MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf2cl Structured version   Visualization version   GIF version

Theorem curf2cl 17865
Description: The curry functor at a morphism is a natural transformation. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
curf2.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curf2.a 𝐴 = (Base‘𝐶)
curf2.c (𝜑𝐶 ∈ Cat)
curf2.d (𝜑𝐷 ∈ Cat)
curf2.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
curf2.b 𝐵 = (Base‘𝐷)
curf2.h 𝐻 = (Hom ‘𝐶)
curf2.i 𝐼 = (Id‘𝐷)
curf2.x (𝜑𝑋𝐴)
curf2.y (𝜑𝑌𝐴)
curf2.k (𝜑𝐾 ∈ (𝑋𝐻𝑌))
curf2.l 𝐿 = ((𝑋(2nd𝐺)𝑌)‘𝐾)
curf2.n 𝑁 = (𝐷 Nat 𝐸)
Assertion
Ref Expression
curf2cl (𝜑𝐿 ∈ (((1st𝐺)‘𝑋)𝑁((1st𝐺)‘𝑌)))

Proof of Theorem curf2cl
Dummy variables 𝑧 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curf2.g . . . 4 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
2 curf2.a . . . 4 𝐴 = (Base‘𝐶)
3 curf2.c . . . 4 (𝜑𝐶 ∈ Cat)
4 curf2.d . . . 4 (𝜑𝐷 ∈ Cat)
5 curf2.f . . . 4 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
6 curf2.b . . . 4 𝐵 = (Base‘𝐷)
7 curf2.h . . . 4 𝐻 = (Hom ‘𝐶)
8 curf2.i . . . 4 𝐼 = (Id‘𝐷)
9 curf2.x . . . 4 (𝜑𝑋𝐴)
10 curf2.y . . . 4 (𝜑𝑌𝐴)
11 curf2.k . . . 4 (𝜑𝐾 ∈ (𝑋𝐻𝑌))
12 curf2.l . . . 4 𝐿 = ((𝑋(2nd𝐺)𝑌)‘𝐾)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12curf2 17863 . . 3 (𝜑𝐿 = (𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧))))
14 eqid 2738 . . . . . . . . . 10 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
1514, 2, 6xpcbas 17811 . . . . . . . . 9 (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷))
16 eqid 2738 . . . . . . . . 9 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
17 eqid 2738 . . . . . . . . 9 (Hom ‘𝐸) = (Hom ‘𝐸)
18 relfunc 17493 . . . . . . . . . . 11 Rel ((𝐶 ×c 𝐷) Func 𝐸)
19 1st2ndbr 7856 . . . . . . . . . . 11 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
2018, 5, 19sylancr 586 . . . . . . . . . 10 (𝜑 → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
2120adantr 480 . . . . . . . . 9 ((𝜑𝑧𝐵) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
22 opelxpi 5617 . . . . . . . . . 10 ((𝑋𝐴𝑧𝐵) → ⟨𝑋, 𝑧⟩ ∈ (𝐴 × 𝐵))
239, 22sylan 579 . . . . . . . . 9 ((𝜑𝑧𝐵) → ⟨𝑋, 𝑧⟩ ∈ (𝐴 × 𝐵))
24 opelxpi 5617 . . . . . . . . . 10 ((𝑌𝐴𝑧𝐵) → ⟨𝑌, 𝑧⟩ ∈ (𝐴 × 𝐵))
2510, 24sylan 579 . . . . . . . . 9 ((𝜑𝑧𝐵) → ⟨𝑌, 𝑧⟩ ∈ (𝐴 × 𝐵))
2615, 16, 17, 21, 23, 25funcf2 17499 . . . . . . . 8 ((𝜑𝑧𝐵) → (⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩):(⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑧⟩)⟶(((1st𝐹)‘⟨𝑋, 𝑧⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑌, 𝑧⟩)))
27 eqid 2738 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
289adantr 480 . . . . . . . . . 10 ((𝜑𝑧𝐵) → 𝑋𝐴)
29 simpr 484 . . . . . . . . . 10 ((𝜑𝑧𝐵) → 𝑧𝐵)
3010adantr 480 . . . . . . . . . 10 ((𝜑𝑧𝐵) → 𝑌𝐴)
3114, 2, 6, 7, 27, 28, 29, 30, 29, 16xpchom2 17819 . . . . . . . . 9 ((𝜑𝑧𝐵) → (⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑧⟩) = ((𝑋𝐻𝑌) × (𝑧(Hom ‘𝐷)𝑧)))
3231feq2d 6570 . . . . . . . 8 ((𝜑𝑧𝐵) → ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩):(⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑧⟩)⟶(((1st𝐹)‘⟨𝑋, 𝑧⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑌, 𝑧⟩)) ↔ (⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩):((𝑋𝐻𝑌) × (𝑧(Hom ‘𝐷)𝑧))⟶(((1st𝐹)‘⟨𝑋, 𝑧⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑌, 𝑧⟩))))
