MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf2cl Structured version   Visualization version   GIF version

Theorem curf2cl 18199
Description: The curry functor at a morphism is a natural transformation. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
curf2.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curf2.a 𝐴 = (Base‘𝐶)
curf2.c (𝜑𝐶 ∈ Cat)
curf2.d (𝜑𝐷 ∈ Cat)
curf2.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
curf2.b 𝐵 = (Base‘𝐷)
curf2.h 𝐻 = (Hom ‘𝐶)
curf2.i 𝐼 = (Id‘𝐷)
curf2.x (𝜑𝑋𝐴)
curf2.y (𝜑𝑌𝐴)
curf2.k (𝜑𝐾 ∈ (𝑋𝐻𝑌))
curf2.l 𝐿 = ((𝑋(2nd𝐺)𝑌)‘𝐾)
curf2.n 𝑁 = (𝐷 Nat 𝐸)
Assertion
Ref Expression
curf2cl (𝜑𝐿 ∈ (((1st𝐺)‘𝑋)𝑁((1st𝐺)‘𝑌)))

Proof of Theorem curf2cl
Dummy variables 𝑧 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curf2.g . . . 4 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
2 curf2.a . . . 4 𝐴 = (Base‘𝐶)
3 curf2.c . . . 4 (𝜑𝐶 ∈ Cat)
4 curf2.d . . . 4 (𝜑𝐷 ∈ Cat)
5 curf2.f . . . 4 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
6 curf2.b . . . 4 𝐵 = (Base‘𝐷)
7 curf2.h . . . 4 𝐻 = (Hom ‘𝐶)
8 curf2.i . . . 4 𝐼 = (Id‘𝐷)
9 curf2.x . . . 4 (𝜑𝑋𝐴)
10 curf2.y . . . 4 (𝜑𝑌𝐴)
11 curf2.k . . . 4 (𝜑𝐾 ∈ (𝑋𝐻𝑌))
12 curf2.l . . . 4 𝐿 = ((𝑋(2nd𝐺)𝑌)‘𝐾)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12curf2 18197 . . 3 (𝜑𝐿 = (𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧))))
14 eqid 2730 . . . . . . . . . 10 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
1514, 2, 6xpcbas 18146 . . . . . . . . 9 (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷))
16 eqid 2730 . . . . . . . . 9 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
17 eqid 2730 . . . . . . . . 9 (Hom ‘𝐸) = (Hom ‘𝐸)
18 relfunc 17831 . . . . . . . . . . 11 Rel ((𝐶 ×c 𝐷) Func 𝐸)
19 1st2ndbr 8024 . . . . . . . . . . 11 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
2018, 5, 19sylancr 587 . . . . . . . . . 10 (𝜑 → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
2120adantr 480 . . . . . . . . 9 ((𝜑𝑧𝐵) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
22 opelxpi 5678 . . . . . . . . . 10 ((𝑋𝐴𝑧𝐵) → ⟨𝑋, 𝑧⟩ ∈ (𝐴 × 𝐵))
239, 22sylan 580 . . . . . . . . 9 ((𝜑𝑧𝐵) → ⟨𝑋, 𝑧⟩ ∈ (𝐴 × 𝐵))
24 opelxpi 5678 . . . . . . . . . 10 ((𝑌𝐴𝑧𝐵) → ⟨𝑌, 𝑧⟩ ∈ (𝐴 × 𝐵))
2510, 24sylan 580 . . . . . . . . 9 ((𝜑𝑧𝐵) → ⟨𝑌, 𝑧⟩ ∈ (𝐴 × 𝐵))
2615, 16, 17, 21, 23, 25funcf2 17837 . . . . . . . 8 ((𝜑𝑧𝐵) → (⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩):(⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑧⟩)⟶(((1st𝐹)‘⟨𝑋, 𝑧⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑌, 𝑧⟩)))
27 eqid 2730 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
289adantr 480 . . . . . . . . . 10 ((𝜑𝑧𝐵) → 𝑋𝐴)
29 simpr 484 . . . . . . . . . 10 ((𝜑𝑧𝐵) → 𝑧𝐵)
3010adantr 480 . . . . . . . . . 10 ((𝜑𝑧𝐵) → 𝑌𝐴)
3114, 2, 6, 7, 27, 28, 29, 30, 29, 16xpchom2 18154 . . . . . . . . 9 ((𝜑𝑧𝐵) → (⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑧⟩) = ((𝑋𝐻𝑌) × (𝑧(Hom ‘𝐷)𝑧)))
3231feq2d 6675 . . . . . . . 8 ((𝜑𝑧𝐵) → ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩):(⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑧⟩)⟶(((1st𝐹)‘⟨𝑋, 𝑧⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑌, 𝑧⟩)) ↔ (⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩):((𝑋𝐻𝑌) × (𝑧(Hom ‘𝐷)𝑧))⟶(((1st𝐹)‘⟨𝑋, 𝑧⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑌, 𝑧⟩))))
