Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πΎ β HL β§ π β π»)) |
2 | | eqid 2731 |
. . . . 5
β’
(BaseβπΎ) =
(BaseβπΎ) |
3 | | dihvalcqat.a |
. . . . 5
β’ π΄ = (AtomsβπΎ) |
4 | 2, 3 | atbase 38463 |
. . . 4
β’ (π β π΄ β π β (BaseβπΎ)) |
5 | 4 | ad2antrl 725 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β π β (BaseβπΎ)) |
6 | | simprr 770 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β Β¬ π β€ π) |
7 | | simpr 484 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π β π΄ β§ Β¬ π β€ π)) |
8 | | dihvalcqat.l |
. . . . . 6
β’ β€ =
(leβπΎ) |
9 | | eqid 2731 |
. . . . . 6
β’
(meetβπΎ) =
(meetβπΎ) |
10 | | eqid 2731 |
. . . . . 6
β’
(0.βπΎ) =
(0.βπΎ) |
11 | | dihvalcqat.h |
. . . . . 6
β’ π» = (LHypβπΎ) |
12 | 8, 9, 10, 3, 11 | lhpmat 39205 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π(meetβπΎ)π) = (0.βπΎ)) |
13 | 12 | oveq2d 7428 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π(joinβπΎ)(π(meetβπΎ)π)) = (π(joinβπΎ)(0.βπΎ))) |
14 | | hlol 38535 |
. . . . . 6
β’ (πΎ β HL β πΎ β OL) |
15 | 14 | ad2antrr 723 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β πΎ β OL) |
16 | | eqid 2731 |
. . . . . 6
β’
(joinβπΎ) =
(joinβπΎ) |
17 | 2, 16, 10 | olj01 38399 |
. . . . 5
β’ ((πΎ β OL β§ π β (BaseβπΎ)) β (π(joinβπΎ)(0.βπΎ)) = π) |
18 | 15, 5, 17 | syl2anc 583 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π(joinβπΎ)(0.βπΎ)) = π) |
19 | 13, 18 | eqtrd 2771 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π(joinβπΎ)(π(meetβπΎ)π)) = π) |
20 | | dihvalcqat.i |
. . . 4
β’ πΌ = ((DIsoHβπΎ)βπ) |
21 | | eqid 2731 |
. . . 4
β’
((DIsoBβπΎ)βπ) = ((DIsoBβπΎ)βπ) |
22 | | dihvalcqat.j |
. . . 4
β’ π½ = ((DIsoCβπΎ)βπ) |
23 | | eqid 2731 |
. . . 4
β’
((DVecHβπΎ)βπ) = ((DVecHβπΎ)βπ) |
24 | | eqid 2731 |
. . . 4
β’
(LSSumβ((DVecHβπΎ)βπ)) = (LSSumβ((DVecHβπΎ)βπ)) |
25 | 2, 8, 16, 9, 3, 11, 20, 21, 22, 23, 24 | dihvalcq 40411 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ (π β (BaseβπΎ) β§ Β¬ π β€ π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π(joinβπΎ)(π(meetβπΎ)π)) = π)) β (πΌβπ) = ((π½βπ)(LSSumβ((DVecHβπΎ)βπ))(((DIsoBβπΎ)βπ)β(π(meetβπΎ)π)))) |
26 | 1, 5, 6, 7, 19, 25 | syl122anc 1378 |
. 2
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πΌβπ) = ((π½βπ)(LSSumβ((DVecHβπΎ)βπ))(((DIsoBβπΎ)βπ)β(π(meetβπΎ)π)))) |
27 | 12 | fveq2d 6895 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (((DIsoBβπΎ)βπ)β(π(meetβπΎ)π)) = (((DIsoBβπΎ)βπ)β(0.βπΎ))) |
28 | | eqid 2731 |
. . . . . . 7
β’
(0gβ((DVecHβπΎ)βπ)) =
(0gβ((DVecHβπΎ)βπ)) |
29 | 10, 11, 21, 23, 28 | dib0 40339 |
. . . . . 6
β’ ((πΎ β HL β§ π β π») β (((DIsoBβπΎ)βπ)β(0.βπΎ)) =
{(0gβ((DVecHβπΎ)βπ))}) |
30 | 29 | adantr 480 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (((DIsoBβπΎ)βπ)β(0.βπΎ)) =
{(0gβ((DVecHβπΎ)βπ))}) |
31 | 27, 30 | eqtrd 2771 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (((DIsoBβπΎ)βπ)β(π(meetβπΎ)π)) =
{(0gβ((DVecHβπΎ)βπ))}) |
32 | 31 | oveq2d 7428 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β ((π½βπ)(LSSumβ((DVecHβπΎ)βπ))(((DIsoBβπΎ)βπ)β(π(meetβπΎ)π))) = ((π½βπ)(LSSumβ((DVecHβπΎ)βπ)){(0gβ((DVecHβπΎ)βπ))})) |
33 | 11, 23, 1 | dvhlmod 40285 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β ((DVecHβπΎ)βπ) β LMod) |
34 | | eqid 2731 |
. . . . . 6
β’
(LSubSpβ((DVecHβπΎ)βπ)) = (LSubSpβ((DVecHβπΎ)βπ)) |
35 | 8, 3, 11, 23, 22, 34 | diclss 40368 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π½βπ) β (LSubSpβ((DVecHβπΎ)βπ))) |
36 | 34 | lsssubg 20713 |
. . . . 5
β’
((((DVecHβπΎ)βπ) β LMod β§ (π½βπ) β (LSubSpβ((DVecHβπΎ)βπ))) β (π½βπ) β (SubGrpβ((DVecHβπΎ)βπ))) |
37 | 33, 35, 36 | syl2anc 583 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π½βπ) β (SubGrpβ((DVecHβπΎ)βπ))) |
38 | 28, 24 | lsm01 19581 |
. . . 4
β’ ((π½βπ) β (SubGrpβ((DVecHβπΎ)βπ)) β ((π½βπ)(LSSumβ((DVecHβπΎ)βπ)){(0gβ((DVecHβπΎ)βπ))}) = (π½βπ)) |
39 | 37, 38 | syl 17 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β ((π½βπ)(LSSumβ((DVecHβπΎ)βπ)){(0gβ((DVecHβπΎ)βπ))}) = (π½βπ)) |
40 | 32, 39 | eqtrd 2771 |
. 2
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β ((π½βπ)(LSSumβ((DVecHβπΎ)βπ))(((DIsoBβπΎ)βπ)β(π(meetβπΎ)π))) = (π½βπ)) |
41 | 26, 40 | eqtrd 2771 |
1
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πΌβπ) = (π½βπ)) |