| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dihvalb | Structured version Visualization version GIF version | ||
| Description: Value of isomorphism H for a lattice 𝐾 when 𝑋 ≤ 𝑊. (Contributed by NM, 4-Mar-2014.) |
| Ref | Expression |
|---|---|
| dihvalb.b | ⊢ 𝐵 = (Base‘𝐾) |
| dihvalb.l | ⊢ ≤ = (le‘𝐾) |
| dihvalb.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dihvalb.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| dihvalb.d | ⊢ 𝐷 = ((DIsoB‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dihvalb | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (𝐷‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dihvalb.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | dihvalb.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | eqid 2731 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 4 | eqid 2731 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 5 | eqid 2731 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 6 | dihvalb.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | dihvalb.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 8 | dihvalb.d | . . . 4 ⊢ 𝐷 = ((DIsoB‘𝐾)‘𝑊) | |
| 9 | eqid 2731 | . . . 4 ⊢ ((DIsoC‘𝐾)‘𝑊) = ((DIsoC‘𝐾)‘𝑊) | |
| 10 | eqid 2731 | . . . 4 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
| 11 | eqid 2731 | . . . 4 ⊢ (LSubSp‘((DVecH‘𝐾)‘𝑊)) = (LSubSp‘((DVecH‘𝐾)‘𝑊)) | |
| 12 | eqid 2731 | . . . 4 ⊢ (LSSum‘((DVecH‘𝐾)‘𝑊)) = (LSSum‘((DVecH‘𝐾)‘𝑊)) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | dihval 41341 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) = if(𝑋 ≤ 𝑊, (𝐷‘𝑋), (℩𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊))∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(𝐷‘(𝑋(meet‘𝐾)𝑊))))))) |
| 14 | iftrue 4478 | . . 3 ⊢ (𝑋 ≤ 𝑊 → if(𝑋 ≤ 𝑊, (𝐷‘𝑋), (℩𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊))∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(𝐷‘(𝑋(meet‘𝐾)𝑊)))))) = (𝐷‘𝑋)) | |
| 15 | 13, 14 | sylan9eq 2786 | . 2 ⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑋 ≤ 𝑊) → (𝐼‘𝑋) = (𝐷‘𝑋)) |
| 16 | 15 | anasss 466 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (𝐷‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ifcif 4472 class class class wbr 5089 ‘cfv 6481 ℩crio 7302 (class class class)co 7346 Basecbs 17120 lecple 17168 joincjn 18217 meetcmee 18218 LSSumclsm 19546 LSubSpclss 20864 Atomscatm 39372 LHypclh 40093 DVecHcdvh 41187 DIsoBcdib 41247 DIsoCcdic 41281 DIsoHcdih 41337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-dih 41338 |
| This theorem is referenced by: dihopelvalbN 41347 dih1dimb 41349 dih2dimb 41353 dih2dimbALTN 41354 dihvalcq2 41356 dihlss 41359 dihord6apre 41365 dihord3 41366 dihord5b 41368 dihord5apre 41371 dih0 41389 dihwN 41398 dihglblem3N 41404 dihmeetlem2N 41408 dih1dimatlem 41438 dihjatcclem4 41530 |
| Copyright terms: Public domain | W3C validator |