![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qusghm | Structured version Visualization version GIF version |
Description: If 𝑌 is a normal subgroup of 𝐺, then the "natural map" from elements to their cosets is a group homomorphism from 𝐺 to 𝐺 / 𝑌. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 18-Sep-2015.) |
Ref | Expression |
---|---|
qusghm.x | ⊢ 𝑋 = (Base‘𝐺) |
qusghm.h | ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) |
qusghm.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) |
Ref | Expression |
---|---|
qusghm | ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusghm.x | . 2 ⊢ 𝑋 = (Base‘𝐺) | |
2 | eqid 2727 | . 2 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
3 | eqid 2727 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | eqid 2727 | . 2 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
5 | nsgsubg 19118 | . . 3 ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺)) | |
6 | subgrcl 19091 | . . 3 ⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp) |
8 | qusghm.h | . . 3 ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) | |
9 | 8 | qusgrp 19146 | . 2 ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp) |
10 | 8, 1, 2 | quseccl 19147 | . . 3 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → [𝑥](𝐺 ~QG 𝑌) ∈ (Base‘𝐻)) |
11 | qusghm.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) | |
12 | 10, 11 | fmptd 7127 | . 2 ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹:𝑋⟶(Base‘𝐻)) |
13 | 8, 1, 3, 4 | qusadd 19148 | . . . 4 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → ([𝑦](𝐺 ~QG 𝑌)(+g‘𝐻)[𝑧](𝐺 ~QG 𝑌)) = [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌)) |
14 | 13 | 3expb 1117 | . . 3 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ([𝑦](𝐺 ~QG 𝑌)(+g‘𝐻)[𝑧](𝐺 ~QG 𝑌)) = [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌)) |
15 | eceq1 8767 | . . . . . 6 ⊢ (𝑥 = 𝑦 → [𝑥](𝐺 ~QG 𝑌) = [𝑦](𝐺 ~QG 𝑌)) | |
16 | ovex 7457 | . . . . . . 7 ⊢ (𝐺 ~QG 𝑌) ∈ V | |
17 | ecexg 8733 | . . . . . . 7 ⊢ ((𝐺 ~QG 𝑌) ∈ V → [𝑥](𝐺 ~QG 𝑌) ∈ V) | |
18 | 16, 17 | ax-mp 5 | . . . . . 6 ⊢ [𝑥](𝐺 ~QG 𝑌) ∈ V |
19 | 15, 11, 18 | fvmpt3i 7013 | . . . . 5 ⊢ (𝑦 ∈ 𝑋 → (𝐹‘𝑦) = [𝑦](𝐺 ~QG 𝑌)) |
20 | 19 | ad2antrl 726 | . . . 4 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘𝑦) = [𝑦](𝐺 ~QG 𝑌)) |
21 | eceq1 8767 | . . . . . 6 ⊢ (𝑥 = 𝑧 → [𝑥](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌)) | |
22 | 21, 11, 18 | fvmpt3i 7013 | . . . . 5 ⊢ (𝑧 ∈ 𝑋 → (𝐹‘𝑧) = [𝑧](𝐺 ~QG 𝑌)) |
23 | 22 | ad2antll 727 | . . . 4 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘𝑧) = [𝑧](𝐺 ~QG 𝑌)) |
24 | 20, 23 | oveq12d 7442 | . . 3 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐹‘𝑦)(+g‘𝐻)(𝐹‘𝑧)) = ([𝑦](𝐺 ~QG 𝑌)(+g‘𝐻)[𝑧](𝐺 ~QG 𝑌))) |
25 | 1, 3 | grpcl 18903 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑦(+g‘𝐺)𝑧) ∈ 𝑋) |
26 | 25 | 3expb 1117 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦(+g‘𝐺)𝑧) ∈ 𝑋) |
27 | 7, 26 | sylan 578 | . . . 4 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦(+g‘𝐺)𝑧) ∈ 𝑋) |
28 | eceq1 8767 | . . . . 5 ⊢ (𝑥 = (𝑦(+g‘𝐺)𝑧) → [𝑥](𝐺 ~QG 𝑌) = [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌)) | |
29 | 28, 11, 18 | fvmpt3i 7013 | . . . 4 ⊢ ((𝑦(+g‘𝐺)𝑧) ∈ 𝑋 → (𝐹‘(𝑦(+g‘𝐺)𝑧)) = [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌)) |
30 | 27, 29 | syl 17 | . . 3 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘(𝑦(+g‘𝐺)𝑧)) = [(𝑦(+g‘𝐺)𝑧)](𝐺 ~QG 𝑌)) |
31 | 14, 24, 30 | 3eqtr4rd 2778 | . 2 ⊢ ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘(𝑦(+g‘𝐺)𝑧)) = ((𝐹‘𝑦)(+g‘𝐻)(𝐹‘𝑧))) |
32 | 1, 2, 3, 4, 7, 9, 12, 31 | isghmd 19184 | 1 ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3471 ↦ cmpt 5233 ‘cfv 6551 (class class class)co 7424 [cec 8727 Basecbs 17185 +gcplusg 17238 /s cqus 17492 Grpcgrp 18895 SubGrpcsubg 19080 NrmSGrpcnsg 19081 ~QG cqg 19082 GrpHom cghm 19172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-er 8729 df-ec 8731 df-qs 8735 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-sup 9471 df-inf 9472 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12509 df-z 12595 df-dec 12714 df-uz 12859 df-fz 13523 df-struct 17121 df-sets 17138 df-slot 17156 df-ndx 17168 df-base 17186 df-ress 17215 df-plusg 17251 df-mulr 17252 df-sca 17254 df-vsca 17255 df-ip 17256 df-tset 17257 df-ple 17258 df-ds 17260 df-0g 17428 df-imas 17495 df-qus 17496 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-grp 18898 df-minusg 18899 df-subg 19083 df-nsg 19084 df-eqg 19085 df-ghm 19173 |
This theorem is referenced by: qusrhm 21175 quslmhm 33089 nsgmgc 33140 |
Copyright terms: Public domain | W3C validator |