MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8c Structured version   Visualization version   GIF version

Theorem dfac8c 9986
Description: If the union of a set is well-orderable, then the set has a choice function. (Contributed by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
dfac8c (𝐴𝐵 → (∃𝑟 𝑟 We 𝐴 → ∃𝑓𝑧𝐴 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
Distinct variable groups:   𝑓,𝑟,𝑧,𝐴   𝐵,𝑟
Allowed substitution hints:   𝐵(𝑧,𝑓)

Proof of Theorem dfac8c
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 (𝑥 ∈ (𝐴 ∖ {∅}) ↦ (𝑦𝑥𝑤𝑥 ¬ 𝑤𝑟𝑦)) = (𝑥 ∈ (𝐴 ∖ {∅}) ↦ (𝑦𝑥𝑤𝑥 ¬ 𝑤𝑟𝑦))
21dfac8clem 9985 1 (𝐴𝐵 → (∃𝑟 𝑟 We 𝐴 → ∃𝑓𝑧𝐴 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wex 1779  wcel 2109  wne 2925  wral 3044  cdif 3911  c0 4296  {csn 4589   cuni 4871   class class class wbr 5107  cmpt 5188   We wwe 5590  cfv 6511  crio 7343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-riota 7344
This theorem is referenced by:  ween  9988  ac5num  9989  dfac8  10089  vitali  25514
  Copyright terms: Public domain W3C validator