![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > m2pmfzgsumcl | Structured version Visualization version GIF version |
Description: Closure of the sum of scaled transformed matrices. (Contributed by AV, 4-Nov-2019.) (Proof shortened by AV, 28-Nov-2019.) |
Ref | Expression |
---|---|
m2pmfzmap.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
m2pmfzmap.b | ⊢ 𝐵 = (Base‘𝐴) |
m2pmfzmap.p | ⊢ 𝑃 = (Poly1‘𝑅) |
m2pmfzmap.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
m2pmfzmap.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
m2pmfzmapfsupp.x | ⊢ 𝑋 = (var1‘𝑅) |
m2pmfzmapfsupp.e | ⊢ ↑ = (.g‘(mulGrp‘𝑃)) |
m2pmfzgsumcl.m | ⊢ · = ( ·𝑠 ‘𝑌) |
Ref | Expression |
---|---|
m2pmfzgsumcl | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2797 | . 2 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
2 | crngring 18871 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
3 | m2pmfzmap.p | . . . . . . . 8 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | 3 | ply1ring 19937 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ Ring) |
6 | m2pmfzmap.y | . . . . . . 7 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
7 | 6 | matring 20571 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝑌 ∈ Ring) |
8 | 5, 7 | sylan2 587 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Ring) |
9 | ringcmn 18894 | . . . . 5 ⊢ (𝑌 ∈ Ring → 𝑌 ∈ CMnd) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ CMnd) |
11 | 10 | 3adant3 1163 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ CMnd) |
12 | 11 | adantr 473 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑌 ∈ CMnd) |
13 | fzfid 13023 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (0...𝑠) ∈ Fin) | |
14 | simpll1 1270 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑁 ∈ Fin) | |
15 | 5 | 3ad2ant2 1165 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Ring) |
16 | 15 | ad2antrr 718 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑃 ∈ Ring) |
17 | 2 | 3ad2ant2 1165 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
18 | 17 | adantr 473 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑅 ∈ Ring) |
19 | elfznn0 12683 | . . . . 5 ⊢ (𝑖 ∈ (0...𝑠) → 𝑖 ∈ ℕ0) | |
20 | m2pmfzmapfsupp.x | . . . . . 6 ⊢ 𝑋 = (var1‘𝑅) | |
21 | eqid 2797 | . . . . . 6 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
22 | m2pmfzmapfsupp.e | . . . . . 6 ⊢ ↑ = (.g‘(mulGrp‘𝑃)) | |
23 | eqid 2797 | . . . . . 6 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
24 | 3, 20, 21, 22, 23 | ply1moncl 19960 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑖 ∈ ℕ0) → (𝑖 ↑ 𝑋) ∈ (Base‘𝑃)) |
25 | 18, 19, 24 | syl2an 590 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 ↑ 𝑋) ∈ (Base‘𝑃)) |
26 | 2 | anim2i 611 | . . . . . . . . 9 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
27 | 26 | 3adant3 1163 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
28 | simpl 475 | . . . . . . . 8 ⊢ ((𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 𝑠 ∈ ℕ0) | |
29 | 27, 28 | anim12i 607 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑠 ∈ ℕ0)) |
30 | df-3an 1110 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑠 ∈ ℕ0)) | |
31 | 29, 30 | sylibr 226 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0)) |
32 | 31 | adantr 473 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0)) |
33 | simprr 790 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) | |
34 | 33 | anim1i 609 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) |
35 | m2pmfzmap.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
36 | m2pmfzmap.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
37 | m2pmfzmap.t | . . . . . 6 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
38 | 35, 36, 3, 6, 37 | m2pmfzmap 20877 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ (𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) → (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) |
39 | 32, 34, 38 | syl2anc 580 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) |
40 | m2pmfzgsumcl.m | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑌) | |
41 | 23, 6, 1, 40 | matvscl 20559 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ ((𝑖 ↑ 𝑋) ∈ (Base‘𝑃) ∧ (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌))) → ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
42 | 14, 16, 25, 39, 41 | syl22anc 868 | . . 3 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
43 | 42 | ralrimiva 3145 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ∀𝑖 ∈ (0...𝑠)((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
44 | 1, 12, 13, 43 | gsummptcl 18678 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ↦ cmpt 4920 ‘cfv 6099 (class class class)co 6876 ↑𝑚 cmap 8093 Fincfn 8193 0cc0 10222 ℕ0cn0 11576 ...cfz 12576 Basecbs 16181 ·𝑠 cvsca 16268 Σg cgsu 16413 .gcmg 17853 CMndccmn 18505 mulGrpcmgp 18802 Ringcrg 18860 CRingccrg 18861 var1cv1 19865 Poly1cpl1 19866 Mat cmat 20535 matToPolyMat cmat2pmat 20834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-inf2 8786 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-ot 4375 df-uni 4627 df-int 4666 df-iun 4710 df-iin 4711 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-se 5270 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-isom 6108 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-of 7129 df-ofr 7130 df-om 7298 df-1st 7399 df-2nd 7400 df-supp 7531 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-2o 7798 df-oadd 7801 df-er 7980 df-map 8095 df-pm 8096 df-ixp 8147 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-fsupp 8516 df-sup 8588 df-oi 8655 df-card 9049 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-nn 11311 df-2 11372 df-3 11373 df-4 11374 df-5 11375 df-6 11376 df-7 11377 df-8 11378 df-9 11379 df-n0 11577 df-z 11663 df-dec 11780 df-uz 11927 df-fz 12577 df-fzo 12717 df-seq 13052 df-hash 13367 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-ress 16189 df-plusg 16277 df-mulr 16278 df-sca 16280 df-vsca 16281 df-ip 16282 df-tset 16283 df-ple 16284 df-ds 16286 df-hom 16288 df-cco 16289 df-0g 16414 df-gsum 16415 df-prds 16420 df-pws 16422 df-mre 16558 df-mrc 16559 df-acs 16561 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-mhm 17647 df-submnd 17648 df-grp 17738 df-minusg 17739 df-sbg 17740 df-mulg 17854 df-subg 17901 df-ghm 17968 df-cntz 18059 df-cmn 18507 df-abl 18508 df-mgp 18803 df-ur 18815 df-ring 18862 df-cring 18863 df-subrg 19093 df-lmod 19180 df-lss 19248 df-sra 19492 df-rgmod 19493 df-ascl 19634 df-psr 19676 df-mvr 19677 df-mpl 19678 df-opsr 19680 df-psr1 19869 df-vr1 19870 df-ply1 19871 df-dsmm 20398 df-frlm 20413 df-mamu 20512 df-mat 20536 df-mat2pmat 20837 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |