Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihopelvalbN Structured version   Visualization version   GIF version

Theorem dihopelvalbN 40413
Description: Ordered pair member of the partial isomorphism H for argument under π‘Š. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihval3.b 𝐡 = (Baseβ€˜πΎ)
dihval3.l ≀ = (leβ€˜πΎ)
dihval3.h 𝐻 = (LHypβ€˜πΎ)
dihval3.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
dihval3.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
dihval3.o 𝑂 = (𝑔 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
dihval3.i 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dihopelvalbN (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (⟨𝐹, π‘†βŸ© ∈ (πΌβ€˜π‘‹) ↔ ((𝐹 ∈ 𝑇 ∧ (π‘…β€˜πΉ) ≀ 𝑋) ∧ 𝑆 = 𝑂)))
Distinct variable groups:   𝑔,𝐾   𝑇,𝑔   𝑔,π‘Š
Allowed substitution hints:   𝐡(𝑔)   𝑅(𝑔)   𝑆(𝑔)   𝐹(𝑔)   𝐻(𝑔)   𝐼(𝑔)   ≀ (𝑔)   𝑂(𝑔)   𝑉(𝑔)   𝑋(𝑔)

Proof of Theorem dihopelvalbN
StepHypRef Expression
1 dihval3.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 dihval3.l . . . 4 ≀ = (leβ€˜πΎ)
3 dihval3.h . . . 4 𝐻 = (LHypβ€˜πΎ)
4 dihval3.i . . . 4 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
5 eqid 2731 . . . 4 ((DIsoBβ€˜πΎ)β€˜π‘Š) = ((DIsoBβ€˜πΎ)β€˜π‘Š)
61, 2, 3, 4, 5dihvalb 40412 . . 3 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (πΌβ€˜π‘‹) = (((DIsoBβ€˜πΎ)β€˜π‘Š)β€˜π‘‹))
76eleq2d 2818 . 2 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (⟨𝐹, π‘†βŸ© ∈ (πΌβ€˜π‘‹) ↔ ⟨𝐹, π‘†βŸ© ∈ (((DIsoBβ€˜πΎ)β€˜π‘Š)β€˜π‘‹)))
8 dihval3.t . . 3 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
9 dihval3.r . . 3 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
10 dihval3.o . . 3 𝑂 = (𝑔 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
111, 2, 3, 8, 9, 10, 5dibopelval3 40323 . 2 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (⟨𝐹, π‘†βŸ© ∈ (((DIsoBβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) ↔ ((𝐹 ∈ 𝑇 ∧ (π‘…β€˜πΉ) ≀ 𝑋) ∧ 𝑆 = 𝑂)))
127, 11bitrd 278 1 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (⟨𝐹, π‘†βŸ© ∈ (πΌβ€˜π‘‹) ↔ ((𝐹 ∈ 𝑇 ∧ (π‘…β€˜πΉ) ≀ 𝑋) ∧ 𝑆 = 𝑂)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βŸ¨cop 4635   class class class wbr 5149   ↦ cmpt 5232   I cid 5574   β†Ύ cres 5679  β€˜cfv 6544  Basecbs 17149  lecple 17209  LHypclh 39159  LTrncltrn 39276  trLctrl 39333  DIsoBcdib 40313  DIsoHcdih 40403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-disoa 40204  df-dib 40314  df-dih 40404
This theorem is referenced by:  dihmeetlem1N  40465  dihglblem5apreN  40466  dihmeetlem4preN  40481
  Copyright terms: Public domain W3C validator