| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qusghm | Structured version Visualization version GIF version | ||
| Description: If 𝑌 is a normal subgroup of 𝐺, then the "natural map" from elements to their cosets is a group homomorphism from 𝐺 to 𝐺 / 𝑌. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 18-Sep-2015.) |
| Ref | Expression |
|---|---|
| qusghm.x | ⊢ 𝑋 = (Base‘𝐺) |
| qusghm.h | ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) |
| qusghm.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) |
| Ref | Expression |
|---|---|
| qusghm | ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusghm.x | . 2 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | eqid 2731 | . 2 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 3 | eqid 2731 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | eqid 2731 | . 2 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
| 5 | nsgsubg 19070 | . . 3 ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺)) | |
| 6 | subgrcl 19044 | . . 3 ⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp) |
| 8 | qusghm.h | . . 3 ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) | |
| 9 | 8 | qusgrp 19098 | . 2 ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp) |
| 10 | 8, 1, 2 | quseccl 19099 | . . 3 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → [𝑥](𝐺 ~QG 𝑌) ∈ (Base‘𝐻)) |
| 11 | qusghm.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) | |
| 12 | 10, 11 | fmptd 7047 | . 2 ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹:𝑋⟶(Base‘𝐻)) |
| 13 | 8, 1, 3, 4 | qusadd 19100 | . . . 4 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → ([𝑦](𝐺 ~QG 𝑌)(+g‘𝐻)[𝑧](𝐺 ~QG 𝑌)) = [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌)) |
| 14 | 13 | 3expb 1120 | . . 3 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ([𝑦](𝐺 ~QG 𝑌)(+g‘𝐻)[𝑧](𝐺 ~QG 𝑌)) = [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌)) |
| 15 | eceq1 8661 | . . . . . 6 ⊢ (𝑥 = 𝑦 → [𝑥](𝐺 ~QG 𝑌) = [𝑦](𝐺 ~QG 𝑌)) | |
| 16 | ovex 7379 | . . . . . . 7 ⊢ (𝐺 ~QG 𝑌) ∈ V | |
| 17 | ecexg 8626 | . . . . . . 7 ⊢ ((𝐺 ~QG 𝑌) ∈ V → [𝑥](𝐺 ~QG 𝑌) ∈ V) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . 6 ⊢ [𝑥](𝐺 ~QG 𝑌) ∈ V |
| 19 | 15, 11, 18 | fvmpt3i 6934 | . . . . 5 ⊢ (𝑦 ∈ 𝑋 → (𝐹‘𝑦) = [𝑦](𝐺 ~QG 𝑌)) |
| 20 | 19 | ad2antrl 728 | . . . 4 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘𝑦) = [𝑦](𝐺 ~QG 𝑌)) |
| 21 | eceq1 8661 | . . . . . 6 ⊢ (𝑥 = 𝑧 → [𝑥](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌)) | |
| 22 | 21, 11, 18 | fvmpt3i 6934 | . . . . 5 ⊢ (𝑧 ∈ 𝑋 → (𝐹‘𝑧) = [𝑧](𝐺 ~QG 𝑌)) |
| 23 | 22 | ad2antll 729 | . . . 4 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘𝑧) = [𝑧](𝐺 ~QG 𝑌)) |
| 24 | 20, 23 | oveq12d 7364 | . . 3 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐹‘𝑦)(+g‘𝐻)(𝐹‘𝑧)) = ([𝑦](𝐺 ~QG 𝑌)(+g‘𝐻)[𝑧](𝐺 ~QG 𝑌))) |
| 25 | 1, 3 | grpcl 18854 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑦(+g‘𝐺)𝑧) ∈ 𝑋) |
| 26 | 25 | 3expb 1120 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦(+g‘𝐺)𝑧) ∈ 𝑋) |
| 27 | 7, 26 | sylan 580 | . . . 4 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦(+g‘𝐺)𝑧) ∈ 𝑋) |
| 28 | eceq1 8661 | . . . . 5 ⊢ (𝑥 = (𝑦(+g‘𝐺)𝑧) → [𝑥](𝐺 ~QG 𝑌) = [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌)) | |
| 29 | 28, 11, 18 | fvmpt3i 6934 | . . . 4 ⊢ ((𝑦(+g‘𝐺)𝑧) ∈ 𝑋 → (𝐹‘(𝑦(+g‘𝐺)𝑧)) = [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌)) |
| 30 | 27, 29 | syl 17 | . . 3 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘(𝑦(+g‘𝐺)𝑧)) = [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌)) |
| 31 | 14, 24, 30 | 3eqtr4rd 2777 | . 2 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘(𝑦(+g‘𝐺)𝑧)) = ((𝐹‘𝑦)(+g‘𝐻)(𝐹‘𝑧))) |
| 32 | 1, 2, 3, 4, 7, 9, 12, 31 | isghmd 19137 | 1 ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 [cec 8620 Basecbs 17120 +gcplusg 17161 /s cqus 17409 Grpcgrp 18846 SubGrpcsubg 19033 NrmSGrpcnsg 19034 ~QG cqg 19035 GrpHom cghm 19124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-ec 8624 df-qs 8628 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-0g 17345 df-imas 17412 df-qus 17413 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-subg 19036 df-nsg 19037 df-eqg 19038 df-ghm 19125 |
| This theorem is referenced by: qusrhm 21213 quslmhm 33324 nsgmgc 33377 |
| Copyright terms: Public domain | W3C validator |