Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihvalb | Structured version Visualization version GIF version |
Description: Value of isomorphism H for a lattice 𝐾 when 𝑋 ≤ 𝑊. (Contributed by NM, 4-Mar-2014.) |
Ref | Expression |
---|---|
dihvalb.b | ⊢ 𝐵 = (Base‘𝐾) |
dihvalb.l | ⊢ ≤ = (le‘𝐾) |
dihvalb.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihvalb.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dihvalb.d | ⊢ 𝐷 = ((DIsoB‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dihvalb | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (𝐷‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihvalb.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | dihvalb.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | eqid 2738 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
4 | eqid 2738 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
5 | eqid 2738 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
6 | dihvalb.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | dihvalb.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
8 | dihvalb.d | . . . 4 ⊢ 𝐷 = ((DIsoB‘𝐾)‘𝑊) | |
9 | eqid 2738 | . . . 4 ⊢ ((DIsoC‘𝐾)‘𝑊) = ((DIsoC‘𝐾)‘𝑊) | |
10 | eqid 2738 | . . . 4 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
11 | eqid 2738 | . . . 4 ⊢ (LSubSp‘((DVecH‘𝐾)‘𝑊)) = (LSubSp‘((DVecH‘𝐾)‘𝑊)) | |
12 | eqid 2738 | . . . 4 ⊢ (LSSum‘((DVecH‘𝐾)‘𝑊)) = (LSSum‘((DVecH‘𝐾)‘𝑊)) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | dihval 39173 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) = if(𝑋 ≤ 𝑊, (𝐷‘𝑋), (℩𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊))∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(𝐷‘(𝑋(meet‘𝐾)𝑊))))))) |
14 | iftrue 4462 | . . 3 ⊢ (𝑋 ≤ 𝑊 → if(𝑋 ≤ 𝑊, (𝐷‘𝑋), (℩𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊))∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞 ≤ 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(𝐷‘(𝑋(meet‘𝐾)𝑊)))))) = (𝐷‘𝑋)) | |
15 | 13, 14 | sylan9eq 2799 | . 2 ⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑋 ≤ 𝑊) → (𝐼‘𝑋) = (𝐷‘𝑋)) |
16 | 15 | anasss 466 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (𝐷‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ifcif 4456 class class class wbr 5070 ‘cfv 6418 ℩crio 7211 (class class class)co 7255 Basecbs 16840 lecple 16895 joincjn 17944 meetcmee 17945 LSSumclsm 19154 LSubSpclss 20108 Atomscatm 37204 LHypclh 37925 DVecHcdvh 39019 DIsoBcdib 39079 DIsoCcdic 39113 DIsoHcdih 39169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-dih 39170 |
This theorem is referenced by: dihopelvalbN 39179 dih1dimb 39181 dih2dimb 39185 dih2dimbALTN 39186 dihvalcq2 39188 dihlss 39191 dihord6apre 39197 dihord3 39198 dihord5b 39200 dihord5apre 39203 dih0 39221 dihwN 39230 dihglblem3N 39236 dihmeetlem2N 39240 dih1dimatlem 39270 dihjatcclem4 39362 |
Copyright terms: Public domain | W3C validator |