MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iducn Structured version   Visualization version   GIF version

Theorem iducn 24203
Description: The identity is uniformly continuous from a uniform structure to itself. Example 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 16-Nov-2017.)
Assertion
Ref Expression
iducn (𝑈 ∈ (UnifOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝑈 Cnu𝑈))

Proof of Theorem iducn
Dummy variables 𝑠 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6807 . . 3 ( I ↾ 𝑋):𝑋1-1-onto𝑋
2 f1of 6769 . . 3 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋𝑋)
31, 2mp1i 13 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ( I ↾ 𝑋):𝑋𝑋)
4 simpr 484 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑠𝑈) → 𝑠𝑈)
5 fvresi 7113 . . . . . . . 8 (𝑥𝑋 → (( I ↾ 𝑋)‘𝑥) = 𝑥)
6 fvresi 7113 . . . . . . . 8 (𝑦𝑋 → (( I ↾ 𝑋)‘𝑦) = 𝑦)
75, 6breqan12d 5109 . . . . . . 7 ((𝑥𝑋𝑦𝑋) → ((( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦) ↔ 𝑥𝑠𝑦))
87biimprd 248 . . . . . 6 ((𝑥𝑋𝑦𝑋) → (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))
98adantl 481 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑠𝑈) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))
109ralrimivva 3175 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑠𝑈) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))
11 breq 5095 . . . . . . 7 (𝑟 = 𝑠 → (𝑥𝑟𝑦𝑥𝑠𝑦))
1211imbi1d 341 . . . . . 6 (𝑟 = 𝑠 → ((𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)) ↔ (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))))
13122ralbidv 3196 . . . . 5 (𝑟 = 𝑠 → (∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))))
1413rspcev 3572 . . . 4 ((𝑠𝑈 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))) → ∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))
154, 10, 14syl2anc 584 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑠𝑈) → ∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))
1615ralrimiva 3124 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑠𝑈𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))
17 isucn 24198 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑈 ∈ (UnifOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝑈 Cnu𝑈) ↔ (( I ↾ 𝑋):𝑋𝑋 ∧ ∀𝑠𝑈𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))))
1817anidms 566 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (( I ↾ 𝑋) ∈ (𝑈 Cnu𝑈) ↔ (( I ↾ 𝑋):𝑋𝑋 ∧ ∀𝑠𝑈𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))))
193, 16, 18mpbir2and 713 1 (𝑈 ∈ (UnifOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝑈 Cnu𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  wral 3047  wrex 3056   class class class wbr 5093   I cid 5513  cres 5621  wf 6483  1-1-ontowf1o 6486  cfv 6487  (class class class)co 7352  UnifOncust 24121   Cnucucn 24195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-map 8758  df-ust 24122  df-ucn 24196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator