| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > m2pmfzgsumcl | Structured version Visualization version GIF version | ||
| Description: Closure of the sum of scaled transformed matrices. (Contributed by AV, 4-Nov-2019.) (Proof shortened by AV, 28-Nov-2019.) |
| Ref | Expression |
|---|---|
| m2pmfzmap.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| m2pmfzmap.b | ⊢ 𝐵 = (Base‘𝐴) |
| m2pmfzmap.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| m2pmfzmap.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
| m2pmfzmap.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| m2pmfzmapfsupp.x | ⊢ 𝑋 = (var1‘𝑅) |
| m2pmfzmapfsupp.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
| m2pmfzgsumcl.m | ⊢ · = ( ·𝑠 ‘𝑌) |
| Ref | Expression |
|---|---|
| m2pmfzgsumcl | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 2 | crngring 20117 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 3 | m2pmfzmap.p | . . . . . . . 8 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | 3 | ply1ring 22114 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ Ring) |
| 6 | m2pmfzmap.y | . . . . . . 7 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
| 7 | 6 | matring 22312 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝑌 ∈ Ring) |
| 8 | 5, 7 | sylan2 593 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Ring) |
| 9 | ringcmn 20154 | . . . . 5 ⊢ (𝑌 ∈ Ring → 𝑌 ∈ CMnd) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ CMnd) |
| 11 | 10 | 3adant3 1132 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ CMnd) |
| 12 | 11 | adantr 480 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑌 ∈ CMnd) |
| 13 | fzfid 13868 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (0...𝑠) ∈ Fin) | |
| 14 | simpll1 1213 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑁 ∈ Fin) | |
| 15 | 5 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Ring) |
| 16 | 15 | ad2antrr 726 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑃 ∈ Ring) |
| 17 | 2 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 18 | 17 | adantr 480 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑅 ∈ Ring) |
| 19 | elfznn0 13511 | . . . . 5 ⊢ (𝑖 ∈ (0...𝑠) → 𝑖 ∈ ℕ0) | |
| 20 | m2pmfzmapfsupp.x | . . . . . 6 ⊢ 𝑋 = (var1‘𝑅) | |
| 21 | eqid 2729 | . . . . . 6 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
| 22 | m2pmfzmapfsupp.e | . . . . . 6 ⊢ ↑ = (.g‘(mulGrp‘𝑃)) | |
| 23 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 24 | 3, 20, 21, 22, 23 | ply1moncl 22139 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑖 ∈ ℕ0) → (𝑖 ↑ 𝑋) ∈ (Base‘𝑃)) |
| 25 | 18, 19, 24 | syl2an 596 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 ↑ 𝑋) ∈ (Base‘𝑃)) |
| 26 | 2 | anim2i 617 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
| 27 | 26 | 3adant3 1132 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
| 28 | simpl 482 | . . . . . . 7 ⊢ ((𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝑠 ∈ ℕ0) | |
| 29 | 27, 28 | anim12i 613 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑠 ∈ ℕ0)) |
| 30 | df-3an 1088 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑠 ∈ ℕ0)) | |
| 31 | 29, 30 | sylibr 234 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0)) |
| 32 | simprr 772 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑏 ∈ (𝐵 ↑m (0...𝑠))) | |
| 33 | 32 | anim1i 615 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑏 ∈ (𝐵 ↑m (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) |
| 34 | m2pmfzmap.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 35 | m2pmfzmap.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
| 36 | m2pmfzmap.t | . . . . . 6 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
| 37 | 34, 35, 3, 6, 36 | m2pmfzmap 22616 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ (𝑏 ∈ (𝐵 ↑m (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) → (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) |
| 38 | 31, 33, 37 | syl2an2r 685 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) |
| 39 | m2pmfzgsumcl.m | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑌) | |
| 40 | 23, 6, 1, 39 | matvscl 22300 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ ((𝑖 ↑ 𝑋) ∈ (Base‘𝑃) ∧ (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌))) → ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
| 41 | 14, 16, 25, 38, 40 | syl22anc 838 | . . 3 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
| 42 | 41 | ralrimiva 3121 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ∀𝑖 ∈ (0...𝑠)((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
| 43 | 1, 12, 13, 42 | gsummptcl 19833 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5169 ‘cfv 6476 (class class class)co 7340 ↑m cmap 8744 Fincfn 8863 0cc0 10997 ℕ0cn0 12372 ...cfz 13398 Basecbs 17107 ·𝑠 cvsca 17152 Σg cgsu 17331 .gcmg 18933 CMndccmn 19646 mulGrpcmgp 20012 Ringcrg 20105 CRingccrg 20106 var1cv1 22042 Poly1cpl1 22043 Mat cmat 22276 matToPolyMat cmat2pmat 22573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5214 ax-sep 5231 ax-nul 5241 ax-pow 5300 ax-pr 5367 ax-un 7662 ax-cnex 11053 ax-resscn 11054 ax-1cn 11055 ax-icn 11056 ax-addcl 11057 ax-addrcl 11058 ax-mulcl 11059 ax-mulrcl 11060 ax-mulcom 11061 ax-addass 11062 ax-mulass 11063 ax-distr 11064 ax-i2m1 11065 ax-1ne0 11066 ax-1rid 11067 ax-rnegex 11068 ax-rrecex 11069 ax-cnre 11070 ax-pre-lttri 11071 ax-pre-lttrn 11072 ax-pre-ltadd 11073 ax-pre-mulgt0 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3393 df-v 3435 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-ot 4582 df-uni 4857 df-int 4895 df-iun 4940 df-iin 4941 df-br 5089 df-opab 5151 df-mpt 5170 df-tr 5196 df-id 5508 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5566 df-se 5567 df-we 5568 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-ima 5626 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7297 df-ov 7343 df-oprab 7344 df-mpo 7345 df-of 7604 df-ofr 7605 df-om 7791 df-1st 7915 df-2nd 7916 df-supp 8085 df-frecs 8205 df-wrecs 8236 df-recs 8285 df-rdg 8323 df-1o 8379 df-2o 8380 df-er 8616 df-map 8746 df-pm 8747 df-ixp 8816 df-en 8864 df-dom 8865 df-sdom 8866 df-fin 8867 df-fsupp 9240 df-sup 9320 df-oi 9390 df-card 9823 df-pnf 11139 df-mnf 11140 df-xr 11141 df-ltxr 11142 df-le 11143 df-sub 11337 df-neg 11338 df-nn 12117 df-2 12179 df-3 12180 df-4 12181 df-5 12182 df-6 12183 df-7 12184 df-8 12185 df-9 12186 df-n0 12373 df-z 12460 df-dec 12580 df-uz 12724 df-fz 13399 df-fzo 13546 df-seq 13897 df-hash 14226 df-struct 17045 df-sets 17062 df-slot 17080 df-ndx 17092 df-base 17108 df-ress 17129 df-plusg 17161 df-mulr 17162 df-sca 17164 df-vsca 17165 df-ip 17166 df-tset 17167 df-ple 17168 df-ds 17170 df-hom 17172 df-cco 17173 df-0g 17332 df-gsum 17333 df-prds 17338 df-pws 17340 df-mre 17475 df-mrc 17476 df-acs 17478 df-mgm 18501 df-sgrp 18580 df-mnd 18596 df-mhm 18644 df-submnd 18645 df-grp 18802 df-minusg 18803 df-sbg 18804 df-mulg 18934 df-subg 18989 df-ghm 19079 df-cntz 19183 df-cmn 19648 df-abl 19649 df-mgp 20013 df-rng 20025 df-ur 20054 df-ring 20107 df-cring 20108 df-subrng 20415 df-subrg 20439 df-lmod 20749 df-lss 20819 df-sra 21061 df-rgmod 21062 df-dsmm 21623 df-frlm 21638 df-ascl 21746 df-psr 21800 df-mvr 21801 df-mpl 21802 df-opsr 21804 df-psr1 22046 df-vr1 22047 df-ply1 22048 df-mamu 22260 df-mat 22277 df-mat2pmat 22576 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |