Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihopelvalbN Structured version   Visualization version   GIF version

Theorem dihopelvalbN 38864
Description: Ordered pair member of the partial isomorphism H for argument under 𝑊. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihval3.b 𝐵 = (Base‘𝐾)
dihval3.l = (le‘𝐾)
dihval3.h 𝐻 = (LHyp‘𝐾)
dihval3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihval3.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihval3.o 𝑂 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
dihval3.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
Assertion
Ref Expression
dihopelvalbN (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ((𝐹𝑇 ∧ (𝑅𝐹) 𝑋) ∧ 𝑆 = 𝑂)))
Distinct variable groups:   𝑔,𝐾   𝑇,𝑔   𝑔,𝑊
Allowed substitution hints:   𝐵(𝑔)   𝑅(𝑔)   𝑆(𝑔)   𝐹(𝑔)   𝐻(𝑔)   𝐼(𝑔)   (𝑔)   𝑂(𝑔)   𝑉(𝑔)   𝑋(𝑔)

Proof of Theorem dihopelvalbN
StepHypRef Expression
1 dihval3.b . . . 4 𝐵 = (Base‘𝐾)
2 dihval3.l . . . 4 = (le‘𝐾)
3 dihval3.h . . . 4 𝐻 = (LHyp‘𝐾)
4 dihval3.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
5 eqid 2738 . . . 4 ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊)
61, 2, 3, 4, 5dihvalb 38863 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = (((DIsoB‘𝐾)‘𝑊)‘𝑋))
76eleq2d 2818 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ⟨𝐹, 𝑆⟩ ∈ (((DIsoB‘𝐾)‘𝑊)‘𝑋)))
8 dihval3.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 dihval3.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
10 dihval3.o . . 3 𝑂 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
111, 2, 3, 8, 9, 10, 5dibopelval3 38774 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (((DIsoB‘𝐾)‘𝑊)‘𝑋) ↔ ((𝐹𝑇 ∧ (𝑅𝐹) 𝑋) ∧ 𝑆 = 𝑂)))
127, 11bitrd 282 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ((𝐹𝑇 ∧ (𝑅𝐹) 𝑋) ∧ 𝑆 = 𝑂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2113  cop 4519   class class class wbr 5027  cmpt 5107   I cid 5424  cres 5521  cfv 6333  Basecbs 16579  lecple 16668  LHypclh 37610  LTrncltrn 37727  trLctrl 37784  DIsoBcdib 38764  DIsoHcdih 38854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-disoa 38655  df-dib 38765  df-dih 38855
This theorem is referenced by:  dihmeetlem1N  38916  dihglblem5apreN  38917  dihmeetlem4preN  38932
  Copyright terms: Public domain W3C validator