Step | Hyp | Ref
| Expression |
1 | | f1oi 6872 |
. . 3
β’ ( I
βΎ π):πβ1-1-ontoβπ |
2 | | f1of 6834 |
. . 3
β’ (( I
βΎ π):πβ1-1-ontoβπ β ( I βΎ π):πβΆπ) |
3 | 1, 2 | mp1i 13 |
. 2
β’ (π β (UnifOnβπ) β ( I βΎ π):πβΆπ) |
4 | | simpr 486 |
. . . 4
β’ ((π β (UnifOnβπ) β§ π β π) β π β π) |
5 | | fvresi 7171 |
. . . . . . . 8
β’ (π₯ β π β (( I βΎ π)βπ₯) = π₯) |
6 | | fvresi 7171 |
. . . . . . . 8
β’ (π¦ β π β (( I βΎ π)βπ¦) = π¦) |
7 | 5, 6 | breqan12d 5165 |
. . . . . . 7
β’ ((π₯ β π β§ π¦ β π) β ((( I βΎ π)βπ₯)π (( I βΎ π)βπ¦) β π₯π π¦)) |
8 | 7 | biimprd 247 |
. . . . . 6
β’ ((π₯ β π β§ π¦ β π) β (π₯π π¦ β (( I βΎ π)βπ₯)π (( I βΎ π)βπ¦))) |
9 | 8 | adantl 483 |
. . . . 5
β’ (((π β (UnifOnβπ) β§ π β π) β§ (π₯ β π β§ π¦ β π)) β (π₯π π¦ β (( I βΎ π)βπ₯)π (( I βΎ π)βπ¦))) |
10 | 9 | ralrimivva 3201 |
. . . 4
β’ ((π β (UnifOnβπ) β§ π β π) β βπ₯ β π βπ¦ β π (π₯π π¦ β (( I βΎ π)βπ₯)π (( I βΎ π)βπ¦))) |
11 | | breq 5151 |
. . . . . . 7
β’ (π = π β (π₯ππ¦ β π₯π π¦)) |
12 | 11 | imbi1d 342 |
. . . . . 6
β’ (π = π β ((π₯ππ¦ β (( I βΎ π)βπ₯)π (( I βΎ π)βπ¦)) β (π₯π π¦ β (( I βΎ π)βπ₯)π (( I βΎ π)βπ¦)))) |
13 | 12 | 2ralbidv 3219 |
. . . . 5
β’ (π = π β (βπ₯ β π βπ¦ β π (π₯ππ¦ β (( I βΎ π)βπ₯)π (( I βΎ π)βπ¦)) β βπ₯ β π βπ¦ β π (π₯π π¦ β (( I βΎ π)βπ₯)π (( I βΎ π)βπ¦)))) |
14 | 13 | rspcev 3613 |
. . . 4
β’ ((π β π β§ βπ₯ β π βπ¦ β π (π₯π π¦ β (( I βΎ π)βπ₯)π (( I βΎ π)βπ¦))) β βπ β π βπ₯ β π βπ¦ β π (π₯ππ¦ β (( I βΎ π)βπ₯)π (( I βΎ π)βπ¦))) |
15 | 4, 10, 14 | syl2anc 585 |
. . 3
β’ ((π β (UnifOnβπ) β§ π β π) β βπ β π βπ₯ β π βπ¦ β π (π₯ππ¦ β (( I βΎ π)βπ₯)π (( I βΎ π)βπ¦))) |
16 | 15 | ralrimiva 3147 |
. 2
β’ (π β (UnifOnβπ) β βπ β π βπ β π βπ₯ β π βπ¦ β π (π₯ππ¦ β (( I βΎ π)βπ₯)π (( I βΎ π)βπ¦))) |
17 | | isucn 23783 |
. . 3
β’ ((π β (UnifOnβπ) β§ π β (UnifOnβπ)) β (( I βΎ π) β (π Cnuπ) β (( I βΎ π):πβΆπ β§ βπ β π βπ β π βπ₯ β π βπ¦ β π (π₯ππ¦ β (( I βΎ π)βπ₯)π (( I βΎ π)βπ¦))))) |
18 | 17 | anidms 568 |
. 2
β’ (π β (UnifOnβπ) β (( I βΎ π) β (π Cnuπ) β (( I βΎ π):πβΆπ β§ βπ β π βπ β π βπ₯ β π βπ¦ β π (π₯ππ¦ β (( I βΎ π)βπ₯)π (( I βΎ π)βπ¦))))) |
19 | 3, 16, 18 | mpbir2and 712 |
1
β’ (π β (UnifOnβπ) β ( I βΎ π) β (π Cnuπ)) |