| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmcn | Structured version Visualization version GIF version | ||
| Description: A covering map is a continuous function. (Contributed by Mario Carneiro, 13-Feb-2015.) |
| Ref | Expression |
|---|---|
| cvmcn | ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . 4 ⊢ (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
| 2 | eqid 2733 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 3 | 1, 2 | iscvm 35314 | . . 3 ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) ↔ ((𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ (𝐶 Cn 𝐽)) ∧ ∀𝑥 ∈ ∪ 𝐽∃𝑘 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ ((𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))})‘𝑘) ≠ ∅))) |
| 4 | 3 | simplbi 497 | . 2 ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → (𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ (𝐶 Cn 𝐽))) |
| 5 | 4 | simp3d 1144 | 1 ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 ∀wral 3049 ∃wrex 3058 {crab 3397 ∖ cdif 3896 ∩ cin 3898 ∅c0 4284 𝒫 cpw 4551 {csn 4577 ∪ cuni 4860 ↦ cmpt 5176 ◡ccnv 5620 ↾ cres 5623 “ cima 5624 ‘cfv 6489 (class class class)co 7355 ↾t crest 17334 Topctop 22818 Cn ccn 23149 Homeochmeo 23678 CovMap ccvm 35310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-cvm 35311 |
| This theorem is referenced by: cvmsss2 35329 cvmseu 35331 cvmopnlem 35333 cvmfolem 35334 cvmliftmolem1 35336 cvmliftmolem2 35337 cvmliftlem6 35345 cvmliftlem7 35346 cvmliftlem8 35347 cvmliftlem9 35348 cvmlift2lem7 35364 cvmlift2lem9 35366 cvmliftphtlem 35372 cvmlift3lem5 35378 cvmlift3lem6 35379 cvmlift3lem9 35382 |
| Copyright terms: Public domain | W3C validator |