MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusghm Structured version   Visualization version   GIF version

Theorem qusghm 19178
Description: If 𝑌 is a normal subgroup of 𝐺, then the "natural map" from elements to their cosets is a group homomorphism from 𝐺 to 𝐺 / 𝑌. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusghm.x 𝑋 = (Base‘𝐺)
qusghm.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))
qusghm.f 𝐹 = (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌))
Assertion
Ref Expression
qusghm (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐻   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem qusghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusghm.x . 2 𝑋 = (Base‘𝐺)
2 eqid 2726 . 2 (Base‘𝐻) = (Base‘𝐻)
3 eqid 2726 . 2 (+g𝐺) = (+g𝐺)
4 eqid 2726 . 2 (+g𝐻) = (+g𝐻)
5 nsgsubg 19083 . . 3 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺))
6 subgrcl 19056 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
75, 6syl 17 . 2 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
8 qusghm.h . . 3 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))
98qusgrp 19110 . 2 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)
108, 1, 2quseccl 19111 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝑋) → [𝑥](𝐺 ~QG 𝑌) ∈ (Base‘𝐻))
11 qusghm.f . . 3 𝐹 = (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌))
1210, 11fmptd 7108 . 2 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹:𝑋⟶(Base‘𝐻))
138, 1, 3, 4qusadd 19112 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑦𝑋𝑧𝑋) → ([𝑦](𝐺 ~QG 𝑌)(+g𝐻)[𝑧](𝐺 ~QG 𝑌)) = [(𝑦(+g𝐺)𝑧)](𝐺 ~QG 𝑌))
14133expb 1117 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → ([𝑦](𝐺 ~QG 𝑌)(+g𝐻)[𝑧](𝐺 ~QG 𝑌)) = [(𝑦(+g𝐺)𝑧)](𝐺 ~QG 𝑌))
15 eceq1 8740 . . . . . 6 (𝑥 = 𝑦 → [𝑥](𝐺 ~QG 𝑌) = [𝑦](𝐺 ~QG 𝑌))
16 ovex 7437 . . . . . . 7 (𝐺 ~QG 𝑌) ∈ V
17 ecexg 8706 . . . . . . 7 ((𝐺 ~QG 𝑌) ∈ V → [𝑥](𝐺 ~QG 𝑌) ∈ V)
1816, 17ax-mp 5 . . . . . 6 [𝑥](𝐺 ~QG 𝑌) ∈ V
1915, 11, 18fvmpt3i 6996 . . . . 5 (𝑦𝑋 → (𝐹𝑦) = [𝑦](𝐺 ~QG 𝑌))
2019ad2antrl 725 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑦) = [𝑦](𝐺 ~QG 𝑌))
21 eceq1 8740 . . . . . 6 (𝑥 = 𝑧 → [𝑥](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌))
2221, 11, 18fvmpt3i 6996 . . . . 5 (𝑧𝑋 → (𝐹𝑧) = [𝑧](𝐺 ~QG 𝑌))
2322ad2antll 726 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑧) = [𝑧](𝐺 ~QG 𝑌))
2420, 23oveq12d 7422 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐹𝑦)(+g𝐻)(𝐹𝑧)) = ([𝑦](𝐺 ~QG 𝑌)(+g𝐻)[𝑧](𝐺 ~QG 𝑌)))
251, 3grpcl 18869 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦𝑋𝑧𝑋) → (𝑦(+g𝐺)𝑧) ∈ 𝑋)
26253expb 1117 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(+g𝐺)𝑧) ∈ 𝑋)
277, 26sylan 579 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(+g𝐺)𝑧) ∈ 𝑋)
28 eceq1 8740 . . . . 5 (𝑥 = (𝑦(+g𝐺)𝑧) → [𝑥](𝐺 ~QG 𝑌) = [(𝑦(+g𝐺)𝑧)](𝐺 ~QG 𝑌))
2928, 11, 18fvmpt3i 6996 . . . 4 ((𝑦(+g𝐺)𝑧) ∈ 𝑋 → (𝐹‘(𝑦(+g𝐺)𝑧)) = [(𝑦(+g𝐺)𝑧)](𝐺 ~QG 𝑌))
3027, 29syl 17 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(+g𝐺)𝑧)) = [(𝑦(+g𝐺)𝑧)](𝐺 ~QG 𝑌))
3114, 24, 303eqtr4rd 2777 . 2 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(+g𝐺)𝑧)) = ((𝐹𝑦)(+g𝐻)(𝐹𝑧)))
321, 2, 3, 4, 7, 9, 12, 31isghmd 19148 1 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  Vcvv 3468  cmpt 5224  cfv 6536  (class class class)co 7404  [cec 8700  Basecbs 17151  +gcplusg 17204   /s cqus 17458  Grpcgrp 18861  SubGrpcsubg 19045  NrmSGrpcnsg 19046   ~QG cqg 19047   GrpHom cghm 19136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-ec 8704  df-qs 8708  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-sup 9436  df-inf 9437  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-3 12277  df-4 12278  df-5 12279  df-6 12280  df-7 12281  df-8 12282  df-9 12283  df-n0 12474  df-z 12560  df-dec 12679  df-uz 12824  df-fz 13488  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-0g 17394  df-imas 17461  df-qus 17462  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-grp 18864  df-minusg 18865  df-subg 19048  df-nsg 19049  df-eqg 19050  df-ghm 19137
This theorem is referenced by:  qusrhm  21131  quslmhm  32977  nsgmgc  33029
  Copyright terms: Public domain W3C validator