![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > curf2val | Structured version Visualization version GIF version |
Description: Value of a component of the curry functor natural transformation. (Contributed by Mario Carneiro, 13-Jan-2017.) |
Ref | Expression |
---|---|
curf2.g | ⊢ 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹) |
curf2.a | ⊢ 𝐴 = (Base‘𝐶) |
curf2.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
curf2.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
curf2.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
curf2.b | ⊢ 𝐵 = (Base‘𝐷) |
curf2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
curf2.i | ⊢ 𝐼 = (Id‘𝐷) |
curf2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
curf2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
curf2.k | ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) |
curf2.l | ⊢ 𝐿 = ((𝑋(2nd ‘𝐺)𝑌)‘𝐾) |
curf2.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
curf2val | ⊢ (𝜑 → (𝐿‘𝑍) = (𝐾(⟨𝑋, 𝑍⟩(2nd ‘𝐹)⟨𝑌, 𝑍⟩)(𝐼‘𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | curf2.g | . . 3 ⊢ 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹) | |
2 | curf2.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
3 | curf2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | curf2.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
5 | curf2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) | |
6 | curf2.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
7 | curf2.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
8 | curf2.i | . . 3 ⊢ 𝐼 = (Id‘𝐷) | |
9 | curf2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
10 | curf2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
11 | curf2.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) | |
12 | curf2.l | . . 3 ⊢ 𝐿 = ((𝑋(2nd ‘𝐺)𝑌)‘𝐾) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | curf2 18194 | . 2 ⊢ (𝜑 → 𝐿 = (𝑧 ∈ 𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd ‘𝐹)⟨𝑌, 𝑧⟩)(𝐼‘𝑧)))) |
14 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → 𝑧 = 𝑍) | |
15 | 14 | opeq2d 4875 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → ⟨𝑋, 𝑧⟩ = ⟨𝑋, 𝑍⟩) |
16 | 14 | opeq2d 4875 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → ⟨𝑌, 𝑧⟩ = ⟨𝑌, 𝑍⟩) |
17 | 15, 16 | oveq12d 7423 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → (⟨𝑋, 𝑧⟩(2nd ‘𝐹)⟨𝑌, 𝑧⟩) = (⟨𝑋, 𝑍⟩(2nd ‘𝐹)⟨𝑌, 𝑍⟩)) |
18 | eqidd 2727 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → 𝐾 = 𝐾) | |
19 | 14 | fveq2d 6889 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → (𝐼‘𝑧) = (𝐼‘𝑍)) |
20 | 17, 18, 19 | oveq123d 7426 | . 2 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → (𝐾(⟨𝑋, 𝑧⟩(2nd ‘𝐹)⟨𝑌, 𝑧⟩)(𝐼‘𝑧)) = (𝐾(⟨𝑋, 𝑍⟩(2nd ‘𝐹)⟨𝑌, 𝑍⟩)(𝐼‘𝑍))) |
21 | curf2.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
22 | ovexd 7440 | . 2 ⊢ (𝜑 → (𝐾(⟨𝑋, 𝑍⟩(2nd ‘𝐹)⟨𝑌, 𝑍⟩)(𝐼‘𝑍)) ∈ V) | |
23 | 13, 20, 21, 22 | fvmptd 6999 | 1 ⊢ (𝜑 → (𝐿‘𝑍) = (𝐾(⟨𝑋, 𝑍⟩(2nd ‘𝐹)⟨𝑌, 𝑍⟩)(𝐼‘𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ⟨cop 4629 ‘cfv 6537 (class class class)co 7405 2nd c2nd 7973 Basecbs 17153 Hom chom 17217 Catccat 17617 Idccid 17618 Func cfunc 17813 ×c cxpc 18132 curryF ccurf 18175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 df-curf 18179 |
This theorem is referenced by: curf2cl 18196 curfcl 18197 uncfcurf 18204 yon2 18231 |
Copyright terms: Public domain | W3C validator |