| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > curf2val | Structured version Visualization version GIF version | ||
| Description: Value of a component of the curry functor natural transformation. (Contributed by Mario Carneiro, 13-Jan-2017.) |
| Ref | Expression |
|---|---|
| curf2.g | ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) |
| curf2.a | ⊢ 𝐴 = (Base‘𝐶) |
| curf2.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| curf2.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| curf2.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
| curf2.b | ⊢ 𝐵 = (Base‘𝐷) |
| curf2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| curf2.i | ⊢ 𝐼 = (Id‘𝐷) |
| curf2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| curf2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
| curf2.k | ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) |
| curf2.l | ⊢ 𝐿 = ((𝑋(2nd ‘𝐺)𝑌)‘𝐾) |
| curf2.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| curf2val | ⊢ (𝜑 → (𝐿‘𝑍) = (𝐾(〈𝑋, 𝑍〉(2nd ‘𝐹)〈𝑌, 𝑍〉)(𝐼‘𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curf2.g | . . 3 ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) | |
| 2 | curf2.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
| 3 | curf2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | curf2.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 5 | curf2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) | |
| 6 | curf2.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 7 | curf2.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 8 | curf2.i | . . 3 ⊢ 𝐼 = (Id‘𝐷) | |
| 9 | curf2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 10 | curf2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
| 11 | curf2.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) | |
| 12 | curf2.l | . . 3 ⊢ 𝐿 = ((𝑋(2nd ‘𝐺)𝑌)‘𝐾) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | curf2 18239 | . 2 ⊢ (𝜑 → 𝐿 = (𝑧 ∈ 𝐵 ↦ (𝐾(〈𝑋, 𝑧〉(2nd ‘𝐹)〈𝑌, 𝑧〉)(𝐼‘𝑧)))) |
| 14 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → 𝑧 = 𝑍) | |
| 15 | 14 | opeq2d 4856 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → 〈𝑋, 𝑧〉 = 〈𝑋, 𝑍〉) |
| 16 | 14 | opeq2d 4856 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → 〈𝑌, 𝑧〉 = 〈𝑌, 𝑍〉) |
| 17 | 15, 16 | oveq12d 7421 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → (〈𝑋, 𝑧〉(2nd ‘𝐹)〈𝑌, 𝑧〉) = (〈𝑋, 𝑍〉(2nd ‘𝐹)〈𝑌, 𝑍〉)) |
| 18 | eqidd 2736 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → 𝐾 = 𝐾) | |
| 19 | 14 | fveq2d 6879 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → (𝐼‘𝑧) = (𝐼‘𝑍)) |
| 20 | 17, 18, 19 | oveq123d 7424 | . 2 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → (𝐾(〈𝑋, 𝑧〉(2nd ‘𝐹)〈𝑌, 𝑧〉)(𝐼‘𝑧)) = (𝐾(〈𝑋, 𝑍〉(2nd ‘𝐹)〈𝑌, 𝑍〉)(𝐼‘𝑍))) |
| 21 | curf2.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 22 | ovexd 7438 | . 2 ⊢ (𝜑 → (𝐾(〈𝑋, 𝑍〉(2nd ‘𝐹)〈𝑌, 𝑍〉)(𝐼‘𝑍)) ∈ V) | |
| 23 | 13, 20, 21, 22 | fvmptd 6992 | 1 ⊢ (𝜑 → (𝐿‘𝑍) = (𝐾(〈𝑋, 𝑍〉(2nd ‘𝐹)〈𝑌, 𝑍〉)(𝐼‘𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 〈cop 4607 ‘cfv 6530 (class class class)co 7403 2nd c2nd 7985 Basecbs 17226 Hom chom 17280 Catccat 17674 Idccid 17675 Func cfunc 17865 ×c cxpc 18178 curryF ccurf 18220 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-curf 18224 |
| This theorem is referenced by: curf2cl 18241 curfcl 18242 uncfcurf 18249 yon2 18276 |
| Copyright terms: Public domain | W3C validator |