MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayleyhamiltonALT Structured version   Visualization version   GIF version

Theorem cayleyhamiltonALT 22897
Description: Alternate proof of cayleyhamilton 22896, the Cayley-Hamilton theorem. This proof does not use cayleyhamilton0 22895 directly, but has the same structure as the proof of cayleyhamilton0 22895. In contrast to the proof of cayleyhamilton0 22895, only the definitions required to formulate the theorem itself are used, causing the definitions used in the lemmas being expanded, which makes the proof longer and more difficult to read. (Contributed by AV, 25-Nov-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
cayleyhamilton.a 𝐴 = (𝑁 Mat 𝑅)
cayleyhamilton.b 𝐵 = (Base‘𝐴)
cayleyhamilton.0 0 = (0g𝐴)
cayleyhamilton.c 𝐶 = (𝑁 CharPlyMat 𝑅)
cayleyhamilton.k 𝐾 = (coe1‘(𝐶𝑀))
cayleyhamilton.m = ( ·𝑠𝐴)
cayleyhamilton.e = (.g‘(mulGrp‘𝐴))
Assertion
Ref Expression
cayleyhamiltonALT ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 )
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝐶,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   ,𝑛   ,𝑛
Allowed substitution hints:   𝐾(𝑛)   0 (𝑛)

Proof of Theorem cayleyhamiltonALT
Dummy variables 𝑏 𝑚 𝑠 𝑥 𝑦 𝑙 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cayleyhamilton.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 cayleyhamilton.b . . . 4 𝐵 = (Base‘𝐴)
3 eqid 2737 . . . 4 (Poly1𝑅) = (Poly1𝑅)
4 eqid 2737 . . . 4 (𝑁 Mat (Poly1𝑅)) = (𝑁 Mat (Poly1𝑅))
5 eqid 2737 . . . 4 (.r‘(𝑁 Mat (Poly1𝑅))) = (.r‘(𝑁 Mat (Poly1𝑅)))
6 eqid 2737 . . . 4 (-g‘(𝑁 Mat (Poly1𝑅))) = (-g‘(𝑁 Mat (Poly1𝑅)))
7 eqid 2737 . . . 4 (0g‘(𝑁 Mat (Poly1𝑅))) = (0g‘(𝑁 Mat (Poly1𝑅)))
8 eqid 2737 . . . 4 (𝑁 matToPolyMat 𝑅) = (𝑁 matToPolyMat 𝑅)
9 cayleyhamilton.c . . . 4 𝐶 = (𝑁 CharPlyMat 𝑅)
10 eqid 2737 . . . 4 (𝐶𝑀) = (𝐶𝑀)
11 eqeq1 2741 . . . . . 6 (𝑙 = 𝑛 → (𝑙 = 0 ↔ 𝑛 = 0))
12 eqeq1 2741 . . . . . . 7 (𝑙 = 𝑛 → (𝑙 = (𝑠 + 1) ↔ 𝑛 = (𝑠 + 1)))
13 breq2 5147 . . . . . . . 8 (𝑙 = 𝑛 → ((𝑠 + 1) < 𝑙 ↔ (𝑠 + 1) < 𝑛))
14 oveq1 7438 . . . . . . . . . . 11 (𝑙 = 𝑛 → (𝑙 − 1) = (𝑛 − 1))
1514fveq2d 6910 . . . . . . . . . 10 (𝑙 = 𝑛 → (𝑏‘(𝑙 − 1)) = (𝑏‘(𝑛 − 1)))
1615fveq2d 6910 . . . . . . . . 9 (𝑙 = 𝑛 → ((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1))) = ((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑛 − 1))))
17 fveq2 6906 . . . . . . . . . . 11 (𝑙 = 𝑛 → (𝑏𝑙) = (𝑏𝑛))
1817fveq2d 6910 . . . . . . . . . 10 (𝑙 = 𝑛 → ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙)) = ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑛)))
1918oveq2d 7447 . . . . . . . . 9 (𝑙 = 𝑛 → (((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))) = (((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑛))))
2016, 19oveq12d 7449 . . . . . . . 8 (𝑙 = 𝑛 → (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙)))) = (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑛)))))
2113, 20ifbieq2d 4552 . . . . . . 7 (𝑙 = 𝑛 → if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))) = if((𝑠 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑛))))))
2212, 21ifbieq2d 4552 . . . . . 6 (𝑙 = 𝑛 → if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙)))))) = if(𝑛 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑛)))))))
2311, 22ifbieq2d 4552 . . . . 5 (𝑙 = 𝑛 → if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))) = if(𝑛 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑛))))))))
2423cbvmptv 5255 . . . 4 (𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙)))))))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑛))))))))
25 eqid 2737 . . . 4 (Base‘(𝑁 Mat (Poly1𝑅))) = (Base‘(𝑁 Mat (Poly1𝑅)))
26 eqid 2737 . . . 4 (1r𝐴) = (1r𝐴)
27 cayleyhamilton.m . . . 4 = ( ·𝑠𝐴)
28 eqid 2737 . . . 4 (𝑁 cPolyMatToMat 𝑅) = (𝑁 cPolyMatToMat 𝑅)
29 cayleyhamilton.e . . . 4 = (.g‘(mulGrp‘𝐴))
30 eqid 2737 . . . 4 (.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅)))) = (.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))
311, 2, 3, 4, 5, 6, 7, 8, 9, 10, 24, 25, 26, 27, 28, 29, 30cayhamlem4 22894 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = ((𝑁 cPolyMatToMat 𝑅)‘((𝑁 Mat (Poly1𝑅)) Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛))))))
32 eqid 2737 . . . . . . . . 9 (𝑁 ConstPolyMat 𝑅) = (𝑁 ConstPolyMat 𝑅)
3328, 32cpm2mfval 22755 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 cPolyMatToMat 𝑅) = (𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
