MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8c Structured version   Visualization version   GIF version

Theorem dfac8c 10071
Description: If the union of a set is well-orderable, then the set has a choice function. (Contributed by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
dfac8c (𝐴𝐵 → (∃𝑟 𝑟 We 𝐴 → ∃𝑓𝑧𝐴 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
Distinct variable groups:   𝑓,𝑟,𝑧,𝐴   𝐵,𝑟
Allowed substitution hints:   𝐵(𝑧,𝑓)

Proof of Theorem dfac8c
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . 2 (𝑥 ∈ (𝐴 ∖ {∅}) ↦ (𝑦𝑥𝑤𝑥 ¬ 𝑤𝑟𝑦)) = (𝑥 ∈ (𝐴 ∖ {∅}) ↦ (𝑦𝑥𝑤𝑥 ¬ 𝑤𝑟𝑦))
21dfac8clem 10070 1 (𝐴𝐵 → (∃𝑟 𝑟 We 𝐴 → ∃𝑓𝑧𝐴 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wex 1776  wcel 2106  wne 2938  wral 3059  cdif 3960  c0 4339  {csn 4631   cuni 4912   class class class wbr 5148  cmpt 5231   We wwe 5640  cfv 6563  crio 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-riota 7388
This theorem is referenced by:  ween  10073  ac5num  10074  dfac8  10174  vitali  25662
  Copyright terms: Public domain W3C validator