| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmcn | Structured version Visualization version GIF version | ||
| Description: A covering map is a continuous function. (Contributed by Mario Carneiro, 13-Feb-2015.) |
| Ref | Expression |
|---|---|
| cvmcn | ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
| 2 | eqid 2730 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 3 | 1, 2 | iscvm 35253 | . . 3 ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) ↔ ((𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ (𝐶 Cn 𝐽)) ∧ ∀𝑥 ∈ ∪ 𝐽∃𝑘 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ ((𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))})‘𝑘) ≠ ∅))) |
| 4 | 3 | simplbi 497 | . 2 ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → (𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ (𝐶 Cn 𝐽))) |
| 5 | 4 | simp3d 1144 | 1 ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 {crab 3408 ∖ cdif 3914 ∩ cin 3916 ∅c0 4299 𝒫 cpw 4566 {csn 4592 ∪ cuni 4874 ↦ cmpt 5191 ◡ccnv 5640 ↾ cres 5643 “ cima 5644 ‘cfv 6514 (class class class)co 7390 ↾t crest 17390 Topctop 22787 Cn ccn 23118 Homeochmeo 23647 CovMap ccvm 35249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-cvm 35250 |
| This theorem is referenced by: cvmsss2 35268 cvmseu 35270 cvmopnlem 35272 cvmfolem 35273 cvmliftmolem1 35275 cvmliftmolem2 35276 cvmliftlem6 35284 cvmliftlem7 35285 cvmliftlem8 35286 cvmliftlem9 35287 cvmlift2lem7 35303 cvmlift2lem9 35305 cvmliftphtlem 35311 cvmlift3lem5 35317 cvmlift3lem6 35318 cvmlift3lem9 35321 |
| Copyright terms: Public domain | W3C validator |