MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf2val Structured version   Visualization version   GIF version

Theorem curf2val 18133
Description: Value of a component of the curry functor natural transformation. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
curf2.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curf2.a 𝐴 = (Base‘𝐶)
curf2.c (𝜑𝐶 ∈ Cat)
curf2.d (𝜑𝐷 ∈ Cat)
curf2.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
curf2.b 𝐵 = (Base‘𝐷)
curf2.h 𝐻 = (Hom ‘𝐶)
curf2.i 𝐼 = (Id‘𝐷)
curf2.x (𝜑𝑋𝐴)
curf2.y (𝜑𝑌𝐴)
curf2.k (𝜑𝐾 ∈ (𝑋𝐻𝑌))
curf2.l 𝐿 = ((𝑋(2nd𝐺)𝑌)‘𝐾)
curf2.z (𝜑𝑍𝐵)
Assertion
Ref Expression
curf2val (𝜑 → (𝐿𝑍) = (𝐾(⟨𝑋, 𝑍⟩(2nd𝐹)⟨𝑌, 𝑍⟩)(𝐼𝑍)))

Proof of Theorem curf2val
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 curf2.g . . 3 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
2 curf2.a . . 3 𝐴 = (Base‘𝐶)
3 curf2.c . . 3 (𝜑𝐶 ∈ Cat)
4 curf2.d . . 3 (𝜑𝐷 ∈ Cat)
5 curf2.f . . 3 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
6 curf2.b . . 3 𝐵 = (Base‘𝐷)
7 curf2.h . . 3 𝐻 = (Hom ‘𝐶)
8 curf2.i . . 3 𝐼 = (Id‘𝐷)
9 curf2.x . . 3 (𝜑𝑋𝐴)
10 curf2.y . . 3 (𝜑𝑌𝐴)
11 curf2.k . . 3 (𝜑𝐾 ∈ (𝑋𝐻𝑌))
12 curf2.l . . 3 𝐿 = ((𝑋(2nd𝐺)𝑌)‘𝐾)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12curf2 18132 . 2 (𝜑𝐿 = (𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧))))
14 simpr 484 . . . . 5 ((𝜑𝑧 = 𝑍) → 𝑧 = 𝑍)
1514opeq2d 4832 . . . 4 ((𝜑𝑧 = 𝑍) → ⟨𝑋, 𝑧⟩ = ⟨𝑋, 𝑍⟩)
1614opeq2d 4832 . . . 4 ((𝜑𝑧 = 𝑍) → ⟨𝑌, 𝑧⟩ = ⟨𝑌, 𝑍⟩)
1715, 16oveq12d 7364 . . 3 ((𝜑𝑧 = 𝑍) → (⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩) = (⟨𝑋, 𝑍⟩(2nd𝐹)⟨𝑌, 𝑍⟩))
18 eqidd 2732 . . 3 ((𝜑𝑧 = 𝑍) → 𝐾 = 𝐾)
1914fveq2d 6826 . . 3 ((𝜑𝑧 = 𝑍) → (𝐼𝑧) = (𝐼𝑍))
2017, 18, 19oveq123d 7367 . 2 ((𝜑𝑧 = 𝑍) → (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)) = (𝐾(⟨𝑋, 𝑍⟩(2nd𝐹)⟨𝑌, 𝑍⟩)(𝐼𝑍)))
21 curf2.z . 2 (𝜑𝑍𝐵)
22 ovexd 7381 . 2 (𝜑 → (𝐾(⟨𝑋, 𝑍⟩(2nd𝐹)⟨𝑌, 𝑍⟩)(𝐼𝑍)) ∈ V)
2313, 20, 21, 22fvmptd 6936 1 (𝜑 → (𝐿𝑍) = (𝐾(⟨𝑋, 𝑍⟩(2nd𝐹)⟨𝑌, 𝑍⟩)(𝐼𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cop 4582  cfv 6481  (class class class)co 7346  2nd c2nd 7920  Basecbs 17117  Hom chom 17169  Catccat 17567  Idccid 17568   Func cfunc 17758   ×c cxpc 18071   curryF ccurf 18113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-curf 18117
This theorem is referenced by:  curf2cl  18134  curfcl  18135  uncfcurf  18142  yon2  18169
  Copyright terms: Public domain W3C validator