MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iducn Structured version   Visualization version   GIF version

Theorem iducn 24177
Description: The identity is uniformly continuous from a uniform structure to itself. Example 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 16-Nov-2017.)
Assertion
Ref Expression
iducn (𝑈 ∈ (UnifOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝑈 Cnu𝑈))

Proof of Theorem iducn
Dummy variables 𝑠 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6841 . . 3 ( I ↾ 𝑋):𝑋1-1-onto𝑋
2 f1of 6803 . . 3 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋𝑋)
31, 2mp1i 13 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ( I ↾ 𝑋):𝑋𝑋)
4 simpr 484 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑠𝑈) → 𝑠𝑈)
5 fvresi 7150 . . . . . . . 8 (𝑥𝑋 → (( I ↾ 𝑋)‘𝑥) = 𝑥)
6 fvresi 7150 . . . . . . . 8 (𝑦𝑋 → (( I ↾ 𝑋)‘𝑦) = 𝑦)
75, 6breqan12d 5126 . . . . . . 7 ((𝑥𝑋𝑦𝑋) → ((( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦) ↔ 𝑥𝑠𝑦))
87biimprd 248 . . . . . 6 ((𝑥𝑋𝑦𝑋) → (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))
98adantl 481 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑠𝑈) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))
109ralrimivva 3181 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑠𝑈) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))
11 breq 5112 . . . . . . 7 (𝑟 = 𝑠 → (𝑥𝑟𝑦𝑥𝑠𝑦))
1211imbi1d 341 . . . . . 6 (𝑟 = 𝑠 → ((𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)) ↔ (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))))
13122ralbidv 3202 . . . . 5 (𝑟 = 𝑠 → (∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))))
1413rspcev 3591 . . . 4 ((𝑠𝑈 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))) → ∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))
154, 10, 14syl2anc 584 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑠𝑈) → ∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))
1615ralrimiva 3126 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑠𝑈𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))
17 isucn 24172 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑈 ∈ (UnifOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝑈 Cnu𝑈) ↔ (( I ↾ 𝑋):𝑋𝑋 ∧ ∀𝑠𝑈𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))))
1817anidms 566 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (( I ↾ 𝑋) ∈ (𝑈 Cnu𝑈) ↔ (( I ↾ 𝑋):𝑋𝑋 ∧ ∀𝑠𝑈𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))))
193, 16, 18mpbir2and 713 1 (𝑈 ∈ (UnifOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝑈 Cnu𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3045  wrex 3054   class class class wbr 5110   I cid 5535  cres 5643  wf 6510  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  UnifOncust 24094   Cnucucn 24169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-ust 24095  df-ucn 24170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator