Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemn11a | Structured version Visualization version GIF version |
Description: Part of proof of Lemma N of [Crawley] p. 121 line 37. (Contributed by NM, 27-Feb-2014.) |
Ref | Expression |
---|---|
cdlemn11a.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemn11a.l | ⊢ ≤ = (le‘𝐾) |
cdlemn11a.j | ⊢ ∨ = (join‘𝐾) |
cdlemn11a.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemn11a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemn11a.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
cdlemn11a.o | ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
cdlemn11a.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemn11a.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemn11a.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
cdlemn11a.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
cdlemn11a.J | ⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) |
cdlemn11a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
cdlemn11a.d | ⊢ + = (+g‘𝑈) |
cdlemn11a.s | ⊢ ⊕ = (LSSum‘𝑈) |
cdlemn11a.f | ⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) |
cdlemn11a.g | ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑁) |
Ref | Expression |
---|---|
cdlemn11a | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → 〈𝐺, ( I ↾ 𝑇)〉 ∈ (𝐽‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | cdlemn11a.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
3 | cdlemn11a.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | cdlemn11a.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | cdlemn11a.p | . . . . . . 7 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
6 | 2, 3, 4, 5 | lhpocnel2 38033 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
7 | 6 | 3ad2ant1 1132 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
8 | simp22 1206 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) | |
9 | cdlemn11a.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
10 | cdlemn11a.g | . . . . . 6 ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑁) | |
11 | 2, 3, 4, 9, 10 | ltrniotacl 38593 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) → 𝐺 ∈ 𝑇) |
12 | 1, 7, 8, 11 | syl3anc 1370 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → 𝐺 ∈ 𝑇) |
13 | fvresi 7045 | . . . 4 ⊢ (𝐺 ∈ 𝑇 → (( I ↾ 𝑇)‘𝐺) = 𝐺) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → (( I ↾ 𝑇)‘𝐺) = 𝐺) |
15 | 14 | eqcomd 2744 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → 𝐺 = (( I ↾ 𝑇)‘𝐺)) |
16 | cdlemn11a.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
17 | 4, 9, 16 | tendoidcl 38783 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ 𝐸) |
18 | 17 | 3ad2ant1 1132 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → ( I ↾ 𝑇) ∈ 𝐸) |
19 | cdlemn11a.J | . . . 4 ⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) | |
20 | riotaex 7236 | . . . . 5 ⊢ (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑁) ∈ V | |
21 | 10, 20 | eqeltri 2835 | . . . 4 ⊢ 𝐺 ∈ V |
22 | 9 | fvexi 6788 | . . . . 5 ⊢ 𝑇 ∈ V |
23 | resiexg 7761 | . . . . 5 ⊢ (𝑇 ∈ V → ( I ↾ 𝑇) ∈ V) | |
24 | 22, 23 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝑇) ∈ V |
25 | 2, 3, 4, 5, 9, 16, 19, 10, 21, 24 | dicopelval2 39195 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) → (〈𝐺, ( I ↾ 𝑇)〉 ∈ (𝐽‘𝑁) ↔ (𝐺 = (( I ↾ 𝑇)‘𝐺) ∧ ( I ↾ 𝑇) ∈ 𝐸))) |
26 | 1, 8, 25 | syl2anc 584 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → (〈𝐺, ( I ↾ 𝑇)〉 ∈ (𝐽‘𝑁) ↔ (𝐺 = (( I ↾ 𝑇)‘𝐺) ∧ ( I ↾ 𝑇) ∈ 𝐸))) |
27 | 15, 18, 26 | mpbir2and 710 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) ∧ (𝐽‘𝑁) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘𝑋))) → 〈𝐺, ( I ↾ 𝑇)〉 ∈ (𝐽‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 〈cop 4567 class class class wbr 5074 ↦ cmpt 5157 I cid 5488 ↾ cres 5591 ‘cfv 6433 ℩crio 7231 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 lecple 16969 occoc 16970 joincjn 18029 LSSumclsm 19239 Atomscatm 37277 HLchlt 37364 LHypclh 37998 LTrncltrn 38115 trLctrl 38172 TEndoctendo 38766 DVecHcdvh 39092 DIsoBcdib 39152 DIsoCcdic 39186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-riotaBAD 36967 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-undef 8089 df-map 8617 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-llines 37512 df-lplanes 37513 df-lvols 37514 df-lines 37515 df-psubsp 37517 df-pmap 37518 df-padd 37810 df-lhyp 38002 df-laut 38003 df-ldil 38118 df-ltrn 38119 df-trl 38173 df-tendo 38769 df-dic 39187 |
This theorem is referenced by: cdlemn11b 39222 |
Copyright terms: Public domain | W3C validator |