| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qusvscpbl | Structured version Visualization version GIF version | ||
| Description: The quotient map distributes over the scalar multiplication. (Contributed by Thierry Arnoux, 18-May-2023.) |
| Ref | Expression |
|---|---|
| eqgvscpbl.v | ⊢ 𝐵 = (Base‘𝑀) |
| eqgvscpbl.e | ⊢ ∼ = (𝑀 ~QG 𝐺) |
| eqgvscpbl.s | ⊢ 𝑆 = (Base‘(Scalar‘𝑀)) |
| eqgvscpbl.p | ⊢ · = ( ·𝑠 ‘𝑀) |
| eqgvscpbl.m | ⊢ (𝜑 → 𝑀 ∈ LMod) |
| eqgvscpbl.g | ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) |
| eqgvscpbl.k | ⊢ (𝜑 → 𝐾 ∈ 𝑆) |
| qusvsval.n | ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) |
| qusvsval.m | ⊢ ∙ = ( ·𝑠 ‘𝑁) |
| qusvscpbl.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) |
| qusvscpbl.u | ⊢ (𝜑 → 𝑈 ∈ 𝐵) |
| qusvscpbl.v | ⊢ (𝜑 → 𝑉 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| qusvscpbl | ⊢ (𝜑 → ((𝐹‘𝑈) = (𝐹‘𝑉) → (𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqgvscpbl.v | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | eqid 2729 | . . . 4 ⊢ (𝑀 ~QG 𝐺) = (𝑀 ~QG 𝐺) | |
| 3 | eqgvscpbl.s | . . . 4 ⊢ 𝑆 = (Base‘(Scalar‘𝑀)) | |
| 4 | eqgvscpbl.p | . . . 4 ⊢ · = ( ·𝑠 ‘𝑀) | |
| 5 | eqgvscpbl.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ LMod) | |
| 6 | eqgvscpbl.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) | |
| 7 | eqgvscpbl.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑆) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | eqgvscpbl 33287 | . . 3 ⊢ (𝜑 → (𝑈(𝑀 ~QG 𝐺)𝑉 → (𝐾 · 𝑈)(𝑀 ~QG 𝐺)(𝐾 · 𝑉))) |
| 9 | eqid 2729 | . . . . . . 7 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
| 10 | 9 | lsssubg 20860 | . . . . . 6 ⊢ ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀)) |
| 11 | 5, 6, 10 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (SubGrp‘𝑀)) |
| 12 | 1, 2 | eqger 19057 | . . . . 5 ⊢ (𝐺 ∈ (SubGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝐵) |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀 ~QG 𝐺) Er 𝐵) |
| 14 | qusvscpbl.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝐵) | |
| 15 | 13, 14 | erth 8679 | . . 3 ⊢ (𝜑 → (𝑈(𝑀 ~QG 𝐺)𝑉 ↔ [𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺))) |
| 16 | eqid 2729 | . . . . . 6 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
| 17 | 1, 16, 4, 3 | lmodvscl 20781 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝐾 ∈ 𝑆 ∧ 𝑈 ∈ 𝐵) → (𝐾 · 𝑈) ∈ 𝐵) |
| 18 | 5, 7, 14, 17 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐾 · 𝑈) ∈ 𝐵) |
| 19 | 13, 18 | erth 8679 | . . 3 ⊢ (𝜑 → ((𝐾 · 𝑈)(𝑀 ~QG 𝐺)(𝐾 · 𝑉) ↔ [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))) |
| 20 | 8, 15, 19 | 3imtr3d 293 | . 2 ⊢ (𝜑 → ([𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺) → [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))) |
| 21 | eceq1 8664 | . . . . 5 ⊢ (𝑥 = 𝑈 → [𝑥](𝑀 ~QG 𝐺) = [𝑈](𝑀 ~QG 𝐺)) | |
| 22 | qusvscpbl.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) | |
| 23 | ovex 7382 | . . . . . 6 ⊢ (𝑀 ~QG 𝐺) ∈ V | |
| 24 | ecexg 8629 | . . . . . 6 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [𝑈](𝑀 ~QG 𝐺) ∈ V) | |
