| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > m2pmfzgsumcl | Structured version Visualization version GIF version | ||
| Description: Closure of the sum of scaled transformed matrices. (Contributed by AV, 4-Nov-2019.) (Proof shortened by AV, 28-Nov-2019.) |
| Ref | Expression |
|---|---|
| m2pmfzmap.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| m2pmfzmap.b | ⊢ 𝐵 = (Base‘𝐴) |
| m2pmfzmap.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| m2pmfzmap.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
| m2pmfzmap.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| m2pmfzmapfsupp.x | ⊢ 𝑋 = (var1‘𝑅) |
| m2pmfzmapfsupp.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
| m2pmfzgsumcl.m | ⊢ · = ( ·𝑠 ‘𝑌) |
| Ref | Expression |
|---|---|
| m2pmfzgsumcl | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . 2 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 2 | crngring 20211 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 3 | m2pmfzmap.p | . . . . . . . 8 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | 3 | ply1ring 22198 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ Ring) |
| 6 | m2pmfzmap.y | . . . . . . 7 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
| 7 | 6 | matring 22398 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝑌 ∈ Ring) |
| 8 | 5, 7 | sylan2 593 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Ring) |
| 9 | ringcmn 20248 | . . . . 5 ⊢ (𝑌 ∈ Ring → 𝑌 ∈ CMnd) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ CMnd) |
| 11 | 10 | 3adant3 1132 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ CMnd) |
| 12 | 11 | adantr 480 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑌 ∈ CMnd) |
| 13 | fzfid 13996 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (0...𝑠) ∈ Fin) | |
| 14 | simpll1 1212 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑁 ∈ Fin) | |
| 15 | 5 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Ring) |
| 16 | 15 | ad2antrr 726 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑃 ∈ Ring) |
| 17 | 2 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 18 | 17 | adantr 480 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑅 ∈ Ring) |
| 19 | elfznn0 13642 | . . . . 5 ⊢ (𝑖 ∈ (0...𝑠) → 𝑖 ∈ ℕ0) | |
| 20 | m2pmfzmapfsupp.x | . . . . . 6 ⊢ 𝑋 = (var1‘𝑅) | |
| 21 | eqid 2734 | . . . . . 6 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
| 22 | m2pmfzmapfsupp.e | . . . . . 6 ⊢ ↑ = (.g‘(mulGrp‘𝑃)) | |
| 23 | eqid 2734 | . . . . . 6 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 24 | 3, 20, 21, 22, 23 | ply1moncl 22223 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑖 ∈ ℕ0) → (𝑖 ↑ 𝑋) ∈ (Base‘𝑃)) |
| 25 | 18, 19, 24 | syl2an 596 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 ↑ 𝑋) ∈ (Base‘𝑃)) |
| 26 | 2 | anim2i 617 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
| 27 | 26 | 3adant3 1132 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
| 28 | simpl 482 | . . . . . . 7 ⊢ ((𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝑠 ∈ ℕ0) | |
| 29 | 27, 28 | anim12i 613 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑠 ∈ ℕ0)) |
| 30 | df-3an 1088 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑠 ∈ ℕ0)) | |
| 31 | 29, 30 | sylibr 234 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0)) |
| 32 | simprr 772 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑏 ∈ (𝐵 ↑m (0...𝑠))) | |
| 33 | 32 | anim1i 615 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑏 ∈ (𝐵 ↑m (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) |
| 34 | m2pmfzmap.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 35 | m2pmfzmap.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
| 36 | m2pmfzmap.t | . . . . . 6 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
| 37 | 34, 35, 3, 6, 36 | m2pmfzmap 22702 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ (𝑏 ∈ (𝐵 ↑m (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) → (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) |
| 38 | 31, 33, 37 | syl2an2r 685 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) |
| 39 | m2pmfzgsumcl.m | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑌) | |
| 40 | 23, 6, 1, 39 | matvscl 22386 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ ((𝑖 ↑ 𝑋) ∈ (Base‘𝑃) ∧ (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌))) → ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
| 41 | 14, 16, 25, 38, 40 | syl22anc 838 | . . 3 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
| 42 | 41 | ralrimiva 3133 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ∀𝑖 ∈ (0...𝑠)((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
| 43 | 1, 12, 13, 42 | gsummptcl 19954 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ↦ cmpt 5205 ‘cfv 6541 (class class class)co 7413 ↑m cmap 8848 Fincfn 8967 0cc0 11137 ℕ0cn0 12509 ...cfz 13529 Basecbs 17230 ·𝑠 cvsca 17278 Σg cgsu 17457 .gcmg 19055 CMndccmn 19767 mulGrpcmgp 20106 Ringcrg 20199 CRingccrg 20200 var1cv1 22126 Poly1cpl1 22127 Mat cmat 22360 matToPolyMat cmat2pmat 22659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-ofr 7680 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-map 8850 df-pm 8851 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-sup 9464 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14353 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-mulr 17288 df-sca 17290 df-vsca 17291 df-ip 17292 df-tset 17293 df-ple 17294 df-ds 17296 df-hom 17298 df-cco 17299 df-0g 17458 df-gsum 17459 df-prds 17464 df-pws 17466 df-mre 17601 df-mrc 17602 df-acs 17604 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-ghm 19201 df-cntz 19305 df-cmn 19769 df-abl 19770 df-mgp 20107 df-rng 20119 df-ur 20148 df-ring 20201 df-cring 20202 df-subrng 20515 df-subrg 20539 df-lmod 20829 df-lss 20899 df-sra 21141 df-rgmod 21142 df-dsmm 21707 df-frlm 21722 df-ascl 21830 df-psr 21884 df-mvr 21885 df-mpl 21886 df-opsr 21888 df-psr1 22130 df-vr1 22131 df-ply1 22132 df-mamu 22344 df-mat 22361 df-mat2pmat 22662 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |