MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusghm Structured version   Visualization version   GIF version

Theorem qusghm 19214
Description: If 𝑌 is a normal subgroup of 𝐺, then the "natural map" from elements to their cosets is a group homomorphism from 𝐺 to 𝐺 / 𝑌. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusghm.x 𝑋 = (Base‘𝐺)
qusghm.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))
qusghm.f 𝐹 = (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌))
Assertion
Ref Expression
qusghm (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐻   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem qusghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusghm.x . 2 𝑋 = (Base‘𝐺)
2 eqid 2727 . 2 (Base‘𝐻) = (Base‘𝐻)
3 eqid 2727 . 2 (+g𝐺) = (+g𝐺)
4 eqid 2727 . 2 (+g𝐻) = (+g𝐻)
5 nsgsubg 19118 . . 3 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺))
6 subgrcl 19091 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
75, 6syl 17 . 2 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
8 qusghm.h . . 3 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))
98qusgrp 19146 . 2 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)
108, 1, 2quseccl 19147 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝑋) → [𝑥](𝐺 ~QG 𝑌) ∈ (Base‘𝐻))
11 qusghm.f . . 3 𝐹 = (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌))
1210, 11fmptd 7127 . 2 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹:𝑋⟶(Base‘𝐻))
138, 1, 3, 4qusadd 19148 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑦𝑋𝑧𝑋) → ([𝑦](𝐺 ~QG 𝑌)(+g𝐻)[𝑧](𝐺 ~QG 𝑌)) = [(𝑦(+g𝐺)𝑧)](𝐺 ~QG 𝑌))
14133expb 1117 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → ([𝑦](𝐺 ~QG 𝑌)(+g𝐻)[𝑧](𝐺 ~QG 𝑌)) = [(𝑦(+g𝐺)𝑧)](𝐺 ~QG 𝑌))
15 eceq1 8767 . . . . . 6 (𝑥 = 𝑦 → [𝑥](𝐺 ~QG 𝑌) = [𝑦](𝐺 ~QG 𝑌))
16 ovex 7457 . . . . . . 7 (𝐺 ~QG 𝑌) ∈ V
17 ecexg 8733 . . . . . . 7 ((𝐺 ~QG 𝑌) ∈ V → [𝑥](𝐺 ~QG 𝑌) ∈ V)
1816, 17ax-mp 5 . . . . . 6 [𝑥](𝐺 ~QG 𝑌) ∈ V
1915, 11, 18fvmpt3i 7013 . . . . 5 (𝑦𝑋 → (𝐹𝑦) = [𝑦](𝐺 ~QG 𝑌))
2019ad2antrl 726 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑦) = [𝑦](𝐺 ~QG 𝑌))
21 eceq1 8767 . . . . . 6 (𝑥 = 𝑧 → [𝑥](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌))
2221, 11, 18fvmpt3i 7013 . . . . 5 (𝑧𝑋 → (𝐹𝑧) = [𝑧](𝐺 ~QG 𝑌))
2322ad2antll 727 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑧) = [𝑧](𝐺 ~QG 𝑌))
2420, 23oveq12d 7442 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐹𝑦)(+g𝐻)(𝐹𝑧)) = ([𝑦](𝐺 ~QG 𝑌)(+g𝐻)[𝑧](𝐺 ~QG 𝑌)))
251, 3grpcl 18903 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦𝑋𝑧𝑋) → (𝑦(+g𝐺)𝑧) ∈ 𝑋)
26253expb 1117 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(+g𝐺)𝑧) ∈ 𝑋)
277, 26sylan 578 . . . 4 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(+g𝐺)𝑧) ∈ 𝑋)
28 eceq1 8767 . . . . 5 (𝑥 = (𝑦(+g𝐺)𝑧) → [𝑥](𝐺 ~QG 𝑌) = [(𝑦(+g𝐺)𝑧)](𝐺 ~QG 𝑌))
2928, 11, 18fvmpt3i 7013 . . . 4 ((𝑦(+g𝐺)𝑧) ∈ 𝑋 → (𝐹‘(𝑦(+g𝐺)𝑧)) = [(𝑦(+g𝐺)𝑧)](𝐺 ~QG 𝑌))
3027, 29syl 17 . . 3 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(+g𝐺)𝑧)) = [(𝑦(+g𝐺)𝑧)](𝐺 ~QG 𝑌))
3114, 24, 303eqtr4rd 2778 . 2 ((𝑌 ∈ (NrmSGrp‘𝐺) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(+g𝐺)𝑧)) = ((𝐹𝑦)(+g𝐻)(𝐹𝑧)))
321, 2, 3, 4, 7, 9, 12, 31isghmd 19184 1 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3471  cmpt 5233  cfv 6551  (class class class)co 7424  [cec 8727  Basecbs 17185  +gcplusg 17238   /s cqus 17492  Grpcgrp 18895  SubGrpcsubg 19080  NrmSGrpcnsg 19081   ~QG cqg 19082   GrpHom cghm 19172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-er 8729  df-ec 8731  df-qs 8735  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9471  df-inf 9472  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12509  df-z 12595  df-dec 12714  df-uz 12859  df-fz 13523  df-struct 17121  df-sets 17138  df-slot 17156  df-ndx 17168  df-base 17186  df-ress 17215  df-plusg 17251  df-mulr 17252  df-sca 17254  df-vsca 17255  df-ip 17256  df-tset 17257  df-ple 17258  df-ds 17260  df-0g 17428  df-imas 17495  df-qus 17496  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-grp 18898  df-minusg 18899  df-subg 19083  df-nsg 19084  df-eqg 19085  df-ghm 19173
This theorem is referenced by:  qusrhm  21175  quslmhm  33089  nsgmgc  33140
  Copyright terms: Public domain W3C validator