3326, 32mpbid 231 . . . . . . 7 ((𝜑𝑧𝐵) → (⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩):((𝑋𝐻𝑌) × (𝑧(Hom ‘𝐷)𝑧))⟶(((1st𝐹)‘⟨𝑋, 𝑧⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑌, 𝑧⟩)))
3411adantr 480 . . . . . . 7 ((𝜑𝑧𝐵) → 𝐾 ∈ (𝑋𝐻𝑌))
354adantr 480 . . . . . . . 8 ((𝜑𝑧𝐵) → 𝐷 ∈ Cat)
366, 27, 8, 35, 29catidcl 17308 . . . . . . 7 ((𝜑𝑧𝐵) → (𝐼𝑧) ∈ (𝑧(Hom ‘𝐷)𝑧))
3733, 34, 36fovrnd 7422 . . . . . 6 ((𝜑𝑧𝐵) → (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)) ∈ (((1st𝐹)‘⟨𝑋, 𝑧⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑌, 𝑧⟩)))
383adantr 480 . . . . . . . . 9 ((𝜑𝑧𝐵) → 𝐶 ∈ Cat)
395adantr 480 . . . . . . . . 9 ((𝜑𝑧𝐵) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
40 eqid 2738 . . . . . . . . 9 ((1st𝐺)‘𝑋) = ((1st𝐺)‘𝑋)
411, 2, 38, 35, 39, 6, 28, 40, 29curf11 17860 . . . . . . . 8 ((𝜑𝑧𝐵) → ((1st ‘((1st𝐺)‘𝑋))‘𝑧) = (𝑋(1st𝐹)𝑧))
42 df-ov 7258 . . . . . . . 8 (𝑋(1st𝐹)𝑧) = ((1st𝐹)‘⟨𝑋, 𝑧⟩)
4341, 42eqtrdi 2795 . . . . . . 7 ((𝜑𝑧𝐵) → ((1st ‘((1st𝐺)‘𝑋))‘𝑧) = ((1st𝐹)‘⟨𝑋, 𝑧⟩))
44 eqid 2738 . . . . . . . . 9 ((1st𝐺)‘𝑌) = ((1st𝐺)‘𝑌)
451, 2, 38, 35, 39, 6, 30, 44, 29curf11 17860 . . . . . . . 8 ((𝜑𝑧𝐵) → ((1st ‘((1st𝐺)‘𝑌))‘𝑧) = (𝑌(1st𝐹)𝑧))
46 df-ov 7258 . . . . . . . 8 (𝑌(1st𝐹)𝑧) = ((1st𝐹)‘⟨𝑌, 𝑧⟩)
4745, 46eqtrdi 2795 . . . . . . 7 ((𝜑𝑧𝐵) → ((1st ‘((1st𝐺)‘𝑌))‘𝑧) = ((1st𝐹)‘⟨𝑌, 𝑧⟩))
4843, 47oveq12d 7273 . . . . . 6 ((𝜑𝑧𝐵) → (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)) = (((1st𝐹)‘⟨𝑋, 𝑧⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑌, 𝑧⟩)))
4937, 48eleqtrrd 2842 . . . . 5 ((𝜑𝑧𝐵) → (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)) ∈ (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)))
5049ralrimiva 3107 . . . 4 (𝜑 → ∀𝑧𝐵 (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)) ∈ (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)))
516fvexi 6770 . . . . 5 𝐵 ∈ V
52 mptelixpg 8681 . . . . 5 (𝐵 ∈ V → ((𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧))) ∈ X𝑧𝐵 (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)) ↔ ∀𝑧𝐵 (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)) ∈ (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧))))
5351, 52ax-mp 5 . . . 4 ((𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧))) ∈ X𝑧𝐵 (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)) ↔ ∀𝑧𝐵 (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)) ∈ (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)))
5450, 53sylibr 233 . . 3 (𝜑 → (𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧))) ∈ X𝑧𝐵 (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)))
5513, 54eqeltrd 2839 . 2 (𝜑𝐿X𝑧𝐵 (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)))
56 eqid 2738 . . . . . . . . . 10 (Id‘𝐶) = (Id‘𝐶)
573adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐶 ∈ Cat)
589adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑋𝐴)
59 eqid 2738 . . . . . . . . . 10 (comp‘𝐶) = (comp‘𝐶)
6010adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑌𝐴)
6111adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐾 ∈ (𝑋𝐻𝑌))
622, 7, 56, 57, 58, 59, 60, 61catrid 17310 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝐾(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) = 𝐾)
632, 7, 56, 57, 58, 59, 60, 61catlid 17309 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐾) = 𝐾)
6462, 63eqtr4d 2781 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝐾(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) = (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐾))
654adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐷 ∈ Cat)
66 simpr1 1192 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑧𝐵)
67 eqid 2738 . . . . . . . . . 10 (comp‘𝐷) = (comp‘𝐷)
68 simpr2 1193 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑤𝐵)
69 simpr3 1194 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))
706, 27, 8, 65, 66, 67, 68, 69catlid 17309 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝐼𝑤)(⟨𝑧, 𝑤⟩(comp‘𝐷)𝑤)𝑓) = 𝑓)
716, 27, 8, 65, 66, 67, 68, 69catrid 17310 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝑓(⟨𝑧, 𝑧⟩(comp‘𝐷)𝑤)(𝐼𝑧)) = 𝑓)
7270, 71eqtr4d 2781 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝐼𝑤)(⟨𝑧, 𝑤⟩(comp‘𝐷)𝑤)𝑓) = (𝑓(⟨𝑧, 𝑧⟩(comp‘𝐷)𝑤)(𝐼𝑧)))
7364, 72opeq12d 4809 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨(𝐾(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)), ((𝐼𝑤)(⟨𝑧, 𝑤⟩(comp‘𝐷)𝑤)𝑓)⟩ = ⟨(((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐾), (𝑓(⟨𝑧, 𝑧⟩(comp‘𝐷)𝑤)(𝐼𝑧))⟩)
74 eqid 2738 . . . . . . . 8 (comp‘(𝐶 ×c 𝐷)) = (comp‘(𝐶 ×c 𝐷))
752, 7, 56, 57, 58catidcl 17308 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋))
766, 27, 8, 65, 68catidcl 17308 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝐼𝑤) ∈ (𝑤(Hom ‘𝐷)𝑤))
7714, 2, 6, 7, 27, 58, 66, 58, 68, 59, 67, 74, 60, 68, 75, 69, 61, 76xpcco2 17820 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝐾, (𝐼𝑤)⟩(⟨⟨𝑋, 𝑧⟩, ⟨𝑋, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑓⟩) = ⟨(𝐾(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)), ((𝐼𝑤)(⟨𝑧, 𝑤⟩(comp‘𝐷)𝑤)𝑓)⟩)
78363ad2antr1 1186 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝐼𝑧) ∈ (𝑧(Hom ‘𝐷)𝑧))
792, 7, 56, 57, 60catidcl 17308 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((Id‘𝐶)‘𝑌) ∈ (𝑌𝐻𝑌))
8014, 2, 6, 7, 27, 58, 66, 60, 66, 59, 67, 74, 60, 68, 61, 78, 79, 69xpcco2 17820 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨((Id‘𝐶)‘𝑌), 𝑓⟩(⟨⟨𝑋, 𝑧⟩, ⟨𝑌, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩)⟨𝐾, (𝐼𝑧)⟩) = ⟨(((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐾), (𝑓(⟨𝑧, 𝑧⟩(comp‘𝐷)𝑤)(𝐼𝑧))⟩)
8173, 77, 803eqtr4d 2788 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝐾, (𝐼𝑤)⟩(⟨⟨𝑋, 𝑧⟩, ⟨𝑋, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑓⟩) = (⟨((Id‘𝐶)‘𝑌), 𝑓⟩(⟨⟨𝑋, 𝑧⟩, ⟨𝑌, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩)⟨𝐾, (𝐼𝑧)⟩))
8281fveq2d 6760 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘(⟨𝐾, (𝐼𝑤)⟩(⟨⟨𝑋, 𝑧⟩, ⟨𝑋, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑓⟩)) = ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘(⟨((Id‘𝐶)‘𝑌), 𝑓⟩(⟨⟨𝑋, 𝑧⟩, ⟨𝑌, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩)⟨𝐾, (𝐼𝑧)⟩)))
83 eqid 2738 . . . . . 6 (comp‘𝐸) = (comp‘𝐸)
8420adantr 480 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
85233ad2antr1 1186 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑋, 𝑧⟩ ∈ (𝐴 × 𝐵))
8658, 68opelxpd 5618 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑋, 𝑤⟩ ∈ (𝐴 × 𝐵))
8760, 68opelxpd 5618 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑌, 𝑤⟩ ∈ (𝐴 × 𝐵))
8875, 69opelxpd 5618 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑋), 𝑓⟩ ∈ ((𝑋𝐻𝑋) × (𝑧(Hom ‘𝐷)𝑤)))
8914, 2, 6, 7, 27, 58, 66, 58, 68, 16xpchom2 17819 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩) = ((𝑋𝐻𝑋) × (𝑧(Hom ‘𝐷)𝑤)))
