) − 𝐴) · (log‘((𝑘 + 1) / 𝑘))) = (((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (𝐴 · (log‘((𝑘 + 1) / 𝑘)))))
217187mullidd 11152 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (1 · (log‘((𝑘 + 1) / 𝑘))) = (log‘((𝑘 + 1) / 𝑘)))
218215, 216, 2173eqtr3d 2772 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (𝐴 · (log‘((𝑘 + 1) / 𝑘)))) = (log‘((𝑘 + 1) / 𝑘)))
219218oveq1d 7368 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (𝐴 · (log‘((𝑘 + 1) / 𝑘)))) − ((log‘(((𝐴 + 1) / 𝑘) + 1)) − (log‘((𝐴 / 𝑘) + 1)))) = ((log‘((𝑘 + 1) / 𝑘)) − ((log‘(((𝐴 + 1) / 𝑘) + 1)) − (log‘((𝐴 / 𝑘) + 1)))))
220187, 195, 209subsubd 11521 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((log‘((𝑘 + 1) / 𝑘)) − ((log‘(((𝐴 + 1) / 𝑘) + 1)) − (log‘((𝐴 / 𝑘) + 1)))) = (((log‘((𝑘 + 1) / 𝑘)) − (log‘(((𝐴 + 1) / 𝑘) + 1))) + (log‘((𝐴 / 𝑘) + 1))))
221187, 195subcld 11493 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((log‘((𝑘 + 1) / 𝑘)) − (log‘(((𝐴 + 1) / 𝑘) + 1))) ∈ ℂ)
222221, 209addcomd 11336 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((log‘((𝑘 + 1) / 𝑘)) − (log‘(((𝐴 + 1) / 𝑘) + 1))) + (log‘((𝐴 / 𝑘) + 1))) = ((log‘((𝐴 / 𝑘) + 1)) + ((log‘((𝑘 + 1) / 𝑘)) − (log‘(((𝐴 + 1) / 𝑘) + 1)))))
223209, 195, 187subsub2d 11522 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((log‘((𝐴 / 𝑘) + 1)) − ((log‘(((𝐴 + 1) / 𝑘) + 1)) − (log‘((𝑘 + 1) / 𝑘)))) = ((log‘((𝐴 / 𝑘) + 1)) + ((log‘((𝑘 + 1) / 𝑘)) − (log‘(((𝐴 + 1) / 𝑘) + 1)))))
224182nncnd 12162 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑘 + 1) ∈ ℂ)
225179, 224addcld 11153 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝐴 + (𝑘 + 1)) ∈ ℂ)
226182nnnn0d 12463 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑘 + 1) ∈ ℕ0)
227 dmgmaddn0 26949 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ∧ (𝑘 + 1) ∈ ℕ0) → (𝐴 + (𝑘 + 1)) ≠ 0)
228207, 226, 227syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝐴 + (𝑘 + 1)) ≠ 0)
229225, 228logcld 26495 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘(𝐴 + (𝑘 + 1))) ∈ ℂ)
230183relogcld 26548 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘(𝑘 + 1)) ∈ ℝ)
231230recnd 11162 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘(𝑘 + 1)) ∈ ℂ)
232184relogcld 26548 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘𝑘) ∈ ℝ)
233232recnd 11162 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘𝑘) ∈ ℂ)
234229, 231, 233nnncan2d 11528 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((log‘(𝐴 + (𝑘 + 1))) − (log‘𝑘)) − ((log‘(𝑘 + 1)) − (log‘𝑘))) = ((log‘(𝐴 + (𝑘 + 1))) − (log‘(𝑘 + 1))))
235181, 189, 189, 190divdird 11956 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴 + 1) + 𝑘) / 𝑘) = (((𝐴 + 1) / 𝑘) + (𝑘 / 𝑘)))
236179, 189, 180add32d 11362 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐴 + 𝑘) + 1) = ((𝐴 + 1) + 𝑘))
237179, 189, 180addassd 11156 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐴 + 𝑘) + 1) = (𝐴 + (𝑘 + 1)))
238236, 237eqtr3d 2766 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐴 + 1) + 𝑘) = (𝐴 + (𝑘 + 1)))
239238oveq1d 7368 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴 + 1) + 𝑘) / 𝑘) = ((𝐴 + (𝑘 + 1)) / 𝑘))
240189, 190dividd 11916 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑘 / 𝑘) = 1)
241240oveq2d 7369 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴 + 1) / 𝑘) + (𝑘 / 𝑘)) = (((𝐴 + 1) / 𝑘) + 1))
242235, 239, 2413eqtr3rd 2773 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐴 + 1) / 𝑘) + 1) = ((𝐴 + (𝑘 + 1)) / 𝑘))
243242fveq2d 6830 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘(((𝐴 + 1) / 𝑘) + 1)) = (log‘((𝐴 + (𝑘 + 1)) / 𝑘)))
244 logdiv2 26542 . . . . . . . . . . . . . . . 16 (((𝐴 + (𝑘 + 1)) ∈ ℂ ∧ (𝐴 + (𝑘 + 1)) ≠ 0 ∧ 𝑘 ∈ ℝ+) → (log‘((𝐴 + (𝑘 + 1)) / 𝑘)) = ((log‘(𝐴 + (𝑘 + 1))) − (log‘𝑘)))
245225, 228, 184, 244syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘((𝐴 + (𝑘 + 1)) / 𝑘)) = ((log‘(𝐴 + (𝑘 + 1))) − (log‘𝑘)))
246243, 245eqtrd 2764 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘(((𝐴 + 1) / 𝑘) + 1)) = ((log‘(𝐴 + (𝑘 + 1))) − (log‘𝑘)))
247183, 184relogdivd 26551 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘((𝑘 + 1) / 𝑘)) = ((log‘(𝑘 + 1)) − (log‘𝑘)))
248246, 247oveq12d 7371 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((log‘(((𝐴 + 1) / 𝑘) + 1)) − (log‘((𝑘 + 1) / 𝑘))) = (((log‘(𝐴 + (𝑘 + 1))) − (log‘𝑘)) − ((log‘(𝑘 + 1)) − (log‘𝑘))))
249182nnne0d 12196 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑘 + 1) ≠ 0)
250179, 224, 224, 249divdird 11956 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐴 + (𝑘 + 1)) / (𝑘 + 1)) = ((𝐴 / (𝑘 + 1)) + ((𝑘 + 1) / (𝑘 + 1))))
251224, 249dividd 11916 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝑘 + 1) / (𝑘 + 1)) = 1)
252251oveq2d 7369 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐴 / (𝑘 + 1)) + ((𝑘 + 1) / (𝑘 + 1))) = ((𝐴 / (𝑘 + 1)) + 1))
253250, 252eqtr2d 2765 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐴 / (𝑘 + 1)) + 1) = ((𝐴 + (𝑘 + 1)) / (𝑘 + 1)))
254253fveq2d 6830 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘((𝐴 / (𝑘 + 1)) + 1)) = (log‘((𝐴 + (𝑘 + 1)) / (𝑘 + 1))))
255 logdiv2 26542 . . . . . . . . . . . . . . 15 (((𝐴 + (𝑘 + 1)) ∈ ℂ ∧ (𝐴 + (𝑘 + 1)) ≠ 0 ∧ (𝑘 + 1) ∈ ℝ+) → (log‘((𝐴 + (𝑘 + 1)) / (𝑘 + 1))) = ((log‘(𝐴 + (𝑘 + 1))) − (log‘(𝑘 + 1))))
256225, 228, 183, 255syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘((𝐴 + (𝑘 + 1)) / (𝑘 + 1))) = ((log‘(𝐴 + (𝑘 + 1))) − (log‘(𝑘 + 1))))
257254, 256eqtrd 2764 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (log‘((𝐴 / (𝑘 + 1)) + 1)) = ((log‘(𝐴 + (𝑘 + 1))) − (log‘(𝑘 + 1))))
258234, 248, 2573eqtr4d 2774 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((log‘(((𝐴 + 1) / 𝑘) + 1)) − (log‘((𝑘 + 1) / 𝑘))) = (log‘((𝐴 / (𝑘 + 1)) + 1)))
259258oveq2d 7369 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((log‘((𝐴 / 𝑘) + 1)) − ((log‘(((𝐴 + 1) / 𝑘) + 1)) − (log‘((𝑘 + 1) / 𝑘)))) = ((log‘((𝐴 / 𝑘) + 1)) − (log‘((𝐴 / (𝑘 + 1)) + 1))))
260223, 259eqtr3d 2766 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((log‘((𝐴 / 𝑘) + 1)) + ((log‘((𝑘 + 1) / 𝑘)) − (log‘(((𝐴 + 1) / 𝑘) + 1)))) = ((log‘((𝐴 / 𝑘) + 1)) − (log‘((𝐴 / (𝑘 + 1)) + 1))))
261220, 222, 2603eqtrd 2768 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((log‘((𝑘 + 1) / 𝑘)) − ((log‘(((𝐴 + 1) / 𝑘) + 1)) − (log‘((𝐴 / 𝑘) + 1)))) = ((log‘((𝐴 / 𝑘) + 1)) − (log‘((𝐴 / (𝑘 + 1)) + 1))))
262213, 219, 2613eqtrd 2768 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) − ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = ((log‘((𝐴 / 𝑘) + 1)) − (log‘((𝐴 / (𝑘 + 1)) + 1))))
263262sumeq2dv 15627 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)((((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) − ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = Σ𝑘 ∈ (1...𝑛)((log‘((𝐴 / 𝑘) + 1)) − (log‘((𝐴 / (𝑘 + 1)) + 1))))
