Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihvalb Structured version   Visualization version   GIF version

Theorem dihvalb 39513
Description: Value of isomorphism H for a lattice 𝐾 when 𝑋 𝑊. (Contributed by NM, 4-Mar-2014.)
Hypotheses
Ref Expression
dihvalb.b 𝐵 = (Base‘𝐾)
dihvalb.l = (le‘𝐾)
dihvalb.h 𝐻 = (LHyp‘𝐾)
dihvalb.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihvalb.d 𝐷 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dihvalb (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = (𝐷𝑋))

Proof of Theorem dihvalb
Dummy variables 𝑢 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihvalb.b . . . 4 𝐵 = (Base‘𝐾)
2 dihvalb.l . . . 4 = (le‘𝐾)
3 eqid 2736 . . . 4 (join‘𝐾) = (join‘𝐾)
4 eqid 2736 . . . 4 (meet‘𝐾) = (meet‘𝐾)
5 eqid 2736 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
6 dihvalb.h . . . 4 𝐻 = (LHyp‘𝐾)
7 dihvalb.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
8 dihvalb.d . . . 4 𝐷 = ((DIsoB‘𝐾)‘𝑊)
9 eqid 2736 . . . 4 ((DIsoC‘𝐾)‘𝑊) = ((DIsoC‘𝐾)‘𝑊)
10 eqid 2736 . . . 4 ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊)
11 eqid 2736 . . . 4 (LSubSp‘((DVecH‘𝐾)‘𝑊)) = (LSubSp‘((DVecH‘𝐾)‘𝑊))
12 eqid 2736 . . . 4 (LSSum‘((DVecH‘𝐾)‘𝑊)) = (LSSum‘((DVecH‘𝐾)‘𝑊))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dihval 39508 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝑋𝐵) → (𝐼𝑋) = if(𝑋 𝑊, (𝐷𝑋), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊))∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(𝐷‘(𝑋(meet‘𝐾)𝑊)))))))
14 iftrue 4479 . . 3 (𝑋 𝑊 → if(𝑋 𝑊, (𝐷𝑋), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊))∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(𝐷‘(𝑋(meet‘𝐾)𝑊)))))) = (𝐷𝑋))
1513, 14sylan9eq 2796 . 2 ((((𝐾𝑉𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑋 𝑊) → (𝐼𝑋) = (𝐷𝑋))
1615anasss 467 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = (𝐷𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1540  wcel 2105  wral 3061  ifcif 4473   class class class wbr 5092  cfv 6479  crio 7292  (class class class)co 7337  Basecbs 17009  lecple 17066  joincjn 18126  meetcmee 18127  LSSumclsm 19335  LSubSpclss 20299  Atomscatm 37538  LHypclh 38260  DVecHcdvh 39354  DIsoBcdib 39414  DIsoCcdic 39448  DIsoHcdih 39504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-dih 39505
This theorem is referenced by:  dihopelvalbN  39514  dih1dimb  39516  dih2dimb  39520  dih2dimbALTN  39521  dihvalcq2  39523  dihlss  39526  dihord6apre  39532  dihord3  39533  dihord5b  39535  dihord5apre  39538  dih0  39556  dihwN  39565  dihglblem3N  39571  dihmeetlem2N  39575  dih1dimatlem  39605  dihjatcclem4  39697
  Copyright terms: Public domain W3C validator