9088, 89eleqtrrd 2842 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑋), 𝑓⟩ ∈ (⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩))
9161, 76opelxpd 5618 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝐾, (𝐼𝑤)⟩ ∈ ((𝑋𝐻𝑌) × (𝑤(Hom ‘𝐷)𝑤)))
9214, 2, 6, 7, 27, 58, 68, 60, 68, 16xpchom2 17819 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝑋, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩) = ((𝑋𝐻𝑌) × (𝑤(Hom ‘𝐷)𝑤)))
9391, 92eleqtrrd 2842 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝐾, (𝐼𝑤)⟩ ∈ (⟨𝑋, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩))
9415, 16, 74, 83, 84, 85, 86, 87, 90, 93funcco 17502 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘(⟨𝐾, (𝐼𝑤)⟩(⟨⟨𝑋, 𝑧⟩, ⟨𝑋, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑓⟩)) = (((⟨𝑋, 𝑤⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨𝐾, (𝐼𝑤)⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑋, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑌, 𝑤⟩))((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑓⟩)))
95253ad2antr1 1186 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑌, 𝑧⟩ ∈ (𝐴 × 𝐵))
9661, 78opelxpd 5618 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝐾, (𝐼𝑧)⟩ ∈ ((𝑋𝐻𝑌) × (𝑧(Hom ‘𝐷)𝑧)))
9714, 2, 6, 7, 27, 58, 66, 60, 66, 16xpchom2 17819 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑧⟩) = ((𝑋𝐻𝑌) × (𝑧(Hom ‘𝐷)𝑧)))
9896, 97eleqtrrd 2842 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝐾, (𝐼𝑧)⟩ ∈ (⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑧⟩))
9979, 69opelxpd 5618 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑌), 𝑓⟩ ∈ ((𝑌𝐻𝑌) × (𝑧(Hom ‘𝐷)𝑤)))
10014, 2, 6, 7, 27, 60, 66, 60, 68, 16xpchom2 17819 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝑌, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩) = ((𝑌𝐻𝑌) × (𝑧(Hom ‘𝐷)𝑤)))
10199, 100eleqtrrd 2842 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑌), 𝑓⟩ ∈ (⟨𝑌, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩))
10215, 16, 74, 83, 84, 85, 95, 87, 98, 101funcco 17502 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘(⟨((Id‘𝐶)‘𝑌), 𝑓⟩(⟨⟨𝑋, 𝑧⟩, ⟨𝑌, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩)⟨𝐾, (𝐼𝑧)⟩)) = (((⟨𝑌, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑌), 𝑓⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑌, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑌, 𝑤⟩))((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)‘⟨𝐾, (𝐼𝑧)⟩)))
10382, 94, 1023eqtr3d 2786 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((⟨𝑋, 𝑤⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨𝐾, (𝐼𝑤)⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑋, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑌, 𝑤⟩))((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑓⟩)) = (((⟨𝑌, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑌), 𝑓⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑌, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑌, 𝑤⟩))((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)‘⟨𝐾, (𝐼𝑧)⟩)))
1045adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
1051, 2, 57, 65, 104, 6, 58, 40, 66curf11 17860 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑋))‘𝑧) = (𝑋(1st𝐹)𝑧))
106105, 42eqtrdi 2795 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑋))‘𝑧) = ((1st𝐹)‘⟨𝑋, 𝑧⟩))
1071, 2, 57, 65, 104, 6, 58, 40, 68curf11 17860 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑋))‘𝑤) = (𝑋(1st𝐹)𝑤))