3433eqcomd 2743 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) = (𝑁 cPolyMatToMat 𝑅))
35343adant3 1133 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) = (𝑁 cPolyMatToMat 𝑅))
3635fveq1d 6908 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1𝑅)) Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛))))) = ((𝑁 cPolyMatToMat 𝑅)‘((𝑁 Mat (Poly1𝑅)) Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛))))))
3736eqeq2d 2748 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1𝑅)) Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛))))) ↔ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = ((𝑁 cPolyMatToMat 𝑅)‘((𝑁 Mat (Poly1𝑅)) Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛)))))))
38372rexbidv 3222 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1𝑅)) Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛))))) ↔ ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = ((𝑁 cPolyMatToMat 𝑅)‘((𝑁 Mat (Poly1𝑅)) Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛)))))))
3931, 38mpbird 257 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1𝑅)) Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛))))))
40 cayleyhamilton.k . . . . . . . . . . . . 13 𝐾 = (coe1‘(𝐶𝑀))
4140eqcomi 2746 . . . . . . . . . . . 12 (coe1‘(𝐶𝑀)) = 𝐾
4241a1i 11 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → (coe1‘(𝐶𝑀)) = 𝐾)
4342fveq1d 6908 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → ((coe1‘(𝐶𝑀))‘𝑛) = (𝐾𝑛))
4443oveq1d 7446 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)) = ((𝐾𝑛) (𝑛 𝑀)))
4544mpteq2dva 5242 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀))) = (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀))))
4645oveq2d 7447 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))))
4746eqeq1d 2739 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1𝑅)) Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛))))) ↔ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1𝑅)) Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛)))))))
4847biimpa 476 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1𝑅)) Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛)))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1𝑅)) Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛))))))
49 oveq1 7438 . . . . . . . . . . . 12 (𝑛 = 𝑗 → (𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀)) = (𝑗(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀)))
50 fveq2 6906 . . . . . . . . . . . 12 (𝑛 = 𝑗 → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛) = ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑗))
5149, 50oveq12d 7449 . . . . . . . . . . 11 (𝑛 = 𝑗 → ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛)) = ((𝑗(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑗)))
5251cbvmptv 5255 . . . . . . . . . 10 (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛))) = (𝑗 ∈ ℕ0 ↦ ((𝑗(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑗)))
5352oveq2i 7442 . . . . . . . . 9 ((𝑁 Mat (Poly1𝑅)) Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛)))) = ((𝑁 Mat (Poly1𝑅)) Σg (𝑗 ∈ ℕ0 ↦ ((𝑗(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑗))))
5453a1i 11 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑁 Mat (Poly1𝑅)) Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛)))) = ((𝑁 Mat (Poly1𝑅)) Σg (𝑗 ∈ ℕ0 ↦ ((𝑗(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑗)))))
551, 2, 3, 4, 5, 6, 7, 8, 24, 30cayhamlem1 22872 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑁 Mat (Poly1𝑅)) Σg (𝑗 ∈ ℕ0 ↦ ((𝑗(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑗)))) = (0g‘(𝑁 Mat (Poly1𝑅))))
5654, 55eqtrd 2777 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑁 Mat (Poly1𝑅)) Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛)))) = (0g‘(𝑁 Mat (Poly1𝑅))))
57 fveq2 6906 . . . . . . . 8 (((𝑁 Mat (Poly1𝑅)) Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛)))) = (0g‘(𝑁 Mat (Poly1𝑅))) → ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1𝑅)) Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛))))) = ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘(0g‘(𝑁 Mat (Poly1𝑅)))))
58 crngring 20242 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
5958anim2i 617 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
60593adant3 1133 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
