Step | Hyp | Ref
| Expression |
1 | | cayleyhamilton.a |
. . . 4
⊢ 𝐴 = (𝑁 Mat 𝑅) |
2 | | cayleyhamilton.b |
. . . 4
⊢ 𝐵 = (Base‘𝐴) |
3 | | eqid 2738 |
. . . 4
⊢
(Poly1‘𝑅) = (Poly1‘𝑅) |
4 | | eqid 2738 |
. . . 4
⊢ (𝑁 Mat
(Poly1‘𝑅))
= (𝑁 Mat
(Poly1‘𝑅)) |
5 | | eqid 2738 |
. . . 4
⊢
(.r‘(𝑁 Mat (Poly1‘𝑅))) =
(.r‘(𝑁 Mat
(Poly1‘𝑅))) |
6 | | eqid 2738 |
. . . 4
⊢
(-g‘(𝑁 Mat (Poly1‘𝑅))) =
(-g‘(𝑁 Mat
(Poly1‘𝑅))) |
7 | | eqid 2738 |
. . . 4
⊢
(0g‘(𝑁 Mat (Poly1‘𝑅))) =
(0g‘(𝑁 Mat
(Poly1‘𝑅))) |
8 | | eqid 2738 |
. . . 4
⊢ (𝑁 matToPolyMat 𝑅) = (𝑁 matToPolyMat 𝑅) |
9 | | cayleyhamilton.c |
. . . 4
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
10 | | eqid 2738 |
. . . 4
⊢ (𝐶‘𝑀) = (𝐶‘𝑀) |
11 | | eqeq1 2742 |
. . . . . 6
⊢ (𝑙 = 𝑛 → (𝑙 = 0 ↔ 𝑛 = 0)) |
12 | | eqeq1 2742 |
. . . . . . 7
⊢ (𝑙 = 𝑛 → (𝑙 = (𝑠 + 1) ↔ 𝑛 = (𝑠 + 1))) |
13 | | breq2 5074 |
. . . . . . . 8
⊢ (𝑙 = 𝑛 → ((𝑠 + 1) < 𝑙 ↔ (𝑠 + 1) < 𝑛)) |
14 | | oveq1 7262 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝑛 → (𝑙 − 1) = (𝑛 − 1)) |
15 | 14 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑙 = 𝑛 → (𝑏‘(𝑙 − 1)) = (𝑏‘(𝑛 − 1))) |
16 | 15 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝑙 = 𝑛 → ((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1))) = ((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑛 − 1)))) |
17 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝑛 → (𝑏‘𝑙) = (𝑏‘𝑛)) |
18 | 17 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑙 = 𝑛 → ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙)) = ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑛))) |
19 | 18 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑙 = 𝑛 → (((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))) = (((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑛)))) |
20 | 16, 19 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑙 = 𝑛 → (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙)))) = (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑛 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑛))))) |
21 | 13, 20 | ifbieq2d 4482 |
. . . . . . 7
⊢ (𝑙 = 𝑛 → if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))) = if((𝑠 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑛 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑛)))))) |
22 | 12, 21 | ifbieq2d 4482 |
. . . . . 6
⊢ (𝑙 = 𝑛 → if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙)))))) = if(𝑛 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑛 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑛))))))) |
23 | 11, 22 | ifbieq2d 4482 |
. . . . 5
⊢ (𝑙 = 𝑛 → if(𝑙 = 0, ((0g‘(𝑁 Mat
(Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))) = if(𝑛 = 0, ((0g‘(𝑁 Mat
(Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑛 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑛)))))))) |
24 | 23 | cbvmptv 5183 |
. . . 4
⊢ (𝑙 ∈ ℕ0
↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙)))))))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑛 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑛)))))))) |
25 | | eqid 2738 |
. . . 4
⊢
(Base‘(𝑁 Mat
(Poly1‘𝑅))) = (Base‘(𝑁 Mat (Poly1‘𝑅))) |
26 | | eqid 2738 |
. . . 4
⊢
(1r‘𝐴) = (1r‘𝐴) |
27 | | cayleyhamilton.m |
. . . 4
⊢ ∗ = (
·𝑠 ‘𝐴) |
28 | | eqid 2738 |
. . . 4
⊢ (𝑁 cPolyMatToMat 𝑅) = (𝑁 cPolyMatToMat 𝑅) |
29 | | cayleyhamilton.e |
. . . 4
⊢ ↑ =
(.g‘(mulGrp‘𝐴)) |
30 | | eqid 2738 |
. . . 4
⊢
(.g‘(mulGrp‘(𝑁 Mat (Poly1‘𝑅)))) =
(.g‘(mulGrp‘(𝑁 Mat (Poly1‘𝑅)))) |
31 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
24, 25, 26, 27, 28, 29, 30 | cayhamlem4 21945 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0
↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = ((𝑁 cPolyMatToMat 𝑅)‘((𝑁 Mat (Poly1‘𝑅)) Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛)))))) |
32 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑁 ConstPolyMat 𝑅) = (𝑁 ConstPolyMat 𝑅) |
33 | 28, 32 | cpm2mfval 21806 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 cPolyMatToMat 𝑅) = (𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
34 | 33 | eqcomd 2744 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) = (𝑁 cPolyMatToMat 𝑅)) |
35 | 34 | 3adant3 1130 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) = (𝑁 cPolyMatToMat 𝑅)) |
36 | 35 | fveq1d 6758 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1‘𝑅)) Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛))))) = ((𝑁 cPolyMatToMat 𝑅)‘((𝑁 Mat (Poly1‘𝑅)) Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛)))))) |
37 | 36 | eqeq2d 2749 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝐴 Σg (𝑛 ∈ ℕ0
↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1‘𝑅)) Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛))))) ↔ (𝐴 Σg (𝑛 ∈ ℕ0
↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = ((𝑁 cPolyMatToMat 𝑅)‘((𝑁 Mat (Poly1‘𝑅)) Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛))))))) |
38 | 37 | 2rexbidv 3228 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0
↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1‘𝑅)) Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛))))) ↔ ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0
↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = ((𝑁 cPolyMatToMat 𝑅)‘((𝑁 Mat (Poly1‘𝑅)) Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛))))))) |
39 | 31, 38 | mpbird 256 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0
↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1‘𝑅)) Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛)))))) |
40 | | cayleyhamilton.k |
. . . . . . . . . . . . 13
⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) |
41 | 40 | eqcomi 2747 |
. . . . . . . . . . . 12
⊢
(coe1‘(𝐶‘𝑀)) = 𝐾 |
42 | 41 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) →
(coe1‘(𝐶‘𝑀)) = 𝐾) |
43 | 42 | fveq1d 6758 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) →
((coe1‘(𝐶‘𝑀))‘𝑛) = (𝐾‘𝑛)) |
44 | 43 | oveq1d 7270 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) →
(((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)) = ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀))) |
45 | 44 | mpteq2dva 5170 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑛 ∈ ℕ0 ↦
(((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀))) = (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) |
46 | 45 | oveq2d 7271 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝐴 Σg (𝑛 ∈ ℕ0
↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀))))) |
47 | 46 | eqeq1d 2740 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝐴 Σg (𝑛 ∈ ℕ0
↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1‘𝑅)) Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛))))) ↔ (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1‘𝑅)) Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛))))))) |
48 | 47 | biimpa 476 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ (𝐴 Σg (𝑛 ∈ ℕ0
↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1‘𝑅)) Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛)))))) → (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1‘𝑅)) Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛)))))) |
49 | | oveq1 7262 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑗 → (𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀)) = (𝑗(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))) |
50 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑗 → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛) = ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑗)) |
51 | 49, 50 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑗 → ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛)) = ((𝑗(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑗))) |
52 | 51 | cbvmptv 5183 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛))) = (𝑗 ∈ ℕ0 ↦ ((𝑗(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑗))) |
53 | 52 | oveq2i 7266 |
. . . . . . . . 9
⊢ ((𝑁 Mat
(Poly1‘𝑅))
Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛)))) = ((𝑁 Mat (Poly1‘𝑅)) Σg
(𝑗 ∈
ℕ0 ↦ ((𝑗(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑗)))) |
54 | 53 | a1i 11 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑁 Mat (Poly1‘𝑅)) Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛)))) = ((𝑁 Mat (Poly1‘𝑅)) Σg
(𝑗 ∈
ℕ0 ↦ ((𝑗(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑗))))) |
55 | 1, 2, 3, 4, 5, 6, 7, 8, 24, 30 | cayhamlem1 21923 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑁 Mat (Poly1‘𝑅)) Σg
(𝑗 ∈
ℕ0 ↦ ((𝑗(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑗)))) = (0g‘(𝑁 Mat
(Poly1‘𝑅)))) |
56 | 54, 55 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑁 Mat (Poly1‘𝑅)) Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛)))) = (0g‘(𝑁 Mat
(Poly1‘𝑅)))) |
57 | | fveq2 6756 |
. . . . . . . 8
⊢ (((𝑁 Mat
(Poly1‘𝑅))
Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛)))) = (0g‘(𝑁 Mat
(Poly1‘𝑅))) → ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1‘𝑅)) Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛))))) = ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘(0g‘(𝑁 Mat (Poly1‘𝑅))))) |
58 | | crngring 19710 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
59 | 58 | anim2i 616 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
60 | 59 | 3adant3 1130 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
61 | 28, 32 | cpm2mfval 21806 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 cPolyMatToMat 𝑅) = (𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
62 | 61 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) = (𝑁 cPolyMatToMat 𝑅)) |
63 | 62 | fveq1d 6758 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘(0g‘(𝑁 Mat (Poly1‘𝑅)))) = ((𝑁 cPolyMatToMat 𝑅)‘(0g‘(𝑁 Mat (Poly1‘𝑅))))) |
64 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(0g‘𝐴) = (0g‘𝐴) |
65 | 1, 28, 3, 4, 64, 7 | m2cpminv0 21818 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑁 cPolyMatToMat 𝑅)‘(0g‘(𝑁 Mat
(Poly1‘𝑅)))) = (0g‘𝐴)) |
66 | 63, 65 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘(0g‘(𝑁 Mat (Poly1‘𝑅)))) = (0g‘𝐴)) |
67 | 60, 66 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘(0g‘(𝑁 Mat (Poly1‘𝑅)))) = (0g‘𝐴)) |
68 | | cayleyhamilton.0 |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝐴) |
69 | 67, 68 | eqtr4di 2797 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘(0g‘(𝑁 Mat (Poly1‘𝑅)))) = 0 ) |
70 | 69 | adantr 480 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘(0g‘(𝑁 Mat (Poly1‘𝑅)))) = 0 ) |
71 | 57, 70 | sylan9eqr 2801 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ ((𝑁 Mat (Poly1‘𝑅)) Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛)))) = (0g‘(𝑁 Mat
(Poly1‘𝑅)))) → ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1‘𝑅)) Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛))))) = 0 ) |
72 | 56, 71 | mpdan 683 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1‘𝑅)) Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛))))) = 0 ) |
73 | 72 | adantr 480 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ (𝐴 Σg (𝑛 ∈ ℕ0
↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1‘𝑅)) Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛)))))) → ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1‘𝑅)) Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛))))) = 0 ) |
74 | 48, 73 | eqtrd 2778 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ (𝐴 Σg (𝑛 ∈ ℕ0
↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1‘𝑅)) Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛)))))) → (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) |
75 | 74 | ex 412 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝐴 Σg (𝑛 ∈ ℕ0
↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1‘𝑅)) Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛))))) → (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 )) |
76 | 75 | rexlimdvva 3222 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0
↦ (((coe1‘(𝐶‘𝑀))‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1‘𝑅)) Σg
(𝑛 ∈
ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat
(Poly1‘𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0,
((0g‘(𝑁
Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat
(Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘𝑙))))))))‘𝑛))))) → (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 )) |
77 | 39, 76 | mpd 15 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) |