Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusvscpbl Structured version   Visualization version   GIF version

Theorem qusvscpbl 33371
Description: The quotient map distributes over the scalar multiplication. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
eqgvscpbl.v 𝐵 = (Base‘𝑀)
eqgvscpbl.e = (𝑀 ~QG 𝐺)
eqgvscpbl.s 𝑆 = (Base‘(Scalar‘𝑀))
eqgvscpbl.p · = ( ·𝑠𝑀)
eqgvscpbl.m (𝜑𝑀 ∈ LMod)
eqgvscpbl.g (𝜑𝐺 ∈ (LSubSp‘𝑀))
eqgvscpbl.k (𝜑𝐾𝑆)
qusvsval.n 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
qusvsval.m = ( ·𝑠𝑁)
qusvscpbl.f 𝐹 = (𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))
qusvscpbl.u (𝜑𝑈𝐵)
qusvscpbl.v (𝜑𝑉𝐵)
Assertion
Ref Expression
qusvscpbl (𝜑 → ((𝐹𝑈) = (𝐹𝑉) → (𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝐾   𝑥,𝑀   𝑥,𝑈   𝑥,𝑉   𝜑,𝑥   𝑥, ·
Allowed substitution hints:   (𝑥)   𝑆(𝑥)   (𝑥)   𝐹(𝑥)   𝑁(𝑥)

Proof of Theorem qusvscpbl
StepHypRef Expression
1 eqgvscpbl.v . . . 4 𝐵 = (Base‘𝑀)
2 eqid 2736 . . . 4 (𝑀 ~QG 𝐺) = (𝑀 ~QG 𝐺)
3 eqgvscpbl.s . . . 4 𝑆 = (Base‘(Scalar‘𝑀))
4 eqgvscpbl.p . . . 4 · = ( ·𝑠𝑀)
5 eqgvscpbl.m . . . 4 (𝜑𝑀 ∈ LMod)
6 eqgvscpbl.g . . . 4 (𝜑𝐺 ∈ (LSubSp‘𝑀))
7 eqgvscpbl.k . . . 4 (𝜑𝐾𝑆)
81, 2, 3, 4, 5, 6, 7eqgvscpbl 33370 . . 3 (𝜑 → (𝑈(𝑀 ~QG 𝐺)𝑉 → (𝐾 · 𝑈)(𝑀 ~QG 𝐺)(𝐾 · 𝑉)))
9 eqid 2736 . . . . . . 7 (LSubSp‘𝑀) = (LSubSp‘𝑀)
109lsssubg 20919 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀))
115, 6, 10syl2anc 584 . . . . 5 (𝜑𝐺 ∈ (SubGrp‘𝑀))
121, 2eqger 19166 . . . . 5 (𝐺 ∈ (SubGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝐵)
1311, 12syl 17 . . . 4 (𝜑 → (𝑀 ~QG 𝐺) Er 𝐵)
14 qusvscpbl.u . . . 4 (𝜑𝑈𝐵)
1513, 14erth 8775 . . 3 (𝜑 → (𝑈(𝑀 ~QG 𝐺)𝑉 ↔ [𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺)))
16 eqid 2736 . . . . . 6 (Scalar‘𝑀) = (Scalar‘𝑀)
171, 16, 4, 3lmodvscl 20840 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑈𝐵) → (𝐾 · 𝑈) ∈ 𝐵)
185, 7, 14, 17syl3anc 1373 . . . 4 (𝜑 → (𝐾 · 𝑈) ∈ 𝐵)
1913, 18erth 8775 . . 3 (𝜑 → ((𝐾 · 𝑈)(𝑀 ~QG 𝐺)(𝐾 · 𝑉) ↔ [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)))
208, 15, 193imtr3d 293 . 2 (𝜑 → ([𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺) → [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)))
21 eceq1 8763 . . . . 5 (𝑥 = 𝑈 → [𝑥](𝑀 ~QG 𝐺) = [𝑈](𝑀 ~QG 𝐺))
22 qusvscpbl.f . . . . 5 𝐹 = (𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))
23 ovex 7443 . . . . . 6 (𝑀 ~QG 𝐺) ∈ V
24 ecexg 8728 . . . . . 6 ((𝑀 ~QG 𝐺) ∈ V → [𝑈](𝑀 ~QG 𝐺) ∈ V)
2523, 24ax-mp 5 . . . . 5 [𝑈](𝑀 ~QG 𝐺) ∈ V
2621, 22, 25fvmpt 6991 . . . 4 (𝑈𝐵 → (𝐹𝑈) = [𝑈](𝑀 ~QG 𝐺))
2714, 26syl 17 . . 3 (𝜑 → (𝐹𝑈) = [𝑈](𝑀 ~QG 𝐺))
28 qusvscpbl.v . . . 4 (𝜑𝑉𝐵)
29 eceq1 8763 . . . . 5 (𝑥 = 𝑉 → [𝑥](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺))
30 ecexg 8728 . . . . . 6 ((𝑀 ~QG 𝐺) ∈ V → [𝑉](𝑀 ~QG 𝐺) ∈ V)
3123, 30ax-mp 5 . . . . 5 [𝑉](𝑀 ~QG 𝐺) ∈ V
3229, 22, 31fvmpt 6991 . . . 4 (𝑉𝐵 → (𝐹𝑉) = [𝑉](𝑀 ~QG 𝐺))
3328, 32syl 17 . . 3 (𝜑 → (𝐹𝑉) = [𝑉](𝑀 ~QG 𝐺))
3427, 33eqeq12d 2752 . 2 (𝜑 → ((𝐹𝑈) = (𝐹𝑉) ↔ [𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺)))
35 eceq1 8763 . . . . 5 (𝑥 = (𝐾 · 𝑈) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺))
36 ecexg 8728 . . . . . 6 ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) ∈ V)
3723, 36ax-mp 5 . . . . 5 [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) ∈ V
3835, 22, 37fvmpt 6991 . . . 4 ((𝐾 · 𝑈) ∈ 𝐵 → (𝐹‘(𝐾 · 𝑈)) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺))
3918, 38syl 17 . . 3 (𝜑 → (𝐹‘(𝐾 · 𝑈)) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺))
401, 16, 4, 3lmodvscl 20840 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑉𝐵) → (𝐾 · 𝑉) ∈ 𝐵)
415, 7, 28, 40syl3anc 1373 . . . 4 (𝜑 → (𝐾 · 𝑉) ∈ 𝐵)
42 eceq1 8763 . . . . 5 (𝑥 = (𝐾 · 𝑉) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))
43 ecexg 8728 . . . . . 6 ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑉)](𝑀 ~QG 𝐺) ∈ V)
4423, 43ax-mp 5 . . . . 5 [(𝐾 · 𝑉)](𝑀 ~QG 𝐺) ∈ V
4542, 22, 44fvmpt 6991 . . . 4 ((𝐾 · 𝑉) ∈ 𝐵 → (𝐹‘(𝐾 · 𝑉)) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))
4641, 45syl 17 . . 3 (𝜑 → (𝐹‘(𝐾 · 𝑉)) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))
4739, 46eqeq12d 2752 . 2 (𝜑 → ((𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉)) ↔ [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)))
4820, 34, 473imtr4d 294 1 (𝜑 → ((𝐹𝑈) = (𝐹𝑉) → (𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3464   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410   Er wer 8721  [cec 8722  Basecbs 17233  Scalarcsca 17279   ·𝑠 cvsca 17280   /s cqus 17524  SubGrpcsubg 19108   ~QG cqg 19110  LModclmod 20822  LSubSpclss 20893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-ec 8726  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-eqg 19113  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-lmod 20824  df-lss 20894
This theorem is referenced by:  qusvsval  33372  quslmod  33378  quslmhm  33379
  Copyright terms: Public domain W3C validator