108 df-ov 7258 . . . . . . . 8 (𝑋(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑋, 𝑤⟩)
109107, 108eqtrdi 2795 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑋))‘𝑤) = ((1st𝐹)‘⟨𝑋, 𝑤⟩))
110106, 109opeq12d 4809 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑋))‘𝑤)⟩ = ⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑋, 𝑤⟩)⟩)
1111, 2, 57, 65, 104, 6, 60, 44, 68curf11 17860 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑌))‘𝑤) = (𝑌(1st𝐹)𝑤))
112 df-ov 7258 . . . . . . 7 (𝑌(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑌, 𝑤⟩)
113111, 112eqtrdi 2795 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑌))‘𝑤) = ((1st𝐹)‘⟨𝑌, 𝑤⟩))
114110, 113oveq12d 7273 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑋))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤)) = (⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑋, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑌, 𝑤⟩)))
1151, 2, 57, 65, 104, 6, 7, 8, 58, 60, 61, 12, 68curf2val 17864 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝐿𝑤) = (𝐾(⟨𝑋, 𝑤⟩(2nd𝐹)⟨𝑌, 𝑤⟩)(𝐼𝑤)))
116 df-ov 7258 . . . . . 6 (𝐾(⟨𝑋, 𝑤⟩(2nd𝐹)⟨𝑌, 𝑤⟩)(𝐼𝑤)) = ((⟨𝑋, 𝑤⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨𝐾, (𝐼𝑤)⟩)
117115, 116eqtrdi 2795 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝐿𝑤) = ((⟨𝑋, 𝑤⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨𝐾, (𝐼𝑤)⟩))
1181, 2, 57, 65, 104, 6, 58, 40, 66, 27, 56, 68, 69curf12 17861 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑧(2nd ‘((1st𝐺)‘𝑋))𝑤)‘𝑓) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)𝑓))
119 df-ov 7258 . . . . . 6 (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)𝑓) = ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑓⟩)
120118, 119eqtrdi 2795 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑧(2nd ‘((1st𝐺)‘𝑋))𝑤)‘𝑓) = ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑓⟩))
121114, 117, 120oveq123d 7276 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝐿𝑤)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑋))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤))((𝑧(2nd ‘((1st𝐺)‘𝑋))𝑤)‘𝑓)) = (((⟨𝑋, 𝑤⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨𝐾, (𝐼𝑤)⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑋, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑌, 𝑤⟩))((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑓⟩)))
1221, 2, 57, 65, 104, 6, 60, 44, 66curf11 17860 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑌))‘𝑧) = (𝑌(1st𝐹)𝑧))
123122, 46eqtrdi 2795 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑌))‘𝑧) = ((1st𝐹)‘⟨𝑌, 𝑧⟩))
124106, 123opeq12d 4809 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑌))‘𝑧)⟩ = ⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑌, 𝑧⟩)⟩)
125124, 113oveq12d 7273 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑌))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤)) = (⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑌, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑌, 𝑤⟩)))
1261, 2, 57, 65, 104, 6, 60, 44, 66, 27, 56, 68, 69curf12 17861 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑧(2nd ‘((1st𝐺)‘𝑌))𝑤)‘𝑓) = (((Id‘𝐶)‘𝑌)(⟨𝑌, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)𝑓))
