Step | Hyp | Ref
| Expression |
1 | | f1oi 6698 |
. . 3
⊢ ( I
↾ 𝑋):𝑋–1-1-onto→𝑋 |
2 | | f1of 6661 |
. . 3
⊢ (( I
↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋⟶𝑋) |
3 | 1, 2 | mp1i 13 |
. 2
⊢ (𝑈 ∈ (UnifOn‘𝑋) → ( I ↾ 𝑋):𝑋⟶𝑋) |
4 | | simpr 488 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑠 ∈ 𝑈) → 𝑠 ∈ 𝑈) |
5 | | fvresi 6988 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑋 → (( I ↾ 𝑋)‘𝑥) = 𝑥) |
6 | | fvresi 6988 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝑋 → (( I ↾ 𝑋)‘𝑦) = 𝑦) |
7 | 5, 6 | breqan12d 5069 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦) ↔ 𝑥𝑠𝑦)) |
8 | 7 | biimprd 251 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))) |
9 | 8 | adantl 485 |
. . . . 5
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑠 ∈ 𝑈) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))) |
10 | 9 | ralrimivva 3112 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑠 ∈ 𝑈) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))) |
11 | | breq 5055 |
. . . . . . 7
⊢ (𝑟 = 𝑠 → (𝑥𝑟𝑦 ↔ 𝑥𝑠𝑦)) |
12 | 11 | imbi1d 345 |
. . . . . 6
⊢ (𝑟 = 𝑠 → ((𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)) ↔ (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))) |
13 | 12 | 2ralbidv 3120 |
. . . . 5
⊢ (𝑟 = 𝑠 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))) |
14 | 13 | rspcev 3537 |
. . . 4
⊢ ((𝑠 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))) → ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))) |
15 | 4, 10, 14 | syl2anc 587 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑠 ∈ 𝑈) → ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))) |
16 | 15 | ralrimiva 3105 |
. 2
⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑠 ∈ 𝑈 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))) |
17 | | isucn 23175 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑈 ∈ (UnifOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝑈 Cnu𝑈) ↔ (( I ↾ 𝑋):𝑋⟶𝑋 ∧ ∀𝑠 ∈ 𝑈 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))))) |
18 | 17 | anidms 570 |
. 2
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (( I ↾ 𝑋) ∈ (𝑈 Cnu𝑈) ↔ (( I ↾ 𝑋):𝑋⟶𝑋 ∧ ∀𝑠 ∈ 𝑈 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))))) |
19 | 3, 16, 18 | mpbir2and 713 |
1
⊢ (𝑈 ∈ (UnifOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝑈 Cnu𝑈)) |