6128, 32cpm2mfval 22755 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 cPolyMatToMat 𝑅) = (𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
6261eqcomd 2743 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) = (𝑁 cPolyMatToMat 𝑅))
6362fveq1d 6908 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘(0g‘(𝑁 Mat (Poly1𝑅)))) = ((𝑁 cPolyMatToMat 𝑅)‘(0g‘(𝑁 Mat (Poly1𝑅)))))
64 eqid 2737 . . . . . . . . . . . . 13 (0g𝐴) = (0g𝐴)
651, 28, 3, 4, 64, 7m2cpminv0 22767 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑁 cPolyMatToMat 𝑅)‘(0g‘(𝑁 Mat (Poly1𝑅)))) = (0g𝐴))
6663, 65eqtrd 2777 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘(0g‘(𝑁 Mat (Poly1𝑅)))) = (0g𝐴))
6760, 66syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘(0g‘(𝑁 Mat (Poly1𝑅)))) = (0g𝐴))
68 cayleyhamilton.0 . . . . . . . . . 10 0 = (0g𝐴)
6967, 68eqtr4di 2795 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘(0g‘(𝑁 Mat (Poly1𝑅)))) = 0 )
7069adantr 480 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘(0g‘(𝑁 Mat (Poly1𝑅)))) = 0 )
7157, 70sylan9eqr 2799 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ ((𝑁 Mat (Poly1𝑅)) Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛)))) = (0g‘(𝑁 Mat (Poly1𝑅)))) → ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1𝑅)) Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛))))) = 0 )
7256, 71mpdan 687 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1𝑅)) Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛))))) = 0 )
7372adantr 480 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1𝑅)) Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛)))))) → ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1𝑅)) Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛))))) = 0 )
7448, 73eqtrd 2777 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1𝑅)) Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛)))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 )
7574ex 412 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1𝑅)) Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 ))
7675rexlimdvva 3213 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘(𝐶𝑀))‘𝑛) (𝑛 𝑀)))) = ((𝑚 ∈ (𝑁 ConstPolyMat 𝑅) ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))‘((𝑁 Mat (Poly1𝑅)) Σg (𝑛 ∈ ℕ0 ↦ ((𝑛(.g‘(mulGrp‘(𝑁 Mat (Poly1𝑅))))((𝑁 matToPolyMat 𝑅)‘𝑀))(.r‘(𝑁 Mat (Poly1𝑅)))((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1𝑅)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏‘0)))), if(𝑙 = (𝑠 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑏𝑠)), if((𝑠 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑏‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑏𝑙))))))))‘𝑛))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 ))
7739, 76mpd 15 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wrex 3070  ifcif 4525   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cmpo 7433  m cmap 8866  Fincfn 8985  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  cmin 11492  cn 12266  0cn0 12526  ...cfz 13547  Basecbs 17247  .rcmulr 17298   ·𝑠 cvsca 17301  0gc0g 17484   Σg cgsu 17485  -gcsg 18953  .gcmg 19085  mulGrpcmgp 20137  1rcur 20178  Ringcrg 20230  CRingccrg 20231  Poly1cpl1 22178  coe1cco1 22179   Mat cmat 22411   ConstPolyMat ccpmat 22709   matToPolyMat cmat2pmat 22710   cPolyMatToMat ccpmat2mat 22711   CharPlyMat cchpmat 22832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-cur 8292  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-word 14553  df-lsw 14601  df-concat 14609  df-s1 14634  df-substr 14679  df-pfx 14709  df-splice 14788  df-reverse 14797  df-s2 14887  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-efmnd 18882  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-gim 19277  df-cntz 19335  df-oppg 19364  df-symg 19387  df-pmtr 19460  df-psgn 19509  df-evpm 19510  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-drng 20731  df-lmod 20860  df-lss 20930  df-sra 21172  df-rgmod 21173  df-cnfld 21365  df-zring 21458  df-zrh 21514  df-dsmm 21752  df-frlm 21767  df-assa 21873  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-psr1 22181  df-vr1 22182  df-ply1 22183  df-coe1 22184  df-mamu 22395  df-mat 22412  df-mdet 22591  df-madu 22640  df-cpmat 22712  df-mat2pmat 22713  df-cpmat2mat 22714  df-decpmat 22769  df-pm2mp 22799  df-chpmat 22833
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator