| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemn11a | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma N of [Crawley] p. 121 line 37. (Contributed by NM, 27-Feb-2014.) |
| Ref | Expression |
|---|---|
| cdlemn11a.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemn11a.l | ⊢ ≤ = (le‘𝐾) |
| cdlemn11a.j | ⊢ ∨ = (join‘𝐾) |
| cdlemn11a.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemn11a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemn11a.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| cdlemn11a.o | ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| cdlemn11a.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdlemn11a.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| cdlemn11a.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| cdlemn11a.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| cdlemn11a.J | ⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) |
| cdlemn11a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| cdlemn11a.d | ⊢ + = (+g‘𝑈) |
| cdlemn11a.s | ⊢ ⊕ = (LSSum‘𝑈) |
| cdlemn11a.f | ⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) |
| cdlemn11a.g | ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑁) |
| Ref | Expression |
|---|---|
| cdlemn11a | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → 〈𝐺, ( I ↾ 𝑇)〉 ∈ (𝐽‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | cdlemn11a.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
| 3 | cdlemn11a.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | cdlemn11a.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | cdlemn11a.p | . . . . . . 7 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
| 6 | 2, 3, 4, 5 | lhpocnel2 40013 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 7 | 6 | 3ad2ant1 1133 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 8 | simp22 1208 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) | |
| 9 | cdlemn11a.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 10 | cdlemn11a.g | . . . . . 6 ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑁) | |
| 11 | 2, 3, 4, 9, 10 | ltrniotacl 40573 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) → 𝐺 ∈ 𝑇) |
| 12 | 1, 7, 8, 11 | syl3anc 1373 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → 𝐺 ∈ 𝑇) |
| 13 | fvresi 7147 | . . . 4 ⊢ (𝐺 ∈ 𝑇 → (( I ↾ 𝑇)‘𝐺) = 𝐺) | |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → (( I ↾ 𝑇)‘𝐺) = 𝐺) |
| 15 | 14 | eqcomd 2735 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → 𝐺 = (( I ↾ 𝑇)‘𝐺)) |
| 16 | cdlemn11a.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 17 | 4, 9, 16 | tendoidcl 40763 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ 𝐸) |
| 18 | 17 | 3ad2ant1 1133 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → ( I ↾ 𝑇) ∈ 𝐸) |
| 19 | cdlemn11a.J | . . . 4 ⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) | |
| 20 | riotaex 7348 | . . . . 5 ⊢ (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑁) ∈ V | |
| 21 | 10, 20 | eqeltri 2824 | . . . 4 ⊢ 𝐺 ∈ V |
| 22 | 9 | fvexi 6872 | . . . . 5 ⊢ 𝑇 ∈ V |
| 23 | resiexg 7888 | . . . . 5 ⊢ (𝑇 ∈ V → ( I ↾ 𝑇) ∈ V) | |
| 24 | 22, 23 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝑇) ∈ V |
| 25 | 2, 3, 4, 5, 9, 16, 19, 10, 21, 24 | dicopelval2 41175 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) → (〈𝐺, ( I ↾ 𝑇)〉 ∈ (𝐽‘𝑁) ↔ (𝐺 = (( I ↾ 𝑇)‘𝐺) ∧ ( I ↾ 𝑇) ∈ 𝐸))) |
| 26 | 1, 8, 25 | syl2anc 584 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → (〈𝐺, ( I ↾ 𝑇)〉 ∈ (𝐽‘𝑁) ↔ (𝐺 = (( I ↾ 𝑇)‘𝐺) ∧ ( I ↾ 𝑇) ∈ 𝐸))) |
| 27 | 15, 18, 26 | mpbir2and 713 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → 〈𝐺, ( I ↾ 𝑇)〉 ∈ (𝐽‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 〈cop 4595 class class class wbr 5107 ↦ cmpt 5188 I cid 5532 ↾ cres 5640 ‘cfv 6511 ℩crio 7343 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 lecple 17227 occoc 17228 joincjn 18272 LSSumclsm 19564 Atomscatm 39256 HLchlt 39343 LHypclh 39978 LTrncltrn 40095 trLctrl 40152 TEndoctendo 40746 DVecHcdvh 41072 DIsoBcdib 41132 DIsoCcdic 41166 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-riotaBAD 38946 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-undef 8252 df-map 8801 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-llines 39492 df-lplanes 39493 df-lvols 39494 df-lines 39495 df-psubsp 39497 df-pmap 39498 df-padd 39790 df-lhyp 39982 df-laut 39983 df-ldil 40098 df-ltrn 40099 df-trl 40153 df-tendo 40749 df-dic 41167 |
| This theorem is referenced by: cdlemn11b 41202 |
| Copyright terms: Public domain | W3C validator |