MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8c Structured version   Visualization version   GIF version

Theorem dfac8c 10030
Description: If the union of a set is well-orderable, then the set has a choice function. (Contributed by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
dfac8c (𝐴𝐵 → (∃𝑟 𝑟 We 𝐴 → ∃𝑓𝑧𝐴 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
Distinct variable groups:   𝑓,𝑟,𝑧,𝐴   𝐵,𝑟
Allowed substitution hints:   𝐵(𝑧,𝑓)

Proof of Theorem dfac8c
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . 2 (𝑥 ∈ (𝐴 ∖ {∅}) ↦ (𝑦𝑥𝑤𝑥 ¬ 𝑤𝑟𝑦)) = (𝑥 ∈ (𝐴 ∖ {∅}) ↦ (𝑦𝑥𝑤𝑥 ¬ 𝑤𝑟𝑦))
21dfac8clem 10029 1 (𝐴𝐵 → (∃𝑟 𝑟 We 𝐴 → ∃𝑓𝑧𝐴 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wex 1781  wcel 2106  wne 2940  wral 3061  cdif 3945  c0 4322  {csn 4628   cuni 4908   class class class wbr 5148  cmpt 5231   We wwe 5630  cfv 6543  crio 7366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-riota 7367
This theorem is referenced by:  ween  10032  ac5num  10033  dfac8  10132  vitali  25354
  Copyright terms: Public domain W3C validator