Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihopelvalbN Structured version   Visualization version   GIF version

Theorem dihopelvalbN 41203
Description: Ordered pair member of the partial isomorphism H for argument under 𝑊. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihval3.b 𝐵 = (Base‘𝐾)
dihval3.l = (le‘𝐾)
dihval3.h 𝐻 = (LHyp‘𝐾)
dihval3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihval3.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihval3.o 𝑂 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
dihval3.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
Assertion
Ref Expression
dihopelvalbN (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ((𝐹𝑇 ∧ (𝑅𝐹) 𝑋) ∧ 𝑆 = 𝑂)))
Distinct variable groups:   𝑔,𝐾   𝑇,𝑔   𝑔,𝑊
Allowed substitution hints:   𝐵(𝑔)   𝑅(𝑔)   𝑆(𝑔)   𝐹(𝑔)   𝐻(𝑔)   𝐼(𝑔)   (𝑔)   𝑂(𝑔)   𝑉(𝑔)   𝑋(𝑔)

Proof of Theorem dihopelvalbN
StepHypRef Expression
1 dihval3.b . . . 4 𝐵 = (Base‘𝐾)
2 dihval3.l . . . 4 = (le‘𝐾)
3 dihval3.h . . . 4 𝐻 = (LHyp‘𝐾)
4 dihval3.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
5 eqid 2735 . . . 4 ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊)
61, 2, 3, 4, 5dihvalb 41202 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = (((DIsoB‘𝐾)‘𝑊)‘𝑋))
76eleq2d 2820 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ⟨𝐹, 𝑆⟩ ∈ (((DIsoB‘𝐾)‘𝑊)‘𝑋)))
8 dihval3.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 dihval3.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
10 dihval3.o . . 3 𝑂 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
111, 2, 3, 8, 9, 10, 5dibopelval3 41113 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (((DIsoB‘𝐾)‘𝑊)‘𝑋) ↔ ((𝐹𝑇 ∧ (𝑅𝐹) 𝑋) ∧ 𝑆 = 𝑂)))
127, 11bitrd 279 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ((𝐹𝑇 ∧ (𝑅𝐹) 𝑋) ∧ 𝑆 = 𝑂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cop 4607   class class class wbr 5119  cmpt 5201   I cid 5547  cres 5656  cfv 6530  Basecbs 17226  lecple 17276  LHypclh 39949  LTrncltrn 40066  trLctrl 40123  DIsoBcdib 41103  DIsoHcdih 41193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-disoa 40994  df-dib 41104  df-dih 41194
This theorem is referenced by:  dihmeetlem1N  41255  dihglblem5apreN  41256  dihmeetlem4preN  41271
  Copyright terms: Public domain W3C validator