3326, 32mpbid 232 . . . . . . 7 ((𝜑𝑧𝐵) → (⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩):((𝑋𝐻𝑌) × (𝑧(Hom ‘𝐷)𝑧))⟶(((1st𝐹)‘⟨𝑋, 𝑧⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑌, 𝑧⟩)))
3411adantr 480 . . . . . . 7 ((𝜑𝑧𝐵) → 𝐾 ∈ (𝑋𝐻𝑌))
354adantr 480 . . . . . . . 8 ((𝜑𝑧𝐵) → 𝐷 ∈ Cat)
366, 27, 8, 35, 29catidcl 17650 . . . . . . 7 ((𝜑𝑧𝐵) → (𝐼𝑧) ∈ (𝑧(Hom ‘𝐷)𝑧))
3733, 34, 36fovcdmd 7564 . . . . . 6 ((𝜑𝑧𝐵) → (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)) ∈ (((1st𝐹)‘⟨𝑋, 𝑧⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑌, 𝑧⟩)))
383adantr 480 . . . . . . . . 9 ((𝜑𝑧𝐵) → 𝐶 ∈ Cat)
395adantr 480 . . . . . . . . 9 ((𝜑𝑧𝐵) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
40 eqid 2730 . . . . . . . . 9 ((1st𝐺)‘𝑋) = ((1st𝐺)‘𝑋)
411, 2, 38, 35, 39, 6, 28, 40, 29curf11 18194 . . . . . . . 8 ((𝜑𝑧𝐵) → ((1st ‘((1st𝐺)‘𝑋))‘𝑧) = (𝑋(1st𝐹)𝑧))
42 df-ov 7393 . . . . . . . 8 (𝑋(1st𝐹)𝑧) = ((1st𝐹)‘⟨𝑋, 𝑧⟩)
4341, 42eqtrdi 2781 . . . . . . 7 ((𝜑𝑧𝐵) → ((1st ‘((1st𝐺)‘𝑋))‘𝑧) = ((1st𝐹)‘⟨𝑋, 𝑧⟩))
44 eqid 2730 . . . . . . . . 9 ((1st𝐺)‘𝑌) = ((1st𝐺)‘𝑌)
451, 2, 38, 35, 39, 6, 30, 44, 29curf11 18194 . . . . . . . 8 ((𝜑𝑧𝐵) → ((1st ‘((1st𝐺)‘𝑌))‘𝑧) = (𝑌(1st𝐹)𝑧))
46 df-ov 7393 . . . . . . . 8 (𝑌(1st𝐹)𝑧) = ((1st𝐹)‘⟨𝑌, 𝑧⟩)
4745, 46eqtrdi 2781 . . . . . . 7 ((𝜑𝑧𝐵) → ((1st ‘((1st𝐺)‘𝑌))‘𝑧) = ((1st𝐹)‘⟨𝑌, 𝑧⟩))
4843, 47oveq12d 7408 . . . . . 6 ((𝜑𝑧𝐵) → (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)) = (((1st𝐹)‘⟨𝑋, 𝑧⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑌, 𝑧⟩)))
4937, 48eleqtrrd 2832 . . . . 5 ((𝜑𝑧𝐵) → (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)) ∈ (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)))
5049ralrimiva 3126 . . . 4 (𝜑 → ∀𝑧𝐵 (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)) ∈ (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)))
516fvexi 6875 . . . . 5 𝐵 ∈ V
52 mptelixpg 8911 . . . . 5 (𝐵 ∈ V → ((𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧))) ∈ X𝑧𝐵 (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)) ↔ ∀𝑧𝐵 (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)) ∈ (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧))))
5351, 52ax-mp 5 . . . 4 ((𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧))) ∈ X𝑧𝐵 (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)) ↔ ∀𝑧𝐵 (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)) ∈ (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)))
5450, 53sylibr 234 . . 3 (𝜑 → (𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧))) ∈ X𝑧𝐵 (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)))
5513, 54eqeltrd 2829 . 2 (𝜑𝐿X𝑧𝐵 (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)))
56 eqid 2730 . . . . . . . . . 10 (Id‘𝐶) = (Id‘𝐶)
573adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐶 ∈ Cat)
589adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑋𝐴)
59 eqid 2730 . . . . . . . . . 10 (comp‘𝐶) = (comp‘𝐶)
6010adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑌𝐴)
6111adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐾 ∈ (𝑋𝐻𝑌))
622, 7, 56, 57, 58, 59, 60, 61catrid 17652 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝐾(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) = 𝐾)
632, 7, 56, 57, 58, 59, 60, 61catlid 17651 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐾) = 𝐾)
6462, 63eqtr4d 2768 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝐾(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) = (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐾))
654adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐷 ∈ Cat)
66 simpr1 1195 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑧𝐵)
67 eqid 2730 . . . . . . . . . 10 (comp‘𝐷) = (comp‘𝐷)
68 simpr2 1196 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑤𝐵)
69 simpr3 1197 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))
706, 27, 8, 65, 66, 67, 68, 69catlid 17651 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝐼𝑤)(⟨𝑧, 𝑤⟩(comp‘𝐷)𝑤)𝑓) = 𝑓)
716, 27, 8, 65, 66, 67, 68, 69catrid 17652 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝑓(⟨𝑧, 𝑧⟩(comp‘𝐷)𝑤)(𝐼𝑧)) = 𝑓)
7270, 71eqtr4d 2768 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝐼𝑤)(⟨𝑧, 𝑤⟩(comp‘𝐷)𝑤)𝑓) = (𝑓(⟨𝑧, 𝑧⟩(comp‘𝐷)𝑤)(𝐼𝑧)))
7364, 72opeq12d 4848 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨(𝐾(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)), ((𝐼𝑤)(⟨𝑧, 𝑤⟩(comp‘𝐷)𝑤)𝑓)⟩ = ⟨(((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐾), (𝑓(⟨𝑧, 𝑧⟩(comp‘𝐷)𝑤)(𝐼𝑧))⟩)
74 eqid 2730 . . . . . . . 8 (comp‘(𝐶 ×c 𝐷)) = (comp‘(𝐶 ×c 𝐷))
752, 7, 56, 57, 58catidcl 17650 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋))
766, 27, 8, 65, 68catidcl 17650 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝐼𝑤) ∈ (𝑤(Hom ‘𝐷)𝑤))
7714, 2, 6, 7, 27, 58, 66, 58, 68, 59, 67, 74, 60, 68, 75, 69, 61, 76xpcco2 18155 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝐾, (𝐼𝑤)⟩(⟨⟨𝑋, 𝑧⟩, ⟨𝑋, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑓⟩) = ⟨(𝐾(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)), ((𝐼𝑤)(⟨𝑧, 𝑤⟩(comp‘𝐷)𝑤)𝑓)⟩)
78363ad2antr1 1189 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝐼𝑧) ∈ (𝑧(Hom ‘𝐷)𝑧))
792, 7, 56, 57, 60catidcl 17650 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((Id‘𝐶)‘𝑌) ∈ (𝑌𝐻𝑌))
8014, 2, 6, 7, 27, 58, 66, 60, 66, 59, 67, 74, 60, 68, 61, 78, 79, 69xpcco2 18155 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨((Id‘𝐶)‘𝑌), 𝑓⟩(⟨⟨𝑋, 𝑧⟩, ⟨𝑌, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩)⟨𝐾, (𝐼𝑧)⟩) = ⟨(((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐾), (𝑓(⟨𝑧, 𝑧⟩(comp‘𝐷)𝑤)(𝐼𝑧))⟩)
8173, 77, 803eqtr4d 2775 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝐾, (𝐼𝑤)⟩(⟨⟨𝑋, 𝑧⟩, ⟨𝑋, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑓⟩) = (⟨((Id‘𝐶)‘𝑌), 𝑓⟩(⟨⟨𝑋, 𝑧⟩, ⟨𝑌, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩)⟨𝐾, (𝐼𝑧)⟩))
8281fveq2d 6865 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘(⟨𝐾, (𝐼𝑤)⟩(⟨⟨𝑋, 𝑧⟩, ⟨𝑋, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑓⟩)) = ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘(⟨((Id‘𝐶)‘𝑌), 𝑓⟩(⟨⟨𝑋, 𝑧⟩, ⟨𝑌, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩)⟨𝐾, (𝐼𝑧)⟩)))
83 eqid 2730 . . . . . 6 (comp‘𝐸) = (comp‘𝐸)
8420adantr 480 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
85233ad2antr1 1189 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑋, 𝑧⟩ ∈ (𝐴 × 𝐵))
8658, 68opelxpd 5680 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑋, 𝑤⟩ ∈ (𝐴 × 𝐵))
8760, 68opelxpd 5680 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑌, 𝑤⟩ ∈ (𝐴 × 𝐵))
8875, 69opelxpd 5680 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑋), 𝑓⟩ ∈ ((𝑋𝐻𝑋) × (𝑧(Hom ‘𝐷)𝑤)))
8914, 2, 6, 7, 27, 58, 66, 58, 68, 16xpchom2 18154 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩) = ((𝑋𝐻𝑋) × (𝑧(Hom ‘𝐷)𝑤)))
