![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qusvscpbl | Structured version Visualization version GIF version |
Description: The quotient map distributes over the scalar multiplication. (Contributed by Thierry Arnoux, 18-May-2023.) |
Ref | Expression |
---|---|
eqgvscpbl.v | ⊢ 𝐵 = (Base‘𝑀) |
eqgvscpbl.e | ⊢ ∼ = (𝑀 ~QG 𝐺) |
eqgvscpbl.s | ⊢ 𝑆 = (Base‘(Scalar‘𝑀)) |
eqgvscpbl.p | ⊢ · = ( ·𝑠 ‘𝑀) |
eqgvscpbl.m | ⊢ (𝜑 → 𝑀 ∈ LMod) |
eqgvscpbl.g | ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) |
eqgvscpbl.k | ⊢ (𝜑 → 𝐾 ∈ 𝑆) |
qusscaval.n | ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) |
qusscaval.m | ⊢ ∙ = ( ·𝑠 ‘𝑁) |
qusvscpbl.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) |
qusvscpbl.u | ⊢ (𝜑 → 𝑈 ∈ 𝐵) |
qusvscpbl.v | ⊢ (𝜑 → 𝑉 ∈ 𝐵) |
Ref | Expression |
---|---|
qusvscpbl | ⊢ (𝜑 → ((𝐹‘𝑈) = (𝐹‘𝑉) → (𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqgvscpbl.v | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
2 | eqid 2736 | . . . 4 ⊢ (𝑀 ~QG 𝐺) = (𝑀 ~QG 𝐺) | |
3 | eqgvscpbl.s | . . . 4 ⊢ 𝑆 = (Base‘(Scalar‘𝑀)) | |
4 | eqgvscpbl.p | . . . 4 ⊢ · = ( ·𝑠 ‘𝑀) | |
5 | eqgvscpbl.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ LMod) | |
6 | eqgvscpbl.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) | |
7 | eqgvscpbl.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑆) | |
8 | 1, 2, 3, 4, 5, 6, 7 | eqgvscpbl 32142 | . . 3 ⊢ (𝜑 → (𝑈(𝑀 ~QG 𝐺)𝑉 → (𝐾 · 𝑈)(𝑀 ~QG 𝐺)(𝐾 · 𝑉))) |
9 | eqid 2736 | . . . . . . 7 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
10 | 9 | lsssubg 20418 | . . . . . 6 ⊢ ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀)) |
11 | 5, 6, 10 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (SubGrp‘𝑀)) |
12 | 1, 2 | eqger 18980 | . . . . 5 ⊢ (𝐺 ∈ (SubGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝐵) |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀 ~QG 𝐺) Er 𝐵) |
14 | qusvscpbl.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝐵) | |
15 | 13, 14 | erth 8697 | . . 3 ⊢ (𝜑 → (𝑈(𝑀 ~QG 𝐺)𝑉 ↔ [𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺))) |
16 | eqid 2736 | . . . . . 6 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
17 | 1, 16, 4, 3 | lmodvscl 20339 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝐾 ∈ 𝑆 ∧ 𝑈 ∈ 𝐵) → (𝐾 · 𝑈) ∈ 𝐵) |
18 | 5, 7, 14, 17 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → (𝐾 · 𝑈) ∈ 𝐵) |
19 | 13, 18 | erth 8697 | . . 3 ⊢ (𝜑 → ((𝐾 · 𝑈)(𝑀 ~QG 𝐺)(𝐾 · 𝑉) ↔ [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))) |
20 | 8, 15, 19 | 3imtr3d 292 | . 2 ⊢ (𝜑 → ([𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺) → [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))) |
21 | eceq1 8686 | . . . . 5 ⊢ (𝑥 = 𝑈 → [𝑥](𝑀 ~QG 𝐺) = [𝑈](𝑀 ~QG 𝐺)) | |
22 | qusvscpbl.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) | |
23 | ovex 7390 | . . . . . 6 ⊢ (𝑀 ~QG 𝐺) ∈ V | |
24 | ecexg 8652 | . . . . . 6 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [𝑈](𝑀 ~QG 𝐺) ∈ V) | |
25 | 23, 24 | ax-mp 5 | . . . . 5 ⊢ [𝑈](𝑀 ~QG 𝐺) ∈ V |
