| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > m2pmfzgsumcl | Structured version Visualization version GIF version | ||
| Description: Closure of the sum of scaled transformed matrices. (Contributed by AV, 4-Nov-2019.) (Proof shortened by AV, 28-Nov-2019.) |
| Ref | Expression |
|---|---|
| m2pmfzmap.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| m2pmfzmap.b | ⊢ 𝐵 = (Base‘𝐴) |
| m2pmfzmap.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| m2pmfzmap.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
| m2pmfzmap.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| m2pmfzmapfsupp.x | ⊢ 𝑋 = (var1‘𝑅) |
| m2pmfzmapfsupp.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
| m2pmfzgsumcl.m | ⊢ · = ( ·𝑠 ‘𝑌) |
| Ref | Expression |
|---|---|
| m2pmfzgsumcl | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 2 | crngring 20167 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 3 | m2pmfzmap.p | . . . . . . . 8 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | 3 | ply1ring 22167 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ Ring) |
| 6 | m2pmfzmap.y | . . . . . . 7 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
| 7 | 6 | matring 22365 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝑌 ∈ Ring) |
| 8 | 5, 7 | sylan2 593 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Ring) |
| 9 | ringcmn 20204 | . . . . 5 ⊢ (𝑌 ∈ Ring → 𝑌 ∈ CMnd) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ CMnd) |
| 11 | 10 | 3adant3 1132 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ CMnd) |
| 12 | 11 | adantr 480 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑌 ∈ CMnd) |
| 13 | fzfid 13917 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (0...𝑠) ∈ Fin) | |
| 14 | simpll1 1213 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑁 ∈ Fin) | |
| 15 | 5 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Ring) |
| 16 | 15 | ad2antrr 726 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑃 ∈ Ring) |
| 17 | 2 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 18 | 17 | adantr 480 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑅 ∈ Ring) |
| 19 | elfznn0 13560 | . . . . 5 ⊢ (𝑖 ∈ (0...𝑠) → 𝑖 ∈ ℕ0) | |
| 20 | m2pmfzmapfsupp.x | . . . . . 6 ⊢ 𝑋 = (var1‘𝑅) | |
| 21 | eqid 2729 | . . . . . 6 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
| 22 | m2pmfzmapfsupp.e | . . . . . 6 ⊢ ↑ = (.g‘(mulGrp‘𝑃)) | |
| 23 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 24 | 3, 20, 21, 22, 23 | ply1moncl 22192 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑖 ∈ ℕ0) → (𝑖 ↑ 𝑋) ∈ (Base‘𝑃)) |
| 25 | 18, 19, 24 | syl2an 596 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 ↑ 𝑋) ∈ (Base‘𝑃)) |
| 26 | 2 | anim2i 617 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
| 27 | 26 | 3adant3 1132 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
| 28 | simpl 482 | . . . . . . 7 ⊢ ((𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝑠 ∈ ℕ0) | |
| 29 | 27, 28 | anim12i 613 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑠 ∈ ℕ0)) |
| 30 | df-3an 1088 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑠 ∈ ℕ0)) | |
| 31 | 29, 30 | sylibr 234 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0)) |
| 32 | simprr 772 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑏 ∈ (𝐵 ↑m (0...𝑠))) | |
| 33 | 32 | anim1i 615 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑏 ∈ (𝐵 ↑m (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) |
| 34 | m2pmfzmap.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 35 | m2pmfzmap.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
| 36 | m2pmfzmap.t | . . . . . 6 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
| 37 | 34, 35, 3, 6, 36 | m2pmfzmap 22669 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ (𝑏 ∈ (𝐵 ↑m (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) → (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) |
| 38 | 31, 33, 37 | syl2an2r 685 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) |
| 39 | m2pmfzgsumcl.m | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑌) | |
| 40 | 23, 6, 1, 39 | matvscl 22353 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ ((𝑖 ↑ 𝑋) ∈ (Base‘𝑃) ∧ (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌))) → ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
| 41 | 14, 16, 25, 38, 40 | syl22anc 838 | . . 3 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
| 42 | 41 | ralrimiva 3125 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ∀𝑖 ∈ (0...𝑠)((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
| 43 | 1, 12, 13, 42 | gsummptcl 19883 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5183 ‘cfv 6500 (class class class)co 7370 ↑m cmap 8777 Fincfn 8896 0cc0 11047 ℕ0cn0 12421 ...cfz 13447 Basecbs 17157 ·𝑠 cvsca 17202 Σg cgsu 17381 .gcmg 18983 CMndccmn 19696 mulGrpcmgp 20062 Ringcrg 20155 CRingccrg 20156 var1cv1 22095 Poly1cpl1 22096 Mat cmat 22329 matToPolyMat cmat2pmat 22626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-of 7634 df-ofr 7635 df-om 7824 df-1st 7948 df-2nd 7949 df-supp 8118 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8649 df-map 8779 df-pm 8780 df-ixp 8849 df-en 8897 df-dom 8898 df-sdom 8899 df-fin 8900 df-fsupp 9290 df-sup 9370 df-oi 9440 df-card 9871 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-nn 12166 df-2 12228 df-3 12229 df-4 12230 df-5 12231 df-6 12232 df-7 12233 df-8 12234 df-9 12235 df-n0 12422 df-z 12509 df-dec 12629 df-uz 12773 df-fz 13448 df-fzo 13595 df-seq 13946 df-hash 14275 df-struct 17095 df-sets 17112 df-slot 17130 df-ndx 17142 df-base 17158 df-ress 17179 df-plusg 17211 df-mulr 17212 df-sca 17214 df-vsca 17215 df-ip 17216 df-tset 17217 df-ple 17218 df-ds 17220 df-hom 17222 df-cco 17223 df-0g 17382 df-gsum 17383 df-prds 17388 df-pws 17390 df-mre 17525 df-mrc 17526 df-acs 17528 df-mgm 18551 df-sgrp 18630 df-mnd 18646 df-mhm 18694 df-submnd 18695 df-grp 18852 df-minusg 18853 df-sbg 18854 df-mulg 18984 df-subg 19039 df-ghm 19129 df-cntz 19233 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-cring 20158 df-subrng 20468 df-subrg 20492 df-lmod 20802 df-lss 20872 df-sra 21114 df-rgmod 21115 df-dsmm 21676 df-frlm 21691 df-ascl 21799 df-psr 21853 df-mvr 21854 df-mpl 21855 df-opsr 21857 df-psr1 22099 df-vr1 22100 df-ply1 22101 df-mamu 22313 df-mat 22330 df-mat2pmat 22629 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |