Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf2val Structured version   Visualization version   GIF version

Theorem curf2val 17547
 Description: Value of a component of the curry functor natural transformation. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
curf2.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curf2.a 𝐴 = (Base‘𝐶)
curf2.c (𝜑𝐶 ∈ Cat)
curf2.d (𝜑𝐷 ∈ Cat)
curf2.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
curf2.b 𝐵 = (Base‘𝐷)
curf2.h 𝐻 = (Hom ‘𝐶)
curf2.i 𝐼 = (Id‘𝐷)
curf2.x (𝜑𝑋𝐴)
curf2.y (𝜑𝑌𝐴)
curf2.k (𝜑𝐾 ∈ (𝑋𝐻𝑌))
curf2.l 𝐿 = ((𝑋(2nd𝐺)𝑌)‘𝐾)
curf2.z (𝜑𝑍𝐵)
Assertion
Ref Expression
curf2val (𝜑 → (𝐿𝑍) = (𝐾(⟨𝑋, 𝑍⟩(2nd𝐹)⟨𝑌, 𝑍⟩)(𝐼𝑍)))

Proof of Theorem curf2val
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 curf2.g . . 3 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
2 curf2.a . . 3 𝐴 = (Base‘𝐶)
3 curf2.c . . 3 (𝜑𝐶 ∈ Cat)
4 curf2.d . . 3 (𝜑𝐷 ∈ Cat)
5 curf2.f . . 3 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
6 curf2.b . . 3 𝐵 = (Base‘𝐷)
7 curf2.h . . 3 𝐻 = (Hom ‘𝐶)
8 curf2.i . . 3 𝐼 = (Id‘𝐷)
9 curf2.x . . 3 (𝜑𝑋𝐴)
10 curf2.y . . 3 (𝜑𝑌𝐴)
11 curf2.k . . 3 (𝜑𝐾 ∈ (𝑋𝐻𝑌))
12 curf2.l . . 3 𝐿 = ((𝑋(2nd𝐺)𝑌)‘𝐾)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12curf2 17546 . 2 (𝜑𝐿 = (𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧))))
14 simpr 489 . . . . 5 ((𝜑𝑧 = 𝑍) → 𝑧 = 𝑍)
1514opeq2d 4771 . . . 4 ((𝜑𝑧 = 𝑍) → ⟨𝑋, 𝑧⟩ = ⟨𝑋, 𝑍⟩)
1614opeq2d 4771 . . . 4 ((𝜑𝑧 = 𝑍) → ⟨𝑌, 𝑧⟩ = ⟨𝑌, 𝑍⟩)
1715, 16oveq12d 7169 . . 3 ((𝜑𝑧 = 𝑍) → (⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩) = (⟨𝑋, 𝑍⟩(2nd𝐹)⟨𝑌, 𝑍⟩))
18 eqidd 2760 . . 3 ((𝜑𝑧 = 𝑍) → 𝐾 = 𝐾)
1914fveq2d 6663 . . 3 ((𝜑𝑧 = 𝑍) → (𝐼𝑧) = (𝐼𝑍))
2017, 18, 19oveq123d 7172 . 2 ((𝜑𝑧 = 𝑍) → (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)) = (𝐾(⟨𝑋, 𝑍⟩(2nd𝐹)⟨𝑌, 𝑍⟩)(𝐼𝑍)))
21 curf2.z . 2 (𝜑𝑍𝐵)
22 ovexd 7186 . 2 (𝜑 → (𝐾(⟨𝑋, 𝑍⟩(2nd𝐹)⟨𝑌, 𝑍⟩)(𝐼𝑍)) ∈ V)
2313, 20, 21, 22fvmptd 6767 1 (𝜑 → (𝐿𝑍) = (𝐾(⟨𝑋, 𝑍⟩(2nd𝐹)⟨𝑌, 𝑍⟩)(𝐼𝑍)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 400   = wceq 1539   ∈ wcel 2112  Vcvv 3410  ⟨cop 4529  ‘cfv 6336  (class class class)co 7151  2nd c2nd 7693  Basecbs 16542  Hom chom 16635  Catccat 16994  Idccid 16995   Func cfunc 17184   ×c cxpc 17485   curryF ccurf 17527 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7694  df-2nd 7695  df-curf 17531 This theorem is referenced by:  curf2cl  17548  curfcl  17549  uncfcurf  17556  yon2  17583
 Copyright terms: Public domain W3C validator