264198, 196, 210fsumsub 15713 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)((((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) − ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = (Σ𝑘 ∈ (1...𝑛)(((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) − Σ𝑘 ∈ (1...𝑛)((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))))
265 oveq2 7361 . . . . . . . . . 10 (𝑥 = 𝑘 → (𝐴 / 𝑥) = (𝐴 / 𝑘))
266265fvoveq1d 7375 . . . . . . . . 9 (𝑥 = 𝑘 → (log‘((𝐴 / 𝑥) + 1)) = (log‘((𝐴 / 𝑘) + 1)))
267 oveq2 7361 . . . . . . . . . 10 (𝑥 = (𝑘 + 1) → (𝐴 / 𝑥) = (𝐴 / (𝑘 + 1)))
268267fvoveq1d 7375 . . . . . . . . 9 (𝑥 = (𝑘 + 1) → (log‘((𝐴 / 𝑥) + 1)) = (log‘((𝐴 / (𝑘 + 1)) + 1)))
269 oveq2 7361 . . . . . . . . . 10 (𝑥 = 1 → (𝐴 / 𝑥) = (𝐴 / 1))
270269fvoveq1d 7375 . . . . . . . . 9 (𝑥 = 1 → (log‘((𝐴 / 𝑥) + 1)) = (log‘((𝐴 / 1) + 1)))
271 oveq2 7361 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → (𝐴 / 𝑥) = (𝐴 / (𝑛 + 1)))
272271fvoveq1d 7375 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (log‘((𝐴 / 𝑥) + 1)) = (log‘((𝐴 / (𝑛 + 1)) + 1)))
27391nnzd 12516 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
27495, 1eleqtrdi 2838 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ (ℤ‘1))
27511ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑛 + 1))) → 𝐴 ∈ ℂ)
276 elfznn 13474 . . . . . . . . . . . . . 14 (𝑥 ∈ (1...(𝑛 + 1)) → 𝑥 ∈ ℕ)
277276adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑛 + 1))) → 𝑥 ∈ ℕ)
278277nncnd 12162 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑛 + 1))) → 𝑥 ∈ ℂ)
279277nnne0d 12196 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑛 + 1))) → 𝑥 ≠ 0)
280275, 278, 279divcld 11918 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑛 + 1))) → (𝐴 / 𝑥) ∈ ℂ)
281 1cnd 11129 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑛 + 1))) → 1 ∈ ℂ)
282280, 281addcld 11153 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑛 + 1))) → ((𝐴 / 𝑥) + 1) ∈ ℂ)
2834ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑛 + 1))) → 𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
284283, 277dmgmdivn0 26954 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑛 + 1))) → ((𝐴 / 𝑥) + 1) ≠ 0)
285282, 284logcld 26495 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...(𝑛 + 1))) → (log‘((𝐴 / 𝑥) + 1)) ∈ ℂ)
286266, 268, 270, 272, 273, 274, 285telfsum 15729 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)((log‘((𝐴 / 𝑘) + 1)) − (log‘((𝐴 / (𝑘 + 1)) + 1))) = ((log‘((𝐴 / 1) + 1)) − (log‘((𝐴 / (𝑛 + 1)) + 1))))
28790div1d 11910 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐴 / 1) = 𝐴)
288287fvoveq1d 7375 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (log‘((𝐴 / 1) + 1)) = (log‘(𝐴 + 1)))
289288oveq1d 7368 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((log‘((𝐴 / 1) + 1)) − (log‘((𝐴 / (𝑛 + 1)) + 1))) = ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑛 + 1)) + 1))))
290286, 289eqtrd 2764 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)((log‘((𝐴 / 𝑘) + 1)) − (log‘((𝐴 / (𝑘 + 1)) + 1))) = ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑛 + 1)) + 1))))
291263, 264, 2903eqtr3d 2772 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (Σ𝑘 ∈ (1...𝑛)(((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) − Σ𝑘 ∈ (1...𝑛)((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1)))) = ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑛 + 1)) + 1))))
292291oveq2d 7369 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (Σ𝑘 ∈ (1...𝑛)(((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) − (Σ𝑘 ∈ (1...𝑛)(((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) − Σ𝑘 ∈ (1...𝑛)((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))) = (Σ𝑘 ∈ (1...𝑛)(((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) − ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑛 + 1)) + 1)))))
