MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusghm Structured version   Visualization version   GIF version

Theorem qusghm 19167
Description: If 𝑌 is a normal subgroup of 𝐺, then the "natural map" from elements to their cosets is a group homomorphism from 𝐺 to 𝐺 / 𝑌. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusghm.x 𝑋 = (Base‘𝐺)
qusghm.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))
qusghm.f 𝐹 = (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌))
Assertion
Ref Expression
qusghm (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐻   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem qusghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusghm.x . 2 𝑋 = (Base‘𝐺)
2 eqid 2731 . 2 (Base‘𝐻) = (Base‘𝐻)
3 eqid 2731 . 2 (+g𝐺) = (+g𝐺)
4 eqid 2731 . 2 (+g𝐻) = (+g𝐻)
5 nsgsubg 19070 . . 3 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺))
6 subgrcl 19044 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
75, 6syl 17 . 2 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
8 qusghm.h . . 3 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))
98qusgrp 19098 . 2 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)
108, 1, 2quseccl 19099 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝑋) → [𝑥](𝐺 ~QG 𝑌) ∈ (Base‘𝐻))
11 qusghm.f . . 3 𝐹 = (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌))
1210, 11fmptd 7047 . 2 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹:𝑋⟶(Base‘𝐻))
138, 1, 3, 4qusadd 19100 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑦𝑋𝑧𝑋) → ([𝑦](𝐺 ~QG 𝑌)(+g𝐻)[𝑧](𝐺 ~QG 𝑌)) = [(𝑦(+g𝐺)𝑧)](𝐺 ~QG 𝑌))
14133expb 1120 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → ([𝑦](𝐺 ~QG 𝑌)(+g𝐻)[𝑧](𝐺 ~QG 𝑌)) = [(𝑦(+g𝐺)𝑧)](𝐺 ~QG 𝑌))
15 eceq1 8661 . . . . . 6 (𝑥 = 𝑦 → [𝑥](𝐺 ~QG 𝑌) = [𝑦](𝐺 ~QG 𝑌))
16 ovex 7379 . . . . . . 7 (𝐺 ~QG 𝑌) ∈ V
17 ecexg 8626 . . . . . . 7 ((𝐺 ~QG 𝑌) ∈ V → [𝑥](𝐺 ~QG 𝑌) ∈ V)
1816, 17ax-mp 5 . . . . . 6 [𝑥](𝐺 ~QG 𝑌) ∈ V
1915, 11, 18fvmpt3i 6934 . . . . 5 (𝑦𝑋 → (𝐹𝑦) = [𝑦](𝐺 ~QG 𝑌))
2019ad2antrl 728 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑦) = [𝑦](𝐺 ~QG 𝑌))
21 eceq1 8661 . . . . . 6 (𝑥 = 𝑧 → [𝑥](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌))
2221, 11, 18fvmpt3i 6934 . . . . 5 (𝑧𝑋 → (𝐹𝑧) = [𝑧](𝐺 ~QG 𝑌))
2322ad2antll 729 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑧) = [𝑧](𝐺 ~QG 𝑌))
2420, 23oveq12d 7364 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐹𝑦)(+g𝐻)(𝐹𝑧)) = ([𝑦](𝐺 ~QG 𝑌)(+g𝐻)[𝑧](𝐺 ~QG 𝑌)))
251, 3grpcl 18854 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦𝑋𝑧𝑋) → (𝑦(+g𝐺)𝑧) ∈ 𝑋)
26253expb 1120 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(+g𝐺)𝑧) ∈ 𝑋)
277, 26sylan 580 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(+g𝐺)𝑧) ∈ 𝑋)
28 eceq1 8661 . . . . 5 (𝑥 = (𝑦(+g𝐺)𝑧) → [𝑥](𝐺 ~QG 𝑌) = [(𝑦(+g𝐺)𝑧)](𝐺 ~QG 𝑌))
2928, 11, 18fvmpt3i 6934 . . . 4 ((𝑦(+g𝐺)𝑧) ∈ 𝑋 → (𝐹‘(𝑦(+g𝐺)𝑧)) = [(𝑦(+g𝐺)𝑧)](𝐺 ~QG 𝑌))
3027, 29syl 17 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(+g𝐺)𝑧)) = [(𝑦(+g𝐺)𝑧)](𝐺 ~QG 𝑌))
3114, 24, 303eqtr4rd 2777 . 2 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(+g𝐺)𝑧)) = ((𝐹𝑦)(+g𝐻)(𝐹𝑧)))
321, 2, 3, 4, 7, 9, 12, 31isghmd 19137 1 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cmpt 5170  cfv 6481  (class class class)co 7346  [cec 8620  Basecbs 17120  +gcplusg 17161   /s cqus 17409  Grpcgrp 18846  SubGrpcsubg 19033  NrmSGrpcnsg 19034   ~QG cqg 19035   GrpHom cghm 19124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-0g 17345  df-imas 17412  df-qus 17413  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-subg 19036  df-nsg 19037  df-eqg 19038  df-ghm 19125
This theorem is referenced by:  qusrhm  21213  quslmhm  33324  nsgmgc  33377
  Copyright terms: Public domain W3C validator