Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > curf2val | Structured version Visualization version GIF version |
Description: Value of a component of the curry functor natural transformation. (Contributed by Mario Carneiro, 13-Jan-2017.) |
Ref | Expression |
---|---|
curf2.g | ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) |
curf2.a | ⊢ 𝐴 = (Base‘𝐶) |
curf2.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
curf2.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
curf2.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
curf2.b | ⊢ 𝐵 = (Base‘𝐷) |
curf2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
curf2.i | ⊢ 𝐼 = (Id‘𝐷) |
curf2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
curf2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
curf2.k | ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) |
curf2.l | ⊢ 𝐿 = ((𝑋(2nd ‘𝐺)𝑌)‘𝐾) |
curf2.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
curf2val | ⊢ (𝜑 → (𝐿‘𝑍) = (𝐾(〈𝑋, 𝑍〉(2nd ‘𝐹)〈𝑌, 𝑍〉)(𝐼‘𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | curf2.g | . . 3 ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) | |
2 | curf2.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
3 | curf2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | curf2.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
5 | curf2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) | |
6 | curf2.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
7 | curf2.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
8 | curf2.i | . . 3 ⊢ 𝐼 = (Id‘𝐷) | |
9 | curf2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
10 | curf2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
11 | curf2.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) | |
12 | curf2.l | . . 3 ⊢ 𝐿 = ((𝑋(2nd ‘𝐺)𝑌)‘𝐾) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | curf2 17546 | . 2 ⊢ (𝜑 → 𝐿 = (𝑧 ∈ 𝐵 ↦ (𝐾(〈𝑋, 𝑧〉(2nd ‘𝐹)〈𝑌, 𝑧〉)(𝐼‘𝑧)))) |
14 | simpr 489 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → 𝑧 = 𝑍) | |
15 | 14 | opeq2d 4771 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → 〈𝑋, 𝑧〉 = 〈𝑋, 𝑍〉) |
16 | 14 | opeq2d 4771 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → 〈𝑌, 𝑧〉 = 〈𝑌, 𝑍〉) |
17 | 15, 16 | oveq12d 7169 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → (〈𝑋, 𝑧〉(2nd ‘𝐹)〈𝑌, 𝑧〉) = (〈𝑋, 𝑍〉(2nd ‘𝐹)〈𝑌, 𝑍〉)) |
18 | eqidd 2760 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → 𝐾 = 𝐾) | |
19 | 14 | fveq2d 6663 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → (𝐼‘𝑧) = (𝐼‘𝑍)) |
20 | 17, 18, 19 | oveq123d 7172 | . 2 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → (𝐾(〈𝑋, 𝑧〉(2nd ‘𝐹)〈𝑌, 𝑧〉)(𝐼‘𝑧)) = (𝐾(〈𝑋, 𝑍〉(2nd ‘𝐹)〈𝑌, 𝑍〉)(𝐼‘𝑍))) |
21 | curf2.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
22 | ovexd 7186 | . 2 ⊢ (𝜑 → (𝐾(〈𝑋, 𝑍〉(2nd ‘𝐹)〈𝑌, 𝑍〉)(𝐼‘𝑍)) ∈ V) | |
23 | 13, 20, 21, 22 | fvmptd 6767 | 1 ⊢ (𝜑 → (𝐿‘𝑍) = (𝐾(〈𝑋, 𝑍〉(2nd ‘𝐹)〈𝑌, 𝑍〉)(𝐼‘𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 Vcvv 3410 〈cop 4529 ‘cfv 6336 (class class class)co 7151 2nd c2nd 7693 Basecbs 16542 Hom chom 16635 Catccat 16994 Idccid 16995 Func cfunc 17184 ×c cxpc 17485 curryF ccurf 17527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-ov 7154 df-oprab 7155 df-mpo 7156 df-1st 7694 df-2nd 7695 df-curf 17531 |
This theorem is referenced by: curf2cl 17548 curfcl 17549 uncfcurf 17556 yon2 17583 |
Copyright terms: Public domain | W3C validator |