![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > curf2val | Structured version Visualization version GIF version |
Description: Value of a component of the curry functor natural transformation. (Contributed by Mario Carneiro, 13-Jan-2017.) |
Ref | Expression |
---|---|
curf2.g | ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) |
curf2.a | ⊢ 𝐴 = (Base‘𝐶) |
curf2.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
curf2.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
curf2.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
curf2.b | ⊢ 𝐵 = (Base‘𝐷) |
curf2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
curf2.i | ⊢ 𝐼 = (Id‘𝐷) |
curf2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
curf2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
curf2.k | ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) |
curf2.l | ⊢ 𝐿 = ((𝑋(2nd ‘𝐺)𝑌)‘𝐾) |
curf2.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
curf2val | ⊢ (𝜑 → (𝐿‘𝑍) = (𝐾(〈𝑋, 𝑍〉(2nd ‘𝐹)〈𝑌, 𝑍〉)(𝐼‘𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | curf2.g | . . 3 ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) | |
2 | curf2.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
3 | curf2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | curf2.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
5 | curf2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) | |
6 | curf2.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
7 | curf2.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
8 | curf2.i | . . 3 ⊢ 𝐼 = (Id‘𝐷) | |
9 | curf2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
10 | curf2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
11 | curf2.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) | |
12 | curf2.l | . . 3 ⊢ 𝐿 = ((𝑋(2nd ‘𝐺)𝑌)‘𝐾) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | curf2 18285 | . 2 ⊢ (𝜑 → 𝐿 = (𝑧 ∈ 𝐵 ↦ (𝐾(〈𝑋, 𝑧〉(2nd ‘𝐹)〈𝑌, 𝑧〉)(𝐼‘𝑧)))) |
14 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → 𝑧 = 𝑍) | |
15 | 14 | opeq2d 4884 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → 〈𝑋, 𝑧〉 = 〈𝑋, 𝑍〉) |
16 | 14 | opeq2d 4884 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → 〈𝑌, 𝑧〉 = 〈𝑌, 𝑍〉) |
17 | 15, 16 | oveq12d 7448 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → (〈𝑋, 𝑧〉(2nd ‘𝐹)〈𝑌, 𝑧〉) = (〈𝑋, 𝑍〉(2nd ‘𝐹)〈𝑌, 𝑍〉)) |
18 | eqidd 2735 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → 𝐾 = 𝐾) | |
19 | 14 | fveq2d 6910 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → (𝐼‘𝑧) = (𝐼‘𝑍)) |
20 | 17, 18, 19 | oveq123d 7451 | . 2 ⊢ ((𝜑 ∧ 𝑧 = 𝑍) → (𝐾(〈𝑋, 𝑧〉(2nd ‘𝐹)〈𝑌, 𝑧〉)(𝐼‘𝑧)) = (𝐾(〈𝑋, 𝑍〉(2nd ‘𝐹)〈𝑌, 𝑍〉)(𝐼‘𝑍))) |
21 | curf2.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
22 | ovexd 7465 | . 2 ⊢ (𝜑 → (𝐾(〈𝑋, 𝑍〉(2nd ‘𝐹)〈𝑌, 𝑍〉)(𝐼‘𝑍)) ∈ V) | |
23 | 13, 20, 21, 22 | fvmptd 7022 | 1 ⊢ (𝜑 → (𝐿‘𝑍) = (𝐾(〈𝑋, 𝑍〉(2nd ‘𝐹)〈𝑌, 𝑍〉)(𝐼‘𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 Vcvv 3477 〈cop 4636 ‘cfv 6562 (class class class)co 7430 2nd c2nd 8011 Basecbs 17244 Hom chom 17308 Catccat 17708 Idccid 17709 Func cfunc 17904 ×c cxpc 18223 curryF ccurf 18266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-1st 8012 df-2nd 8013 df-curf 18270 |
This theorem is referenced by: curf2cl 18287 curfcl 18288 uncfcurf 18295 yon2 18322 |
Copyright terms: Public domain | W3C validator |