MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iducn Structured version   Visualization version   GIF version

Theorem iducn 24226
Description: The identity is uniformly continuous from a uniform structure to itself. Example 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 16-Nov-2017.)
Assertion
Ref Expression
iducn (𝑈 ∈ (UnifOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝑈 Cnu𝑈))

Proof of Theorem iducn
Dummy variables 𝑠 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6861 . . 3 ( I ↾ 𝑋):𝑋1-1-onto𝑋
2 f1of 6823 . . 3 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋𝑋)
31, 2mp1i 13 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ( I ↾ 𝑋):𝑋𝑋)
4 simpr 484 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑠𝑈) → 𝑠𝑈)
5 fvresi 7170 . . . . . . . 8 (𝑥𝑋 → (( I ↾ 𝑋)‘𝑥) = 𝑥)
6 fvresi 7170 . . . . . . . 8 (𝑦𝑋 → (( I ↾ 𝑋)‘𝑦) = 𝑦)
75, 6breqan12d 5140 . . . . . . 7 ((𝑥𝑋𝑦𝑋) → ((( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦) ↔ 𝑥𝑠𝑦))
87biimprd 248 . . . . . 6 ((𝑥𝑋𝑦𝑋) → (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))
98adantl 481 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑠𝑈) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))
109ralrimivva 3188 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑠𝑈) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))
11 breq 5126 . . . . . . 7 (𝑟 = 𝑠 → (𝑥𝑟𝑦𝑥𝑠𝑦))
1211imbi1d 341 . . . . . 6 (𝑟 = 𝑠 → ((𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)) ↔ (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))))
13122ralbidv 3209 . . . . 5 (𝑟 = 𝑠 → (∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))))
1413rspcev 3606 . . . 4 ((𝑠𝑈 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑠𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦))) → ∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))
154, 10, 14syl2anc 584 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑠𝑈) → ∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))
1615ralrimiva 3133 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑠𝑈𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))
17 isucn 24221 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑈 ∈ (UnifOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝑈 Cnu𝑈) ↔ (( I ↾ 𝑋):𝑋𝑋 ∧ ∀𝑠𝑈𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))))
1817anidms 566 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (( I ↾ 𝑋) ∈ (𝑈 Cnu𝑈) ↔ (( I ↾ 𝑋):𝑋𝑋 ∧ ∀𝑠𝑈𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (( I ↾ 𝑋)‘𝑥)𝑠(( I ↾ 𝑋)‘𝑦)))))
193, 16, 18mpbir2and 713 1 (𝑈 ∈ (UnifOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝑈 Cnu𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3052  wrex 3061   class class class wbr 5124   I cid 5552  cres 5661  wf 6532  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  UnifOncust 24143   Cnucucn 24218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-ust 24144  df-ucn 24219
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator