![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmcn | Structured version Visualization version GIF version |
Description: A covering map is a continuous function. (Contributed by Mario Carneiro, 13-Feb-2015.) |
Ref | Expression |
---|---|
cvmcn | ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . . . 4 ⊢ (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
2 | eqid 2730 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
3 | 1, 2 | iscvm 34546 | . . 3 ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) ↔ ((𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ (𝐶 Cn 𝐽)) ∧ ∀𝑥 ∈ ∪ 𝐽∃𝑘 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ ((𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))})‘𝑘) ≠ ∅))) |
4 | 3 | simplbi 496 | . 2 ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → (𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ (𝐶 Cn 𝐽))) |
5 | 4 | simp3d 1142 | 1 ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 {crab 3430 ∖ cdif 3946 ∩ cin 3948 ∅c0 4323 𝒫 cpw 4603 {csn 4629 ∪ cuni 4909 ↦ cmpt 5232 ◡ccnv 5676 ↾ cres 5679 “ cima 5680 ‘cfv 6544 (class class class)co 7413 ↾t crest 17372 Topctop 22617 Cn ccn 22950 Homeochmeo 23479 CovMap ccvm 34542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-cvm 34543 |
This theorem is referenced by: cvmsss2 34561 cvmseu 34563 cvmopnlem 34565 cvmfolem 34566 cvmliftmolem1 34568 cvmliftmolem2 34569 cvmliftlem6 34577 cvmliftlem7 34578 cvmliftlem8 34579 cvmliftlem9 34580 cvmlift2lem7 34596 cvmlift2lem9 34598 cvmliftphtlem 34604 cvmlift3lem5 34610 cvmlift3lem6 34611 cvmlift3lem9 34614 |
Copyright terms: Public domain | W3C validator |