Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > curf2val | Structured version Visualization version GIF version |
Description: Value of a component of the curry functor natural transformation. (Contributed by Mario Carneiro, 13-Jan-2017.) |
Ref | Expression |
---|---|
curf2.g | ⊢ 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹) |
curf2.a | ⊢ 𝐴 = (Base‘𝐶) |
curf2.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
curf2.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
curf2.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
curf2.b | ⊢ 𝐵 = (Base‘𝐷) |
curf2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
curf2.i | ⊢ 𝐼 = (Id‘𝐷) |
curf2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
curf2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
curf2.k | ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) |
curf2.l | ⊢ 𝐿 = ((𝑋(2nd ‘𝐺)𝑌)‘𝐾) |
curf2.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
curf2val | ⊢ (𝜑 → (𝐿‘𝑍) = (𝐾(⟨𝑋, 𝑍⟩(2nd ‘𝐹)⟨𝑌, 𝑍⟩)(𝐼‘𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | curf2.g | . . 3 ⊢ 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹) | |
2 | curf2.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
3 | curf2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | curf2.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
5 | curf2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) | |
6 | curf2.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
7 | curf2.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
8 | curf2.i | . . 3 ⊢ 𝐼 = (Id‘𝐷) | |
9 | curf2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
10 | curf2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
11 | curf2.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) | |
12 | curf2.l | . . 3 ⊢ 𝐿 = ((𝑋(2nd ‘𝐺)𝑌)‘𝐾) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | curf2 18044 | . 2 ⊢ (𝜑 → 𝐿 = (𝑧 ∈ 𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd ‘𝐹)⟨𝑌, 𝑧⟩)(𝐼‘𝑧)))) |
14 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → 𝑧 = 𝑍) | |
15 | 14 | opeq2d 4824 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → ⟨𝑋, 𝑧⟩ = ⟨𝑋, 𝑍⟩) |
16 | 14 | opeq2d 4824 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → ⟨𝑌, 𝑧⟩ = ⟨𝑌, 𝑍⟩) |
17 | 15, 16 | oveq12d 7355 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → (⟨𝑋, 𝑧⟩(2nd ‘𝐹)⟨𝑌, 𝑧⟩) = (⟨𝑋, 𝑍⟩(2nd ‘𝐹)⟨𝑌, 𝑍⟩)) |
18 | eqidd 2737 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → 𝐾 = 𝐾) | |
19 | 14 | fveq2d 6829 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → (𝐼‘𝑧) = (𝐼‘𝑍)) |
20 | 17, 18, 19 | oveq123d 7358 | . 2 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → (𝐾(⟨𝑋, 𝑧⟩(2nd ‘𝐹)⟨𝑌, 𝑧⟩)(𝐼‘𝑧)) = (𝐾(⟨𝑋, 𝑍⟩(2nd ‘𝐹)⟨𝑌, 𝑍⟩)(𝐼‘𝑍))) |
21 | curf2.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
22 | ovexd 7372 | . 2 ⊢ (𝜑 → (𝐾(⟨𝑋, 𝑍⟩(2nd ‘𝐹)⟨𝑌, 𝑍⟩)(𝐼‘𝑍)) ∈ V) | |
23 | 13, 20, 21, 22 | fvmptd 6938 | 1 ⊢ (𝜑 → (𝐿‘𝑍) = (𝐾(⟨𝑋, 𝑍⟩(2nd ‘𝐹)⟨𝑌, 𝑍⟩)(𝐼‘𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ⟨cop 4579 ‘cfv 6479 (class class class)co 7337 2nd c2nd 7898 Basecbs 17009 Hom chom 17070 Catccat 17470 Idccid 17471 Func cfunc 17666 ×c cxpc 17982 curryF ccurf 18025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-1st 7899 df-2nd 7900 df-curf 18029 |
This theorem is referenced by: curf2cl 18046 curfcl 18047 uncfcurf 18054 yon2 18081 |
Copyright terms: Public domain | W3C validator |