Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihvalb | Structured version Visualization version GIF version |
Description: Value of isomorphism H for a lattice 𝐾 when 𝑋 ≤ 𝑊. (Contributed by NM, 4-Mar-2014.) |
Ref | Expression |
---|---|
dihvalb.b | ⊢ 𝐵 = (Base‘𝐾) |
dihvalb.l | ⊢ ≤ = (le‘𝐾) |
dihvalb.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihvalb.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dihvalb.d | ⊢ 𝐷 = ((DIsoB‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dihvalb | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (𝐷‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihvalb.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | dihvalb.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | eqid 2738 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
4 | eqid 2738 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
5 | eqid 2738 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
6 | dihvalb.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | dihvalb.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
8 | dihvalb.d | . . . 4 ⊢ 𝐷 = ((DIsoB‘𝐾)‘𝑊) | |
9 | eqid 2738 | . . . 4 ⊢ ((DIsoC‘𝐾)‘𝑊) = ((DIsoC‘𝐾)‘𝑊) | |
10 | eqid 2738 | . . . 4 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
11 | eqid 2738 | . . . 4 ⊢ (LSubSp‘((DVecH‘𝐾)‘𝑊)) = (LSubSp‘((DVecH‘𝐾)‘𝑊)) | |
12 | eqid 2738 | . . . 4 ⊢ (LSSum‘((DVecH‘𝐾)‘𝑊)) = (LSSum‘((DVecH‘𝐾)‘𝑊)) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | dihval 39246 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) = if(𝑋 ≤ 𝑊, (𝐷‘𝑋), (℩𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊))∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(𝐷‘(𝑋(meet‘𝐾)𝑊))))))) |
14 | iftrue 4465 | . . 3 ⊢ (𝑋 ≤ 𝑊 → if(𝑋 ≤ 𝑊, (𝐷‘𝑋), (℩𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊))∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(𝐷‘(𝑋(meet‘𝐾)𝑊)))))) = (𝐷‘𝑋)) | |
15 | 13, 14 | sylan9eq 2798 | . 2 ⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑋 ≤ 𝑊) → (𝐼‘𝑋) = (𝐷‘𝑋)) |
16 | 15 | anasss 467 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (𝐷‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ifcif 4459 class class class wbr 5074 ‘cfv 6433 ℩crio 7231 (class class class)co 7275 Basecbs 16912 lecple 16969 joincjn 18029 meetcmee 18030 LSSumclsm 19239 LSubSpclss 20193 Atomscatm 37277 LHypclh 37998 DVecHcdvh 39092 DIsoBcdib 39152 DIsoCcdic 39186 DIsoHcdih 39242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-dih 39243 |
This theorem is referenced by: dihopelvalbN 39252 dih1dimb 39254 dih2dimb 39258 dih2dimbALTN 39259 dihvalcq2 39261 dihlss 39264 dihord6apre 39270 dihord3 39271 dihord5b 39273 dihord5apre 39276 dih0 39294 dihwN 39303 dihglblem3N 39309 dihmeetlem2N 39313 dih1dimatlem 39343 dihjatcclem4 39435 |
Copyright terms: Public domain | W3C validator |