9088, 89eleqtrrd 2832 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑋), 𝑓⟩ ∈ (⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩))
9161, 76opelxpd 5680 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝐾, (𝐼𝑤)⟩ ∈ ((𝑋𝐻𝑌) × (𝑤(Hom ‘𝐷)𝑤)))
9214, 2, 6, 7, 27, 58, 68, 60, 68, 16xpchom2 18154 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝑋, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩) = ((𝑋𝐻𝑌) × (𝑤(Hom ‘𝐷)𝑤)))
9391, 92eleqtrrd 2832 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝐾, (𝐼𝑤)⟩ ∈ (⟨𝑋, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩))
9415, 16, 74, 83, 84, 85, 86, 87, 90, 93funcco 17840 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘(⟨𝐾, (𝐼𝑤)⟩(⟨⟨𝑋, 𝑧⟩, ⟨𝑋, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑓⟩)) = (((⟨𝑋, 𝑤⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨𝐾, (𝐼𝑤)⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑋, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑌, 𝑤⟩))((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑓⟩)))
95253ad2antr1 1189 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑌, 𝑧⟩ ∈ (𝐴 × 𝐵))
9661, 78opelxpd 5680 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝐾, (𝐼𝑧)⟩ ∈ ((𝑋𝐻𝑌) × (𝑧(Hom ‘𝐷)𝑧)))
9714, 2, 6, 7, 27, 58, 66, 60, 66, 16xpchom2 18154 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑧⟩) = ((𝑋𝐻𝑌) × (𝑧(Hom ‘𝐷)𝑧)))
9896, 97eleqtrrd 2832 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝐾, (𝐼𝑧)⟩ ∈ (⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑧⟩))
9979, 69opelxpd 5680 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑌), 𝑓⟩ ∈ ((𝑌𝐻𝑌) × (𝑧(Hom ‘𝐷)𝑤)))
10014, 2, 6, 7, 27, 60, 66, 60, 68, 16xpchom2 18154 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝑌, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩) = ((𝑌𝐻𝑌) × (𝑧(Hom ‘𝐷)𝑤)))
10199, 100eleqtrrd 2832 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑌), 𝑓⟩ ∈ (⟨𝑌, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩))
10215, 16, 74, 83, 84, 85, 95, 87, 98, 101funcco 17840 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘(⟨((Id‘𝐶)‘𝑌), 𝑓⟩(⟨⟨𝑋, 𝑧⟩, ⟨𝑌, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩)⟨𝐾, (𝐼𝑧)⟩)) = (((⟨𝑌, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑌), 𝑓⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑌, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑌, 𝑤⟩))((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)‘⟨𝐾, (𝐼𝑧)⟩)))
10382, 94, 1023eqtr3d 2773 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((⟨𝑋, 𝑤⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨𝐾, (𝐼𝑤)⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑋, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑌, 𝑤⟩))((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑓⟩)) = (((⟨𝑌, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑌), 𝑓⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑌, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑌, 𝑤⟩))((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)‘⟨𝐾, (𝐼𝑧)⟩)))
1045adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
1051, 2, 57, 65, 104, 6, 58, 40, 66curf11 18194 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑋))‘𝑧) = (𝑋(1st𝐹)𝑧))
106105, 42eqtrdi 2781 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑋))‘𝑧) = ((1st𝐹)‘⟨𝑋, 𝑧⟩))
1071, 2, 57, 65, 104, 6, 58, 40, 68curf11 18194 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑋))‘𝑤) = (𝑋(1st𝐹)𝑤))