127 df-ov 7258 . . . . . 6 (((Id‘𝐶)‘𝑌)(⟨𝑌, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)𝑓) = ((⟨𝑌, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑌), 𝑓⟩)
128126, 127eqtrdi 2795 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑧(2nd ‘((1st𝐺)‘𝑌))𝑤)‘𝑓) = ((⟨𝑌, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑌), 𝑓⟩))
1291, 2, 57, 65, 104, 6, 7, 8, 58, 60, 61, 12, 66curf2val 17864 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝐿𝑧) = (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)))
130 df-ov 7258 . . . . . 6 (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)) = ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)‘⟨𝐾, (𝐼𝑧)⟩)
131129, 130eqtrdi 2795 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝐿𝑧) = ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)‘⟨𝐾, (𝐼𝑧)⟩))
132125, 128, 131oveq123d 7276 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((𝑧(2nd ‘((1st𝐺)‘𝑌))𝑤)‘𝑓)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑌))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤))(𝐿𝑧)) = (((⟨𝑌, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑌), 𝑓⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑌, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑌, 𝑤⟩))((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)‘⟨𝐾, (𝐼𝑧)⟩)))
133103, 121, 1323eqtr4d 2788 . . 3 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝐿𝑤)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑋))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤))((𝑧(2nd ‘((1st𝐺)‘𝑋))𝑤)‘𝑓)) = (((𝑧(2nd ‘((1st𝐺)‘𝑌))𝑤)‘𝑓)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑌))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤))(𝐿𝑧)))
134133ralrimivvva 3115 . 2 (𝜑 → ∀𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤)((𝐿𝑤)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑋))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤))((𝑧(2nd ‘((1st𝐺)‘𝑋))𝑤)‘𝑓)) = (((𝑧(2nd ‘((1st𝐺)‘𝑌))𝑤)‘𝑓)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑌))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤))(𝐿𝑧)))
135 curf2.n . . 3 𝑁 = (𝐷 Nat 𝐸)
1361, 2, 3, 4, 5, 6, 9, 40curf1cl 17862 . . 3 (𝜑 → ((1st𝐺)‘𝑋) ∈ (𝐷 Func 𝐸))
1371, 2, 3, 4, 5, 6, 10, 44curf1cl 17862 . . 3 (𝜑 → ((1st𝐺)‘𝑌) ∈ (𝐷 Func 𝐸))
138135, 6, 27, 17, 83, 136, 137isnat2 17580 . 2 (𝜑 → (𝐿 ∈ (((1st𝐺)‘𝑋)𝑁((1st𝐺)‘𝑌)) ↔ (𝐿X𝑧𝐵 (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)) ∧ ∀𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤)((𝐿𝑤)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑋))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤))((𝑧(2nd ‘((1st𝐺)‘𝑋))𝑤)‘𝑓)) = (((𝑧(2nd ‘((1st𝐺)‘𝑌))𝑤)‘𝑓)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑌))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤))(𝐿𝑧)))))
13955, 134, 138mpbir2and 709 1 (𝜑𝐿 ∈ (((1st𝐺)‘𝑋)𝑁((1st𝐺)‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cop 4564   class class class wbr 5070  cmpt 5153   × cxp 5578  Rel wrel 5585  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  Xcixp 8643  Basecbs 16840  Hom chom 16899  compcco 16900  Catccat 17290  Idccid 17291   Func cfunc 17485   Nat cnat 17573   ×c cxpc 17801   curryF ccurf 17844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-hom 16912  df-cco 16913  df-cat 17294  df-cid 17295  df-func 17489  df-nat 17575  df-xpc 17805  df-curf 17848
This theorem is referenced by:  curfcl  17866
  Copyright terms: Public domain W3C validator