293212, 292eqtr3d 2766 . . . 4 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) = (Σ𝑘 ∈ (1...𝑛)(((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) − ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑛 + 1)) + 1)))))
294170oveq2d 7369 . . . . . . . 8 (𝑚 = 𝑘 → (𝐴 · (log‘((𝑚 + 1) / 𝑚))) = (𝐴 · (log‘((𝑘 + 1) / 𝑘))))
295 oveq2 7361 . . . . . . . . 9 (𝑚 = 𝑘 → (𝐴 / 𝑚) = (𝐴 / 𝑘))
296295fvoveq1d 7375 . . . . . . . 8 (𝑚 = 𝑘 → (log‘((𝐴 / 𝑚) + 1)) = (log‘((𝐴 / 𝑘) + 1)))
297294, 296oveq12d 7371 . . . . . . 7 (𝑚 = 𝑘 → ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))) = ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))
298 lgamcvg.g . . . . . . 7 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐴 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝐴 / 𝑚) + 1))))
299 ovex 7386 . . . . . . 7 ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) ∈ V
300297, 298, 299fvmpt 6934 . . . . . 6 (𝑘 ∈ ℕ → (𝐺𝑘) = ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))
301166, 300syl 17 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝐺𝑘) = ((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))))
302301, 178, 210fsumser 15655 . . . 4 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)((𝐴 · (log‘((𝑘 + 1) / 𝑘))) − (log‘((𝐴 / 𝑘) + 1))) = (seq1( + , 𝐺)‘𝑛))
303159eqcomd 2735 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑛 + 1)) + 1))) = ((𝑚 ∈ ℕ ↦ ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑚 + 1)) + 1))))‘𝑛))
304197, 303oveq12d 7371 . . . 4 ((𝜑𝑛 ∈ ℕ) → (Σ𝑘 ∈ (1...𝑛)(((𝐴 + 1) · (log‘((𝑘 + 1) / 𝑘))) − (log‘(((𝐴 + 1) / 𝑘) + 1))) − ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑛 + 1)) + 1)))) = ((seq1( + , (𝑚 ∈ ℕ ↦ (((𝐴 + 1) · (log‘((𝑚 + 1) / 𝑚))) − (log‘(((𝐴 + 1) / 𝑚) + 1)))))‘𝑛) − ((𝑚 ∈ ℕ ↦ ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑚 + 1)) + 1))))‘𝑛)))
305293, 302, 3043eqtr3d 2772 . . 3 ((𝜑𝑛 ∈ ℕ) → (seq1( + , 𝐺)‘𝑛) = ((seq1( + , (𝑚 ∈ ℕ ↦ (((𝐴 + 1) · (log‘((𝑚 + 1) / 𝑚))) − (log‘(((𝐴 + 1) / 𝑚) + 1)))))‘𝑛) − ((𝑚 ∈ ℕ ↦ ((log‘(𝐴 + 1)) − (log‘((𝐴 / (𝑚 + 1)) + 1))))‘𝑛)))
3061, 2, 8, 10, 164, 200, 203, 305climsub 15559 . 2 (𝜑 → seq1( + , 𝐺) ⇝ (((log Γ‘(𝐴 + 1)) + (log‘(𝐴 + 1))) − (log‘(𝐴 + 1))))
307 lgamcl 26967 . . . 4 ((𝐴 + 1) ∈ (ℂ ∖ (ℤ ∖ ℕ)) → (log Γ‘(𝐴 + 1)) ∈ ℂ)
3087, 307syl 17 . . 3 (𝜑 → (log Γ‘(𝐴 + 1)) ∈ ℂ)
309308, 142pncand 11494 . 2 (𝜑 → (((log Γ‘(𝐴 + 1)) + (log‘(𝐴 + 1))) − (log‘(𝐴 + 1))) = (log Γ‘(𝐴 + 1)))
310306, 309breqtrd 5121 1 (𝜑 → seq1( + , 𝐺) ⇝ (log Γ‘(𝐴 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3438  cdif 3902  wss 3905  {csn 4579   class class class wbr 5095  cmpt 5176  ran crn 5624  cres 5625  ccom 5627  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  -∞cmnf 11166  *cxr 11167   < clt 11168  cle 11169  cmin 11365   / cdiv 11795  cn 12146  0cn0 12402  cz 12489  cuz 12753  +crp 12911  (,]cioc 13267  ...cfz 13428  seqcseq 13926  abscabs 15159  cli 15409  Σcsu 15611  ∞Metcxmet 21264  ballcbl 21266  cnccncf 24785  logclog 26479  log Γclgam 26942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-tan 15996  df-pi 15997  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-ulm 26302  df-log 26481  df-cxp 26482  df-lgam 26945
This theorem is referenced by:  lgamp1  26983
  Copyright terms: Public domain W3C validator