| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfac8c | Structured version Visualization version GIF version | ||
| Description: If the union of a set is well-orderable, then the set has a choice function. (Contributed by Mario Carneiro, 5-Jan-2013.) |
| Ref | Expression |
|---|---|
| dfac8c | ⊢ (𝐴 ∈ 𝐵 → (∃𝑟 𝑟 We ∪ 𝐴 → ∃𝑓∀𝑧 ∈ 𝐴 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (𝑥 ∈ (𝐴 ∖ {∅}) ↦ (℩𝑦 ∈ 𝑥 ∀𝑤 ∈ 𝑥 ¬ 𝑤𝑟𝑦)) = (𝑥 ∈ (𝐴 ∖ {∅}) ↦ (℩𝑦 ∈ 𝑥 ∀𝑤 ∈ 𝑥 ¬ 𝑤𝑟𝑦)) | |
| 2 | 1 | dfac8clem 9985 | 1 ⊢ (𝐴 ∈ 𝐵 → (∃𝑟 𝑟 We ∪ 𝐴 → ∃𝑓∀𝑧 ∈ 𝐴 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∖ cdif 3911 ∅c0 4296 {csn 4589 ∪ cuni 4871 class class class wbr 5107 ↦ cmpt 5188 We wwe 5590 ‘cfv 6511 ℩crio 7343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-riota 7344 |
| This theorem is referenced by: ween 9988 ac5num 9989 dfac8 10089 vitali 25514 |
| Copyright terms: Public domain | W3C validator |