Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihvalb Structured version   Visualization version   GIF version

Theorem dihvalb 39251
Description: Value of isomorphism H for a lattice 𝐾 when 𝑋 𝑊. (Contributed by NM, 4-Mar-2014.)
Hypotheses
Ref Expression
dihvalb.b 𝐵 = (Base‘𝐾)
dihvalb.l = (le‘𝐾)
dihvalb.h 𝐻 = (LHyp‘𝐾)
dihvalb.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihvalb.d 𝐷 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dihvalb (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = (𝐷𝑋))

Proof of Theorem dihvalb
Dummy variables 𝑢 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihvalb.b . . . 4 𝐵 = (Base‘𝐾)
2 dihvalb.l . . . 4 = (le‘𝐾)
3 eqid 2738 . . . 4 (join‘𝐾) = (join‘𝐾)
4 eqid 2738 . . . 4 (meet‘𝐾) = (meet‘𝐾)
5 eqid 2738 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
6 dihvalb.h . . . 4 𝐻 = (LHyp‘𝐾)
7 dihvalb.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
8 dihvalb.d . . . 4 𝐷 = ((DIsoB‘𝐾)‘𝑊)
9 eqid 2738 . . . 4 ((DIsoC‘𝐾)‘𝑊) = ((DIsoC‘𝐾)‘𝑊)
10 eqid 2738 . . . 4 ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊)
11 eqid 2738 . . . 4 (LSubSp‘((DVecH‘𝐾)‘𝑊)) = (LSubSp‘((DVecH‘𝐾)‘𝑊))
12 eqid 2738 . . . 4 (LSSum‘((DVecH‘𝐾)‘𝑊)) = (LSSum‘((DVecH‘𝐾)‘𝑊))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dihval 39246 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝑋𝐵) → (𝐼𝑋) = if(𝑋 𝑊, (𝐷𝑋), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊))∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(𝐷‘(𝑋(meet‘𝐾)𝑊)))))))
14 iftrue 4465 . . 3 (𝑋 𝑊 → if(𝑋 𝑊, (𝐷𝑋), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊))∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(𝐷‘(𝑋(meet‘𝐾)𝑊)))))) = (𝐷𝑋))
1513, 14sylan9eq 2798 . 2 ((((𝐾𝑉𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑋 𝑊) → (𝐼𝑋) = (𝐷𝑋))
1615anasss 467 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = (𝐷𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  ifcif 4459   class class class wbr 5074  cfv 6433  crio 7231  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  meetcmee 18030  LSSumclsm 19239  LSubSpclss 20193  Atomscatm 37277  LHypclh 37998  DVecHcdvh 39092  DIsoBcdib 39152  DIsoCcdic 39186  DIsoHcdih 39242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-dih 39243
This theorem is referenced by:  dihopelvalbN  39252  dih1dimb  39254  dih2dimb  39258  dih2dimbALTN  39259  dihvalcq2  39261  dihlss  39264  dihord6apre  39270  dihord3  39271  dihord5b  39273  dihord5apre  39276  dih0  39294  dihwN  39303  dihglblem3N  39309  dihmeetlem2N  39313  dih1dimatlem  39343  dihjatcclem4  39435
  Copyright terms: Public domain W3C validator