Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihopelvalbN | Structured version Visualization version GIF version |
Description: Ordered pair member of the partial isomorphism H for argument under 𝑊. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dihval3.b | ⊢ 𝐵 = (Base‘𝐾) |
dihval3.l | ⊢ ≤ = (le‘𝐾) |
dihval3.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihval3.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dihval3.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
dihval3.o | ⊢ 𝑂 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
dihval3.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dihopelvalbN | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋) ∧ 𝑆 = 𝑂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihval3.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | dihval3.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | dihval3.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dihval3.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
5 | eqid 2738 | . . . 4 ⊢ ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊) | |
6 | 1, 2, 3, 4, 5 | dihvalb 38863 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (((DIsoB‘𝐾)‘𝑊)‘𝑋)) |
7 | 6 | eleq2d 2818 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ 〈𝐹, 𝑆〉 ∈ (((DIsoB‘𝐾)‘𝑊)‘𝑋))) |
8 | dihval3.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
9 | dihval3.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
10 | dihval3.o | . . 3 ⊢ 𝑂 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
11 | 1, 2, 3, 8, 9, 10, 5 | dibopelval3 38774 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (((DIsoB‘𝐾)‘𝑊)‘𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋) ∧ 𝑆 = 𝑂))) |
12 | 7, 11 | bitrd 282 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋) ∧ 𝑆 = 𝑂))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2113 〈cop 4519 class class class wbr 5027 ↦ cmpt 5107 I cid 5424 ↾ cres 5521 ‘cfv 6333 Basecbs 16579 lecple 16668 LHypclh 37610 LTrncltrn 37727 trLctrl 37784 DIsoBcdib 38764 DIsoHcdih 38854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-id 5425 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-disoa 38655 df-dib 38765 df-dih 38855 |
This theorem is referenced by: dihmeetlem1N 38916 dihglblem5apreN 38917 dihmeetlem4preN 38932 |
Copyright terms: Public domain | W3C validator |