![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihopelvalbN | Structured version Visualization version GIF version |
Description: Ordered pair member of the partial isomorphism H for argument under 𝑊. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dihval3.b | ⊢ 𝐵 = (Base‘𝐾) |
dihval3.l | ⊢ ≤ = (le‘𝐾) |
dihval3.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihval3.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dihval3.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
dihval3.o | ⊢ 𝑂 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
dihval3.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dihopelvalbN | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋) ∧ 𝑆 = 𝑂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihval3.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | dihval3.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | dihval3.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dihval3.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
5 | eqid 2727 | . . . 4 ⊢ ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊) | |
6 | 1, 2, 3, 4, 5 | dihvalb 40714 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (((DIsoB‘𝐾)‘𝑊)‘𝑋)) |
7 | 6 | eleq2d 2814 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ 〈𝐹, 𝑆〉 ∈ (((DIsoB‘𝐾)‘𝑊)‘𝑋))) |
8 | dihval3.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
9 | dihval3.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
10 | dihval3.o | . . 3 ⊢ 𝑂 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
11 | 1, 2, 3, 8, 9, 10, 5 | dibopelval3 40625 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (((DIsoB‘𝐾)‘𝑊)‘𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋) ∧ 𝑆 = 𝑂))) |
12 | 7, 11 | bitrd 278 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋) ∧ 𝑆 = 𝑂))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 〈cop 4636 class class class wbr 5150 ↦ cmpt 5233 I cid 5577 ↾ cres 5682 ‘cfv 6551 Basecbs 17185 lecple 17245 LHypclh 39461 LTrncltrn 39578 trLctrl 39635 DIsoBcdib 40615 DIsoHcdih 40705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-disoa 40506 df-dib 40616 df-dih 40706 |
This theorem is referenced by: dihmeetlem1N 40767 dihglblem5apreN 40768 dihmeetlem4preN 40783 |
Copyright terms: Public domain | W3C validator |