![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihvalb | Structured version Visualization version GIF version |
Description: Value of isomorphism H for a lattice πΎ when π β€ π. (Contributed by NM, 4-Mar-2014.) |
Ref | Expression |
---|---|
dihvalb.b | β’ π΅ = (BaseβπΎ) |
dihvalb.l | β’ β€ = (leβπΎ) |
dihvalb.h | β’ π» = (LHypβπΎ) |
dihvalb.i | β’ πΌ = ((DIsoHβπΎ)βπ) |
dihvalb.d | β’ π· = ((DIsoBβπΎ)βπ) |
Ref | Expression |
---|---|
dihvalb | β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΌβπ) = (π·βπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihvalb.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | dihvalb.l | . . . 4 β’ β€ = (leβπΎ) | |
3 | eqid 2732 | . . . 4 β’ (joinβπΎ) = (joinβπΎ) | |
4 | eqid 2732 | . . . 4 β’ (meetβπΎ) = (meetβπΎ) | |
5 | eqid 2732 | . . . 4 β’ (AtomsβπΎ) = (AtomsβπΎ) | |
6 | dihvalb.h | . . . 4 β’ π» = (LHypβπΎ) | |
7 | dihvalb.i | . . . 4 β’ πΌ = ((DIsoHβπΎ)βπ) | |
8 | dihvalb.d | . . . 4 β’ π· = ((DIsoBβπΎ)βπ) | |
9 | eqid 2732 | . . . 4 β’ ((DIsoCβπΎ)βπ) = ((DIsoCβπΎ)βπ) | |
10 | eqid 2732 | . . . 4 β’ ((DVecHβπΎ)βπ) = ((DVecHβπΎ)βπ) | |
11 | eqid 2732 | . . . 4 β’ (LSubSpβ((DVecHβπΎ)βπ)) = (LSubSpβ((DVecHβπΎ)βπ)) | |
12 | eqid 2732 | . . . 4 β’ (LSSumβ((DVecHβπΎ)βπ)) = (LSSumβ((DVecHβπΎ)βπ)) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | dihval 40406 | . . 3 β’ (((πΎ β π β§ π β π») β§ π β π΅) β (πΌβπ) = if(π β€ π, (π·βπ), (β©π’ β (LSubSpβ((DVecHβπΎ)βπ))βπ β (AtomsβπΎ)((Β¬ π β€ π β§ (π(joinβπΎ)(π(meetβπΎ)π)) = π) β π’ = ((((DIsoCβπΎ)βπ)βπ)(LSSumβ((DVecHβπΎ)βπ))(π·β(π(meetβπΎ)π))))))) |
14 | iftrue 4534 | . . 3 β’ (π β€ π β if(π β€ π, (π·βπ), (β©π’ β (LSubSpβ((DVecHβπΎ)βπ))βπ β (AtomsβπΎ)((Β¬ π β€ π β§ (π(joinβπΎ)(π(meetβπΎ)π)) = π) β π’ = ((((DIsoCβπΎ)βπ)βπ)(LSSumβ((DVecHβπΎ)βπ))(π·β(π(meetβπΎ)π)))))) = (π·βπ)) | |
15 | 13, 14 | sylan9eq 2792 | . 2 β’ ((((πΎ β π β§ π β π») β§ π β π΅) β§ π β€ π) β (πΌβπ) = (π·βπ)) |
16 | 15 | anasss 467 | 1 β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΌβπ) = (π·βπ)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 ifcif 4528 class class class wbr 5148 βcfv 6543 β©crio 7366 (class class class)co 7411 Basecbs 17148 lecple 17208 joincjn 18268 meetcmee 18269 LSSumclsm 19543 LSubSpclss 20686 Atomscatm 38436 LHypclh 39158 DVecHcdvh 40252 DIsoBcdib 40312 DIsoCcdic 40346 DIsoHcdih 40402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-dih 40403 |
This theorem is referenced by: dihopelvalbN 40412 dih1dimb 40414 dih2dimb 40418 dih2dimbALTN 40419 dihvalcq2 40421 dihlss 40424 dihord6apre 40430 dihord3 40431 dihord5b 40433 dihord5apre 40436 dih0 40454 dihwN 40463 dihglblem3N 40469 dihmeetlem2N 40473 dih1dimatlem 40503 dihjatcclem4 40595 |
Copyright terms: Public domain | W3C validator |