| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dihopelvalbN | Structured version Visualization version GIF version | ||
| Description: Ordered pair member of the partial isomorphism H for argument under 𝑊. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dihval3.b | ⊢ 𝐵 = (Base‘𝐾) |
| dihval3.l | ⊢ ≤ = (le‘𝐾) |
| dihval3.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dihval3.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dihval3.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| dihval3.o | ⊢ 𝑂 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| dihval3.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dihopelvalbN | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋) ∧ 𝑆 = 𝑂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dihval3.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | dihval3.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | dihval3.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | dihval3.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 5 | eqid 2730 | . . . 4 ⊢ ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | dihvalb 41238 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (((DIsoB‘𝐾)‘𝑊)‘𝑋)) |
| 7 | 6 | eleq2d 2815 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ 〈𝐹, 𝑆〉 ∈ (((DIsoB‘𝐾)‘𝑊)‘𝑋))) |
| 8 | dihval3.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 9 | dihval3.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 10 | dihval3.o | . . 3 ⊢ 𝑂 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 11 | 1, 2, 3, 8, 9, 10, 5 | dibopelval3 41149 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (((DIsoB‘𝐾)‘𝑊)‘𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋) ∧ 𝑆 = 𝑂))) |
| 12 | 7, 11 | bitrd 279 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋) ∧ 𝑆 = 𝑂))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4598 class class class wbr 5110 ↦ cmpt 5191 I cid 5535 ↾ cres 5643 ‘cfv 6514 Basecbs 17186 lecple 17234 LHypclh 39985 LTrncltrn 40102 trLctrl 40159 DIsoBcdib 41139 DIsoHcdih 41229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-disoa 41030 df-dib 41140 df-dih 41230 |
| This theorem is referenced by: dihmeetlem1N 41291 dihglblem5apreN 41292 dihmeetlem4preN 41307 |
| Copyright terms: Public domain | W3C validator |