108 df-ov 7393 . . . . . . . 8 (𝑋(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑋, 𝑤⟩)
109107, 108eqtrdi 2781 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑋))‘𝑤) = ((1st𝐹)‘⟨𝑋, 𝑤⟩))
110106, 109opeq12d 4848 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑋))‘𝑤)⟩ = ⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑋, 𝑤⟩)⟩)
1111, 2, 57, 65, 104, 6, 60, 44, 68curf11 18194 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑌))‘𝑤) = (𝑌(1st𝐹)𝑤))
112 df-ov 7393 . . . . . . 7 (𝑌(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑌, 𝑤⟩)
113111, 112eqtrdi 2781 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑌))‘𝑤) = ((1st𝐹)‘⟨𝑌, 𝑤⟩))
114110, 113oveq12d 7408 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑋))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤)) = (⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑋, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑌, 𝑤⟩)))
1151, 2, 57, 65, 104, 6, 7, 8, 58, 60, 61, 12, 68curf2val 18198 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝐿𝑤) = (𝐾(⟨𝑋, 𝑤⟩(2nd𝐹)⟨𝑌, 𝑤⟩)(𝐼𝑤)))
116 df-ov 7393 . . . . . 6 (𝐾(⟨𝑋, 𝑤⟩(2nd𝐹)⟨𝑌, 𝑤⟩)(𝐼𝑤)) = ((⟨𝑋, 𝑤⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨𝐾, (𝐼𝑤)⟩)
117115, 116eqtrdi 2781 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝐿𝑤) = ((⟨𝑋, 𝑤⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨𝐾, (𝐼𝑤)⟩))
1181, 2, 57, 65, 104, 6, 58, 40, 66, 27, 56, 68, 69curf12 18195 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑧(2nd ‘((1st𝐺)‘𝑋))𝑤)‘𝑓) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)𝑓))
119 df-ov 7393 . . . . . 6 (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)𝑓) = ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑓⟩)
120118, 119eqtrdi 2781 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑧(2nd ‘((1st𝐺)‘𝑋))𝑤)‘𝑓) = ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑓⟩))
121114, 117, 120oveq123d 7411 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝐿𝑤)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑋))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤))((𝑧(2nd ‘((1st𝐺)‘𝑋))𝑤)‘𝑓)) = (((⟨𝑋, 𝑤⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨𝐾, (𝐼𝑤)⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑋, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑌, 𝑤⟩))((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑓⟩)))
1221, 2, 57, 65, 104, 6, 60, 44, 66curf11 18194 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑌))‘𝑧) = (𝑌(1st𝐹)𝑧))
123122, 46eqtrdi 2781 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑌))‘𝑧) = ((1st𝐹)‘⟨𝑌, 𝑧⟩))
124106, 123opeq12d 4848 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑌))‘𝑧)⟩ = ⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑌, 𝑧⟩)⟩)
125124, 113oveq12d 7408 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑌))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤)) = (⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑌, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑌, 𝑤⟩)))
1261, 2, 57, 65, 104, 6, 60, 44, 66, 27, 56, 68, 69curf12 18195 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑧(2nd ‘((1st𝐺)‘𝑌))𝑤)‘𝑓) = (((Id‘𝐶)‘𝑌)(⟨𝑌, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)𝑓))
127 df-ov 7393 . . . . . 6 (((Id‘𝐶)‘𝑌)(⟨𝑌, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)𝑓) = ((⟨𝑌, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑌), 𝑓⟩)