| 25 | 23, 24 | ax-mp 5 | . . . . 5 ⊢ [𝑈](𝑀 ~QG 𝐺) ∈ V |
| 26 | 21, 22, 25 | fvmpt 6930 | . . . 4 ⊢ (𝑈 ∈ 𝐵 → (𝐹‘𝑈) = [𝑈](𝑀 ~QG 𝐺)) |
| 27 | 14, 26 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝑈) = [𝑈](𝑀 ~QG 𝐺)) |
| 28 | qusvscpbl.v | . . . 4 ⊢ (𝜑 → 𝑉 ∈ 𝐵) | |
| 29 | eceq1 8664 | . . . . 5 ⊢ (𝑥 = 𝑉 → [𝑥](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺)) | |
| 30 | ecexg 8629 | . . . . . 6 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [𝑉](𝑀 ~QG 𝐺) ∈ V) | |
| 31 | 23, 30 | ax-mp 5 | . . . . 5 ⊢ [𝑉](𝑀 ~QG 𝐺) ∈ V |
| 32 | 29, 22, 31 | fvmpt 6930 | . . . 4 ⊢ (𝑉 ∈ 𝐵 → (𝐹‘𝑉) = [𝑉](𝑀 ~QG 𝐺)) |
| 33 | 28, 32 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝑉) = [𝑉](𝑀 ~QG 𝐺)) |
| 34 | 27, 33 | eqeq12d 2745 | . 2 ⊢ (𝜑 → ((𝐹‘𝑈) = (𝐹‘𝑉) ↔ [𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺))) |
| 35 | eceq1 8664 | . . . . 5 ⊢ (𝑥 = (𝐾 · 𝑈) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺)) | |
| 36 | ecexg 8629 | . . . . . 6 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) ∈ V) | |
| 37 | 23, 36 | ax-mp 5 | . . . . 5 ⊢ [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) ∈ V |
| 38 | 35, 22, 37 | fvmpt 6930 | . . . 4 ⊢ ((𝐾 · 𝑈) ∈ 𝐵 → (𝐹‘(𝐾 · 𝑈)) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺)) |
| 39 | 18, 38 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘(𝐾 · 𝑈)) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺)) |
| 40 | 1, 16, 4, 3 | lmodvscl 20781 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝐾 ∈ 𝑆 ∧ 𝑉 ∈ 𝐵) → (𝐾 · 𝑉) ∈ 𝐵) |
| 41 | 5, 7, 28, 40 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐾 · 𝑉) ∈ 𝐵) |
| 42 | eceq1 8664 | . . . . 5 ⊢ (𝑥 = (𝐾 · 𝑉) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)) | |
| 43 | ecexg 8629 | . . . . . 6 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑉)](𝑀 ~QG 𝐺) ∈ V) | |
| 44 | 23, 43 | ax-mp 5 | . . . . 5 ⊢ [(𝐾 · 𝑉)](𝑀 ~QG 𝐺) ∈ V |
| 45 | 42, 22, 44 | fvmpt 6930 | . . . 4 ⊢ ((𝐾 · 𝑉) ∈ 𝐵 → (𝐹‘(𝐾 · 𝑉)) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)) |
| 46 | 41, 45 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘(𝐾 · 𝑉)) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)) |
| 47 | 39, 46 | eqeq12d 2745 | . 2 ⊢ (𝜑 → ((𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉)) ↔ [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))) |
| 48 | 20, 34, 47 | 3imtr4d 294 | 1 ⊢ (𝜑 → ((𝐹‘𝑈) = (𝐹‘𝑉) → (𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 class class class wbr 5092 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 Er wer 8622 [cec 8623 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 /s cqus 17409 SubGrpcsubg 18999 ~QG cqg 19001 LModclmod 20763 LSubSpclss 20834 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-ec 8627 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-eqg 19004 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-lmod 20765 df-lss 20835 |
| This theorem is referenced by: qusvsval 33289 quslmod 33295 quslmhm 33296 |
| Copyright terms: Public domain | W3C validator |