| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dihvalb | Structured version Visualization version GIF version | ||
| Description: Value of isomorphism H for a lattice 𝐾 when 𝑋 ≤ 𝑊. (Contributed by NM, 4-Mar-2014.) |
| Ref | Expression |
|---|---|
| dihvalb.b | ⊢ 𝐵 = (Base‘𝐾) |
| dihvalb.l | ⊢ ≤ = (le‘𝐾) |
| dihvalb.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dihvalb.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| dihvalb.d | ⊢ 𝐷 = ((DIsoB‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dihvalb | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (𝐷‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dihvalb.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | dihvalb.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | eqid 2729 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 4 | eqid 2729 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 5 | eqid 2729 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 6 | dihvalb.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | dihvalb.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 8 | dihvalb.d | . . . 4 ⊢ 𝐷 = ((DIsoB‘𝐾)‘𝑊) | |
| 9 | eqid 2729 | . . . 4 ⊢ ((DIsoC‘𝐾)‘𝑊) = ((DIsoC‘𝐾)‘𝑊) | |
| 10 | eqid 2729 | . . . 4 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
| 11 | eqid 2729 | . . . 4 ⊢ (LSubSp‘((DVecH‘𝐾)‘𝑊)) = (LSubSp‘((DVecH‘𝐾)‘𝑊)) | |
| 12 | eqid 2729 | . . . 4 ⊢ (LSSum‘((DVecH‘𝐾)‘𝑊)) = (LSSum‘((DVecH‘𝐾)‘𝑊)) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | dihval 41219 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) = if(𝑋 ≤ 𝑊, (𝐷‘𝑋), (℩𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊))∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(𝐷‘(𝑋(meet‘𝐾)𝑊))))))) |
| 14 | iftrue 4490 | . . 3 ⊢ (𝑋 ≤ 𝑊 → if(𝑋 ≤ 𝑊, (𝐷‘𝑋), (℩𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊))∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(𝐷‘(𝑋(meet‘𝐾)𝑊)))))) = (𝐷‘𝑋)) | |
| 15 | 13, 14 | sylan9eq 2784 | . 2 ⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑋 ≤ 𝑊) → (𝐼‘𝑋) = (𝐷‘𝑋)) |
| 16 | 15 | anasss 466 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (𝐷‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ifcif 4484 class class class wbr 5102 ‘cfv 6499 ℩crio 7325 (class class class)co 7369 Basecbs 17155 lecple 17203 joincjn 18252 meetcmee 18253 LSSumclsm 19548 LSubSpclss 20869 Atomscatm 39249 LHypclh 39971 DVecHcdvh 41065 DIsoBcdib 41125 DIsoCcdic 41159 DIsoHcdih 41215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-dih 41216 |
| This theorem is referenced by: dihopelvalbN 41225 dih1dimb 41227 dih2dimb 41231 dih2dimbALTN 41232 dihvalcq2 41234 dihlss 41237 dihord6apre 41243 dihord3 41244 dihord5b 41246 dihord5apre 41249 dih0 41267 dihwN 41276 dihglblem3N 41282 dihmeetlem2N 41286 dih1dimatlem 41316 dihjatcclem4 41408 |
| Copyright terms: Public domain | W3C validator |