Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihopelvalbN Structured version   Visualization version   GIF version

Theorem dihopelvalbN 41239
Description: Ordered pair member of the partial isomorphism H for argument under 𝑊. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihval3.b 𝐵 = (Base‘𝐾)
dihval3.l = (le‘𝐾)
dihval3.h 𝐻 = (LHyp‘𝐾)
dihval3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihval3.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihval3.o 𝑂 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
dihval3.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
Assertion
Ref Expression
dihopelvalbN (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ((𝐹𝑇 ∧ (𝑅𝐹) 𝑋) ∧ 𝑆 = 𝑂)))
Distinct variable groups:   𝑔,𝐾   𝑇,𝑔   𝑔,𝑊
Allowed substitution hints:   𝐵(𝑔)   𝑅(𝑔)   𝑆(𝑔)   𝐹(𝑔)   𝐻(𝑔)   𝐼(𝑔)   (𝑔)   𝑂(𝑔)   𝑉(𝑔)   𝑋(𝑔)

Proof of Theorem dihopelvalbN
StepHypRef Expression
1 dihval3.b . . . 4 𝐵 = (Base‘𝐾)
2 dihval3.l . . . 4 = (le‘𝐾)
3 dihval3.h . . . 4 𝐻 = (LHyp‘𝐾)
4 dihval3.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
5 eqid 2730 . . . 4 ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊)
61, 2, 3, 4, 5dihvalb 41238 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = (((DIsoB‘𝐾)‘𝑊)‘𝑋))
76eleq2d 2815 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ⟨𝐹, 𝑆⟩ ∈ (((DIsoB‘𝐾)‘𝑊)‘𝑋)))
8 dihval3.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 dihval3.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
10 dihval3.o . . 3 𝑂 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
111, 2, 3, 8, 9, 10, 5dibopelval3 41149 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (((DIsoB‘𝐾)‘𝑊)‘𝑋) ↔ ((𝐹𝑇 ∧ (𝑅𝐹) 𝑋) ∧ 𝑆 = 𝑂)))
127, 11bitrd 279 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ((𝐹𝑇 ∧ (𝑅𝐹) 𝑋) ∧ 𝑆 = 𝑂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cop 4598   class class class wbr 5110  cmpt 5191   I cid 5535  cres 5643  cfv 6514  Basecbs 17186  lecple 17234  LHypclh 39985  LTrncltrn 40102  trLctrl 40159  DIsoBcdib 41139  DIsoHcdih 41229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-disoa 41030  df-dib 41140  df-dih 41230
This theorem is referenced by:  dihmeetlem1N  41291  dihglblem5apreN  41292  dihmeetlem4preN  41307
  Copyright terms: Public domain W3C validator