Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qusghm | Structured version Visualization version GIF version |
Description: If 𝑌 is a normal subgroup of 𝐺, then the "natural map" from elements to their cosets is a group homomorphism from 𝐺 to 𝐺 / 𝑌. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 18-Sep-2015.) |
Ref | Expression |
---|---|
qusghm.x | ⊢ 𝑋 = (Base‘𝐺) |
qusghm.h | ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) |
qusghm.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) |
Ref | Expression |
---|---|
qusghm | ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusghm.x | . 2 ⊢ 𝑋 = (Base‘𝐺) | |
2 | eqid 2738 | . 2 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
3 | eqid 2738 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | eqid 2738 | . 2 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
5 | nsgsubg 18701 | . . 3 ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺)) | |
6 | subgrcl 18675 | . . 3 ⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp) |
8 | qusghm.h | . . 3 ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) | |
9 | 8 | qusgrp 18726 | . 2 ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp) |
10 | 8, 1, 2 | quseccl 18727 | . . 3 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → [𝑥](𝐺 ~QG 𝑌) ∈ (Base‘𝐻)) |
11 | qusghm.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) | |
12 | 10, 11 | fmptd 6970 | . 2 ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹:𝑋⟶(Base‘𝐻)) |
13 | 8, 1, 3, 4 | qusadd 18728 | . . . 4 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → ([𝑦](𝐺 ~QG 𝑌)(+g‘𝐻)[𝑧](𝐺 ~QG 𝑌)) = [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌)) |
14 | 13 | 3expb 1118 | . . 3 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ([𝑦](𝐺 ~QG 𝑌)(+g‘𝐻)[𝑧](𝐺 ~QG 𝑌)) = [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌)) |
15 | eceq1 8494 | . . . . . 6 ⊢ (𝑥 = 𝑦 → [𝑥](𝐺 ~QG 𝑌) = [𝑦](𝐺 ~QG 𝑌)) | |
16 | ovex 7288 | . . . . . . 7 ⊢ (𝐺 ~QG 𝑌) ∈ V | |
17 | ecexg 8460 | . . . . . . 7 ⊢ ((𝐺 ~QG 𝑌) ∈ V → [𝑥](𝐺 ~QG 𝑌) ∈ V) | |
18 | 16, 17 | ax-mp 5 | . . . . . 6 ⊢ [𝑥](𝐺 ~QG 𝑌) ∈ V |
19 | 15, 11, 18 | fvmpt3i 6862 | . . . . 5 ⊢ (𝑦 ∈ 𝑋 → (𝐹‘𝑦) = [𝑦](𝐺 ~QG 𝑌)) |
20 | 19 | ad2antrl 724 | . . . 4 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘𝑦) = [𝑦](𝐺 ~QG 𝑌)) |
21 | eceq1 8494 | . . . . . 6 ⊢ (𝑥 = 𝑧 → [𝑥](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌)) | |
22 | 21, 11, 18 | fvmpt3i 6862 | . . . . 5 ⊢ (𝑧 ∈ 𝑋 → (𝐹‘𝑧) = [𝑧](𝐺 ~QG 𝑌)) |
23 | 22 | ad2antll 725 | . . . 4 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘𝑧) = [𝑧](𝐺 ~QG 𝑌)) |
24 | 20, 23 | oveq12d 7273 | . . 3 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐹‘𝑦)(+g‘𝐻)(𝐹‘𝑧)) = ([𝑦](𝐺 ~QG 𝑌)(+g‘𝐻)[𝑧](𝐺 ~QG 𝑌))) |
25 | 1, 3 | grpcl 18500 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑦(+g‘𝐺)𝑧) ∈ 𝑋) |
26 | 25 | 3expb 1118 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦(+g‘𝐺)𝑧) ∈ 𝑋) |
27 | 7, 26 | sylan 579 | . . . 4 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦(+g‘𝐺)𝑧) ∈ 𝑋) |
28 | eceq1 8494 | . . . . 5 ⊢ (𝑥 = (𝑦(+g‘𝐺)𝑧) → [𝑥](𝐺 ~QG 𝑌) = [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌)) | |
29 | 28, 11, 18 | fvmpt3i 6862 | . . . 4 ⊢ ((𝑦(+g‘𝐺)𝑧) ∈ 𝑋 → (𝐹‘(𝑦(+g‘𝐺)𝑧)) = [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌)) |
30 | 27, 29 | syl 17 | . . 3 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘(𝑦(+g‘𝐺)𝑧)) = [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌)) |
31 | 14, 24, 30 | 3eqtr4rd 2789 | . 2 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘(𝑦(+g‘𝐺)𝑧)) = ((𝐹‘𝑦)(+g‘𝐻)(𝐹‘𝑧))) |
32 | 1, 2, 3, 4, 7, 9, 12, 31 | isghmd 18758 | 1 ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 [cec 8454 Basecbs 16840 +gcplusg 16888 /s cqus 17133 Grpcgrp 18492 SubGrpcsubg 18664 NrmSGrpcnsg 18665 ~QG cqg 18666 GrpHom cghm 18746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-ec 8458 df-qs 8462 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-0g 17069 df-imas 17136 df-qus 17137 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-subg 18667 df-nsg 18668 df-eqg 18669 df-ghm 18747 |
This theorem is referenced by: qusrhm 20421 quslmhm 31457 nsgmgc 31499 |
Copyright terms: Public domain | W3C validator |