MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf2val Structured version   Visualization version   GIF version

Theorem curf2val 18240
Description: Value of a component of the curry functor natural transformation. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
curf2.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curf2.a 𝐴 = (Base‘𝐶)
curf2.c (𝜑𝐶 ∈ Cat)
curf2.d (𝜑𝐷 ∈ Cat)
curf2.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
curf2.b 𝐵 = (Base‘𝐷)
curf2.h 𝐻 = (Hom ‘𝐶)
curf2.i 𝐼 = (Id‘𝐷)
curf2.x (𝜑𝑋𝐴)
curf2.y (𝜑𝑌𝐴)
curf2.k (𝜑𝐾 ∈ (𝑋𝐻𝑌))
curf2.l 𝐿 = ((𝑋(2nd𝐺)𝑌)‘𝐾)
curf2.z (𝜑𝑍𝐵)
Assertion
Ref Expression
curf2val (𝜑 → (𝐿𝑍) = (𝐾(⟨𝑋, 𝑍⟩(2nd𝐹)⟨𝑌, 𝑍⟩)(𝐼𝑍)))

Proof of Theorem curf2val
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 curf2.g . . 3 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
2 curf2.a . . 3 𝐴 = (Base‘𝐶)
3 curf2.c . . 3 (𝜑𝐶 ∈ Cat)
4 curf2.d . . 3 (𝜑𝐷 ∈ Cat)
5 curf2.f . . 3 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
6 curf2.b . . 3 𝐵 = (Base‘𝐷)
7 curf2.h . . 3 𝐻 = (Hom ‘𝐶)
8 curf2.i . . 3 𝐼 = (Id‘𝐷)
9 curf2.x . . 3 (𝜑𝑋𝐴)
10 curf2.y . . 3 (𝜑𝑌𝐴)
11 curf2.k . . 3 (𝜑𝐾 ∈ (𝑋𝐻𝑌))
12 curf2.l . . 3 𝐿 = ((𝑋(2nd𝐺)𝑌)‘𝐾)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12curf2 18239 . 2 (𝜑𝐿 = (𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧))))
14 simpr 484 . . . . 5 ((𝜑𝑧 = 𝑍) → 𝑧 = 𝑍)
1514opeq2d 4856 . . . 4 ((𝜑𝑧 = 𝑍) → ⟨𝑋, 𝑧⟩ = ⟨𝑋, 𝑍⟩)
1614opeq2d 4856 . . . 4 ((𝜑𝑧 = 𝑍) → ⟨𝑌, 𝑧⟩ = ⟨𝑌, 𝑍⟩)
1715, 16oveq12d 7421 . . 3 ((𝜑𝑧 = 𝑍) → (⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩) = (⟨𝑋, 𝑍⟩(2nd𝐹)⟨𝑌, 𝑍⟩))
18 eqidd 2736 . . 3 ((𝜑𝑧 = 𝑍) → 𝐾 = 𝐾)
1914fveq2d 6879 . . 3 ((𝜑𝑧 = 𝑍) → (𝐼𝑧) = (𝐼𝑍))
2017, 18, 19oveq123d 7424 . 2 ((𝜑𝑧 = 𝑍) → (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)) = (𝐾(⟨𝑋, 𝑍⟩(2nd𝐹)⟨𝑌, 𝑍⟩)(𝐼𝑍)))
21 curf2.z . 2 (𝜑𝑍𝐵)
22 ovexd 7438 . 2 (𝜑 → (𝐾(⟨𝑋, 𝑍⟩(2nd𝐹)⟨𝑌, 𝑍⟩)(𝐼𝑍)) ∈ V)
2313, 20, 21, 22fvmptd 6992 1 (𝜑 → (𝐿𝑍) = (𝐾(⟨𝑋, 𝑍⟩(2nd𝐹)⟨𝑌, 𝑍⟩)(𝐼𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cop 4607  cfv 6530  (class class class)co 7403  2nd c2nd 7985  Basecbs 17226  Hom chom 17280  Catccat 17674  Idccid 17675   Func cfunc 17865   ×c cxpc 18178   curryF ccurf 18220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-curf 18224
This theorem is referenced by:  curf2cl  18241  curfcl  18242  uncfcurf  18249  yon2  18276
  Copyright terms: Public domain W3C validator