Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemn11a | Structured version Visualization version GIF version |
Description: Part of proof of Lemma N of [Crawley] p. 121 line 37. (Contributed by NM, 27-Feb-2014.) |
Ref | Expression |
---|---|
cdlemn11a.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemn11a.l | ⊢ ≤ = (le‘𝐾) |
cdlemn11a.j | ⊢ ∨ = (join‘𝐾) |
cdlemn11a.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemn11a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemn11a.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
cdlemn11a.o | ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
cdlemn11a.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemn11a.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemn11a.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
cdlemn11a.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
cdlemn11a.J | ⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) |
cdlemn11a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
cdlemn11a.d | ⊢ + = (+g‘𝑈) |
cdlemn11a.s | ⊢ ⊕ = (LSSum‘𝑈) |
cdlemn11a.f | ⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) |
cdlemn11a.g | ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑁) |
Ref | Expression |
---|---|
cdlemn11a | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → 〈𝐺, ( I ↾ 𝑇)〉 ∈ (𝐽‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | cdlemn11a.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
3 | cdlemn11a.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | cdlemn11a.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | cdlemn11a.p | . . . . . . 7 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
6 | 2, 3, 4, 5 | lhpocnel2 37629 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
7 | 6 | 3ad2ant1 1130 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
8 | simp22 1204 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) | |
9 | cdlemn11a.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
10 | cdlemn11a.g | . . . . . 6 ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑁) | |
11 | 2, 3, 4, 9, 10 | ltrniotacl 38189 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) → 𝐺 ∈ 𝑇) |
12 | 1, 7, 8, 11 | syl3anc 1368 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → 𝐺 ∈ 𝑇) |
13 | fvresi 6932 | . . . 4 ⊢ (𝐺 ∈ 𝑇 → (( I ↾ 𝑇)‘𝐺) = 𝐺) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → (( I ↾ 𝑇)‘𝐺) = 𝐺) |
15 | 14 | eqcomd 2764 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → 𝐺 = (( I ↾ 𝑇)‘𝐺)) |
16 | cdlemn11a.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
17 | 4, 9, 16 | tendoidcl 38379 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ 𝐸) |
18 | 17 | 3ad2ant1 1130 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → ( I ↾ 𝑇) ∈ 𝐸) |
19 | cdlemn11a.J | . . . 4 ⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) | |
20 | riotaex 7118 | . . . . 5 ⊢ (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑁) ∈ V | |
21 | 10, 20 | eqeltri 2848 | . . . 4 ⊢ 𝐺 ∈ V |
22 | 9 | fvexi 6677 | . . . . 5 ⊢ 𝑇 ∈ V |
23 | resiexg 7630 | . . . . 5 ⊢ (𝑇 ∈ V → ( I ↾ 𝑇) ∈ V) | |
24 | 22, 23 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝑇) ∈ V |
25 | 2, 3, 4, 5, 9, 16, 19, 10, 21, 24 | dicopelval2 38791 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) → (〈𝐺, ( I ↾ 𝑇)〉 ∈ (𝐽‘𝑁) ↔ (𝐺 = (( I ↾ 𝑇)‘𝐺) ∧ ( I ↾ 𝑇) ∈ 𝐸))) |
26 | 1, 8, 25 | syl2anc 587 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → (〈𝐺, ( I ↾ 𝑇)〉 ∈ (𝐽‘𝑁) ↔ (𝐺 = (( I ↾ 𝑇)‘𝐺) ∧ ( I ↾ 𝑇) ∈ 𝐸))) |
27 | 15, 18, 26 | mpbir2and 712 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → 〈𝐺, ( I ↾ 𝑇)〉 ∈ (𝐽‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ⊆ wss 3860 〈cop 4531 class class class wbr 5036 ↦ cmpt 5116 I cid 5433 ↾ cres 5530 ‘cfv 6340 ℩crio 7113 (class class class)co 7156 Basecbs 16554 +gcplusg 16636 lecple 16643 occoc 16644 joincjn 17633 LSSumclsm 18839 Atomscatm 36873 HLchlt 36960 LHypclh 37594 LTrncltrn 37711 trLctrl 37768 TEndoctendo 38362 DVecHcdvh 38688 DIsoBcdib 38748 DIsoCcdic 38782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-riotaBAD 36563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-1st 7699 df-2nd 7700 df-undef 7955 df-map 8424 df-proset 17617 df-poset 17635 df-plt 17647 df-lub 17663 df-glb 17664 df-join 17665 df-meet 17666 df-p0 17728 df-p1 17729 df-lat 17735 df-clat 17797 df-oposet 36786 df-ol 36788 df-oml 36789 df-covers 36876 df-ats 36877 df-atl 36908 df-cvlat 36932 df-hlat 36961 df-llines 37108 df-lplanes 37109 df-lvols 37110 df-lines 37111 df-psubsp 37113 df-pmap 37114 df-padd 37406 df-lhyp 37598 df-laut 37599 df-ldil 37714 df-ltrn 37715 df-trl 37769 df-tendo 38365 df-dic 38783 |
This theorem is referenced by: cdlemn11b 38818 |
Copyright terms: Public domain | W3C validator |