| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | f1oi 6885 | . . 3
⊢ ( I
↾ 𝑋):𝑋–1-1-onto→𝑋 | 
| 2 |  | f1of 6847 | . . 3
⊢ (( I
↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋⟶𝑋) | 
| 3 | 1, 2 | mp1i 13 | . 2
⊢ (𝑈 ∈ (UnifOn‘𝑋) → ( I ↾ 𝑋):𝑋⟶𝑋) | 
| 4 |  | simpr 484 | . . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑠 ∈ 𝑈) → 𝑠 ∈ 𝑈) | 
| 5 |  | fvresi 7194 | . . . . . . . 8
⊢ (𝑥 ∈ 𝑋 → (( I ↾ 𝑋)‘𝑥) = 𝑥) | 
| 6 |  | fvresi 7194 | . . . . . . . 8
⊢ (𝑦 ∈ 𝑋 → (( I ↾ 𝑋)‘𝑦) = 𝑦) | 
| 7 | 5, 6 | breqan12d 5158 | . . . . . . 7
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦) ↔ 𝑥𝑠𝑦)) | 
| 8 | 7 | biimprd 248 | . . . . . 6
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))) | 
| 9 | 8 | adantl 481 | . . . . 5
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑠 ∈ 𝑈) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))) | 
| 10 | 9 | ralrimivva 3201 | . . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑠 ∈ 𝑈) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))) | 
| 11 |  | breq 5144 | . . . . . . 7
⊢ (𝑟 = 𝑠 → (𝑥𝑟𝑦 ↔ 𝑥𝑠𝑦)) | 
| 12 | 11 | imbi1d 341 | . . . . . 6
⊢ (𝑟 = 𝑠 → ((𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)) ↔ (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))) | 
| 13 | 12 | 2ralbidv 3220 | . . . . 5
⊢ (𝑟 = 𝑠 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))) | 
| 14 | 13 | rspcev 3621 | . . . 4
⊢ ((𝑠 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))) → ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))) | 
| 15 | 4, 10, 14 | syl2anc 584 | . . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑠 ∈ 𝑈) → ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))) | 
| 16 | 15 | ralrimiva 3145 | . 2
⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑠 ∈ 𝑈 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))) | 
| 17 |  | isucn 24288 | . . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑈 ∈ (UnifOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝑈 Cnu𝑈) ↔ (( I ↾ 𝑋):𝑋⟶𝑋 ∧ ∀𝑠 ∈ 𝑈 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))))) | 
| 18 | 17 | anidms 566 | . 2
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (( I ↾ 𝑋) ∈ (𝑈 Cnu𝑈) ↔ (( I ↾ 𝑋):𝑋⟶𝑋 ∧ ∀𝑠 ∈ 𝑈 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))))) | 
| 19 | 3, 16, 18 | mpbir2and 713 | 1
⊢ (𝑈 ∈ (UnifOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝑈 Cnu𝑈)) |