| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dihvalb | Structured version Visualization version GIF version | ||
| Description: Value of isomorphism H for a lattice 𝐾 when 𝑋 ≤ 𝑊. (Contributed by NM, 4-Mar-2014.) |
| Ref | Expression |
|---|---|
| dihvalb.b | ⊢ 𝐵 = (Base‘𝐾) |
| dihvalb.l | ⊢ ≤ = (le‘𝐾) |
| dihvalb.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dihvalb.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| dihvalb.d | ⊢ 𝐷 = ((DIsoB‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dihvalb | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (𝐷‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dihvalb.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | dihvalb.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | eqid 2734 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 4 | eqid 2734 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 5 | eqid 2734 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 6 | dihvalb.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | dihvalb.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 8 | dihvalb.d | . . . 4 ⊢ 𝐷 = ((DIsoB‘𝐾)‘𝑊) | |
| 9 | eqid 2734 | . . . 4 ⊢ ((DIsoC‘𝐾)‘𝑊) = ((DIsoC‘𝐾)‘𝑊) | |
| 10 | eqid 2734 | . . . 4 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
| 11 | eqid 2734 | . . . 4 ⊢ (LSubSp‘((DVecH‘𝐾)‘𝑊)) = (LSubSp‘((DVecH‘𝐾)‘𝑊)) | |
| 12 | eqid 2734 | . . . 4 ⊢ (LSSum‘((DVecH‘𝐾)‘𝑊)) = (LSSum‘((DVecH‘𝐾)‘𝑊)) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | dihval 41193 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) = if(𝑋 ≤ 𝑊, (𝐷‘𝑋), (℩𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊))∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(𝐷‘(𝑋(meet‘𝐾)𝑊))))))) |
| 14 | iftrue 4511 | . . 3 ⊢ (𝑋 ≤ 𝑊 → if(𝑋 ≤ 𝑊, (𝐷‘𝑋), (℩𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊))∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(𝐷‘(𝑋(meet‘𝐾)𝑊)))))) = (𝐷‘𝑋)) | |
| 15 | 13, 14 | sylan9eq 2789 | . 2 ⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑋 ≤ 𝑊) → (𝐼‘𝑋) = (𝐷‘𝑋)) |
| 16 | 15 | anasss 466 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (𝐷‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ifcif 4505 class class class wbr 5123 ‘cfv 6541 ℩crio 7369 (class class class)co 7413 Basecbs 17229 lecple 17280 joincjn 18327 meetcmee 18328 LSSumclsm 19620 LSubSpclss 20897 Atomscatm 39223 LHypclh 39945 DVecHcdvh 41039 DIsoBcdib 41099 DIsoCcdic 41133 DIsoHcdih 41189 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-dih 41190 |
| This theorem is referenced by: dihopelvalbN 41199 dih1dimb 41201 dih2dimb 41205 dih2dimbALTN 41206 dihvalcq2 41208 dihlss 41211 dihord6apre 41217 dihord3 41218 dihord5b 41220 dihord5apre 41223 dih0 41241 dihwN 41250 dihglblem3N 41256 dihmeetlem2N 41260 dih1dimatlem 41290 dihjatcclem4 41382 |
| Copyright terms: Public domain | W3C validator |