![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihopelvalbN | Structured version Visualization version GIF version |
Description: Ordered pair member of the partial isomorphism H for argument under π. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dihval3.b | β’ π΅ = (BaseβπΎ) |
dihval3.l | β’ β€ = (leβπΎ) |
dihval3.h | β’ π» = (LHypβπΎ) |
dihval3.t | β’ π = ((LTrnβπΎ)βπ) |
dihval3.r | β’ π = ((trLβπΎ)βπ) |
dihval3.o | β’ π = (π β π β¦ ( I βΎ π΅)) |
dihval3.i | β’ πΌ = ((DIsoHβπΎ)βπ) |
Ref | Expression |
---|---|
dihopelvalbN | β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (β¨πΉ, πβ© β (πΌβπ) β ((πΉ β π β§ (π βπΉ) β€ π) β§ π = π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihval3.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | dihval3.l | . . . 4 β’ β€ = (leβπΎ) | |
3 | dihval3.h | . . . 4 β’ π» = (LHypβπΎ) | |
4 | dihval3.i | . . . 4 β’ πΌ = ((DIsoHβπΎ)βπ) | |
5 | eqid 2731 | . . . 4 β’ ((DIsoBβπΎ)βπ) = ((DIsoBβπΎ)βπ) | |
6 | 1, 2, 3, 4, 5 | dihvalb 40412 | . . 3 β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΌβπ) = (((DIsoBβπΎ)βπ)βπ)) |
7 | 6 | eleq2d 2818 | . 2 β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (β¨πΉ, πβ© β (πΌβπ) β β¨πΉ, πβ© β (((DIsoBβπΎ)βπ)βπ))) |
8 | dihval3.t | . . 3 β’ π = ((LTrnβπΎ)βπ) | |
9 | dihval3.r | . . 3 β’ π = ((trLβπΎ)βπ) | |
10 | dihval3.o | . . 3 β’ π = (π β π β¦ ( I βΎ π΅)) | |
11 | 1, 2, 3, 8, 9, 10, 5 | dibopelval3 40323 | . 2 β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (β¨πΉ, πβ© β (((DIsoBβπΎ)βπ)βπ) β ((πΉ β π β§ (π βπΉ) β€ π) β§ π = π))) |
12 | 7, 11 | bitrd 278 | 1 β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (β¨πΉ, πβ© β (πΌβπ) β ((πΉ β π β§ (π βπΉ) β€ π) β§ π = π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 β¨cop 4635 class class class wbr 5149 β¦ cmpt 5232 I cid 5574 βΎ cres 5679 βcfv 6544 Basecbs 17149 lecple 17209 LHypclh 39159 LTrncltrn 39276 trLctrl 39333 DIsoBcdib 40313 DIsoHcdih 40403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-disoa 40204 df-dib 40314 df-dih 40404 |
This theorem is referenced by: dihmeetlem1N 40465 dihglblem5apreN 40466 dihmeetlem4preN 40481 |
Copyright terms: Public domain | W3C validator |