26 | 21, 22, 25 | fvmpt 6948 | . . . 4 ⊢ (𝑈 ∈ 𝐵 → (𝐹‘𝑈) = [𝑈](𝑀 ~QG 𝐺)) |
27 | 14, 26 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝑈) = [𝑈](𝑀 ~QG 𝐺)) |
28 | qusvscpbl.v | . . . 4 ⊢ (𝜑 → 𝑉 ∈ 𝐵) | |
29 | eceq1 8686 | . . . . 5 ⊢ (𝑥 = 𝑉 → [𝑥](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺)) | |
30 | ecexg 8652 | . . . . . 6 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [𝑉](𝑀 ~QG 𝐺) ∈ V) | |
31 | 23, 30 | ax-mp 5 | . . . . 5 ⊢ [𝑉](𝑀 ~QG 𝐺) ∈ V |
32 | 29, 22, 31 | fvmpt 6948 | . . . 4 ⊢ (𝑉 ∈ 𝐵 → (𝐹‘𝑉) = [𝑉](𝑀 ~QG 𝐺)) |
33 | 28, 32 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝑉) = [𝑉](𝑀 ~QG 𝐺)) |
34 | 27, 33 | eqeq12d 2752 | . 2 ⊢ (𝜑 → ((𝐹‘𝑈) = (𝐹‘𝑉) ↔ [𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺))) |
35 | eceq1 8686 | . . . . 5 ⊢ (𝑥 = (𝐾 · 𝑈) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺)) | |
36 | ecexg 8652 | . . . . . 6 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) ∈ V) | |
37 | 23, 36 | ax-mp 5 | . . . . 5 ⊢ [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) ∈ V |
38 | 35, 22, 37 | fvmpt 6948 | . . . 4 ⊢ ((𝐾 · 𝑈) ∈ 𝐵 → (𝐹‘(𝐾 · 𝑈)) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺)) |
39 | 18, 38 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘(𝐾 · 𝑈)) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺)) |
40 | 1, 16, 4, 3 | lmodvscl 20339 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝐾 ∈ 𝑆 ∧ 𝑉 ∈ 𝐵) → (𝐾 · 𝑉) ∈ 𝐵) |
41 | 5, 7, 28, 40 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → (𝐾 · 𝑉) ∈ 𝐵) |
42 | eceq1 8686 | . . . . 5 ⊢ (𝑥 = (𝐾 · 𝑉) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)) | |
43 | ecexg 8652 | . . . . . 6 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑉)](𝑀 ~QG 𝐺) ∈ V) | |
44 | 23, 43 | ax-mp 5 | . . . . 5 ⊢ [(𝐾 · 𝑉)](𝑀 ~QG 𝐺) ∈ V |
45 | 42, 22, 44 | fvmpt 6948 | . . . 4 ⊢ ((𝐾 · 𝑉) ∈ 𝐵 → (𝐹‘(𝐾 · 𝑉)) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)) |
46 | 41, 45 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘(𝐾 · 𝑉)) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)) |
47 | 39, 46 | eqeq12d 2752 | . 2 ⊢ (𝜑 → ((𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉)) ↔ [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))) |
48 | 20, 34, 47 | 3imtr4d 293 | 1 ⊢ (𝜑 → ((𝐹‘𝑈) = (𝐹‘𝑉) → (𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3445 class class class wbr 5105 ↦ cmpt 5188 ‘cfv 6496 (class class class)co 7357 Er wer 8645 [cec 8646 Basecbs 17083 Scalarcsca 17136 ·𝑠 cvsca 17137 /s cqus 17387 SubGrpcsubg 18922 ~QG cqg 18924 LModclmod 20322 LSubSpclss 20392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-ec 8650 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-0g 17323 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-grp 18751 df-minusg 18752 df-sbg 18753 df-subg 18925 df-eqg 18927 df-mgp 19897 df-ur 19914 df-ring 19966 df-lmod 20324 df-lss 20393 |
This theorem is referenced by: qusscaval 32144 quslmod 32146 quslmhm 32147 |
Copyright terms: Public domain | W3C validator |