128126, 127eqtrdi 2781 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑧(2nd ‘((1st𝐺)‘𝑌))𝑤)‘𝑓) = ((⟨𝑌, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑌), 𝑓⟩))
1291, 2, 57, 65, 104, 6, 7, 8, 58, 60, 61, 12, 66curf2val 18198 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝐿𝑧) = (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)))
130 df-ov 7393 . . . . . 6 (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)) = ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)‘⟨𝐾, (𝐼𝑧)⟩)
131129, 130eqtrdi 2781 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝐿𝑧) = ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)‘⟨𝐾, (𝐼𝑧)⟩))
132125, 128, 131oveq123d 7411 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((𝑧(2nd ‘((1st𝐺)‘𝑌))𝑤)‘𝑓)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑌))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤))(𝐿𝑧)) = (((⟨𝑌, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑌), 𝑓⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑌, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑌, 𝑤⟩))((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)‘⟨𝐾, (𝐼𝑧)⟩)))
133103, 121, 1323eqtr4d 2775 . . 3 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝐿𝑤)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑋))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤))((𝑧(2nd ‘((1st𝐺)‘𝑋))𝑤)‘𝑓)) = (((𝑧(2nd ‘((1st𝐺)‘𝑌))𝑤)‘𝑓)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑌))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤))(𝐿𝑧)))
134133ralrimivvva 3184 . 2 (𝜑 → ∀𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤)((𝐿𝑤)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑋))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤))((𝑧(2nd ‘((1st𝐺)‘𝑋))𝑤)‘𝑓)) = (((𝑧(2nd ‘((1st𝐺)‘𝑌))𝑤)‘𝑓)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑌))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤))(𝐿𝑧)))
135 curf2.n . . 3 𝑁 = (𝐷 Nat 𝐸)
1361, 2, 3, 4, 5, 6, 9, 40curf1cl 18196 . . 3 (𝜑 → ((1st𝐺)‘𝑋) ∈ (𝐷 Func 𝐸))
1371, 2, 3, 4, 5, 6, 10, 44curf1cl 18196 . . 3 (𝜑 → ((1st𝐺)‘𝑌) ∈ (𝐷 Func 𝐸))
138135, 6, 27, 17, 83, 136, 137isnat2 17920 . 2 (𝜑 → (𝐿 ∈ (((1st𝐺)‘𝑋)𝑁((1st𝐺)‘𝑌)) ↔ (𝐿X𝑧𝐵 (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)) ∧ ∀𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤)((𝐿𝑤)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑋))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤))((𝑧(2nd ‘((1st𝐺)‘𝑋))𝑤)‘𝑓)) = (((𝑧(2nd ‘((1st𝐺)‘𝑌))𝑤)‘𝑓)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑌))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤))(𝐿𝑧)))))
13955, 134, 138mpbir2and 713 1 (𝜑𝐿 ∈ (((1st𝐺)‘𝑋)𝑁((1st𝐺)‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  cop 4598   class class class wbr 5110  cmpt 5191   × cxp 5639  Rel wrel 5646  wf 6510  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  Xcixp 8873  Basecbs 17186  Hom chom 17238  compcco 17239  Catccat 17632  Idccid 17633   Func cfunc 17823   Nat cnat 17913   ×c cxpc 18136   curryF ccurf 18178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-hom 17251  df-cco 17252  df-cat 17636  df-cid 17637  df-func 17827  df-nat 17915  df-xpc 18140  df-curf 18182
This theorem is referenced by:  curfcl  18200  tposcurf2cl  49295
  Copyright terms: Public domain W3C validator