Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusvscpbl Structured version   Visualization version   GIF version

Theorem qusvscpbl 33316
Description: The quotient map distributes over the scalar multiplication. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
eqgvscpbl.v 𝐵 = (Base‘𝑀)
eqgvscpbl.e = (𝑀 ~QG 𝐺)
eqgvscpbl.s 𝑆 = (Base‘(Scalar‘𝑀))
eqgvscpbl.p · = ( ·𝑠𝑀)
eqgvscpbl.m (𝜑𝑀 ∈ LMod)
eqgvscpbl.g (𝜑𝐺 ∈ (LSubSp‘𝑀))
eqgvscpbl.k (𝜑𝐾𝑆)
qusvsval.n 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
qusvsval.m = ( ·𝑠𝑁)
qusvscpbl.f 𝐹 = (𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))
qusvscpbl.u (𝜑𝑈𝐵)
qusvscpbl.v (𝜑𝑉𝐵)
Assertion
Ref Expression
qusvscpbl (𝜑 → ((𝐹𝑈) = (𝐹𝑉) → (𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝐾   𝑥,𝑀   𝑥,𝑈   𝑥,𝑉   𝜑,𝑥   𝑥, ·
Allowed substitution hints:   (𝑥)   𝑆(𝑥)   (𝑥)   𝐹(𝑥)   𝑁(𝑥)

Proof of Theorem qusvscpbl
StepHypRef Expression
1 eqgvscpbl.v . . . 4 𝐵 = (Base‘𝑀)
2 eqid 2731 . . . 4 (𝑀 ~QG 𝐺) = (𝑀 ~QG 𝐺)
3 eqgvscpbl.s . . . 4 𝑆 = (Base‘(Scalar‘𝑀))
4 eqgvscpbl.p . . . 4 · = ( ·𝑠𝑀)
5 eqgvscpbl.m . . . 4 (𝜑𝑀 ∈ LMod)
6 eqgvscpbl.g . . . 4 (𝜑𝐺 ∈ (LSubSp‘𝑀))
7 eqgvscpbl.k . . . 4 (𝜑𝐾𝑆)
81, 2, 3, 4, 5, 6, 7eqgvscpbl 33315 . . 3 (𝜑 → (𝑈(𝑀 ~QG 𝐺)𝑉 → (𝐾 · 𝑈)(𝑀 ~QG 𝐺)(𝐾 · 𝑉)))
9 eqid 2731 . . . . . . 7 (LSubSp‘𝑀) = (LSubSp‘𝑀)
109lsssubg 20890 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀))
115, 6, 10syl2anc 584 . . . . 5 (𝜑𝐺 ∈ (SubGrp‘𝑀))
121, 2eqger 19090 . . . . 5 (𝐺 ∈ (SubGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝐵)
1311, 12syl 17 . . . 4 (𝜑 → (𝑀 ~QG 𝐺) Er 𝐵)
14 qusvscpbl.u . . . 4 (𝜑𝑈𝐵)
1513, 14erth 8676 . . 3 (𝜑 → (𝑈(𝑀 ~QG 𝐺)𝑉 ↔ [𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺)))
16 eqid 2731 . . . . . 6 (Scalar‘𝑀) = (Scalar‘𝑀)
171, 16, 4, 3lmodvscl 20811 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑈𝐵) → (𝐾 · 𝑈) ∈ 𝐵)
185, 7, 14, 17syl3anc 1373 . . . 4 (𝜑 → (𝐾 · 𝑈) ∈ 𝐵)
1913, 18erth 8676 . . 3 (𝜑 → ((𝐾 · 𝑈)(𝑀 ~QG 𝐺)(𝐾 · 𝑉) ↔ [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)))
208, 15, 193imtr3d 293 . 2 (𝜑 → ([𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺) → [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)))
21 eceq1 8661 . . . . 5 (𝑥 = 𝑈 → [𝑥](𝑀 ~QG 𝐺) = [𝑈](𝑀 ~QG 𝐺))
22 qusvscpbl.f . . . . 5 𝐹 = (𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))
23 ovex 7379 . . . . . 6 (𝑀 ~QG 𝐺) ∈ V
24 ecexg 8626 . . . . . 6 ((𝑀 ~QG 𝐺) ∈ V → [𝑈](𝑀 ~QG 𝐺) ∈ V)
2523, 24ax-mp 5 . . . . 5 [𝑈](𝑀 ~QG 𝐺) ∈ V
2621, 22, 25fvmpt 6929 . . . 4 (𝑈𝐵 → (𝐹𝑈) = [𝑈](𝑀 ~QG 𝐺))
2714, 26syl 17 . . 3 (𝜑 → (𝐹𝑈) = [𝑈](𝑀 ~QG 𝐺))
28 qusvscpbl.v . . . 4 (𝜑𝑉𝐵)
29 eceq1 8661 . . . . 5 (𝑥 = 𝑉 → [𝑥](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺))
30 ecexg 8626 . . . . . 6 ((𝑀 ~QG 𝐺) ∈ V → [𝑉](𝑀 ~QG 𝐺) ∈ V)
3123, 30ax-mp 5 . . . . 5 [𝑉](𝑀 ~QG 𝐺) ∈ V
3229, 22, 31fvmpt 6929 . . . 4 (𝑉𝐵 → (𝐹𝑉) = [𝑉](𝑀 ~QG 𝐺))
3328, 32syl 17 . . 3 (𝜑 → (𝐹𝑉) = [𝑉](𝑀 ~QG 𝐺))
3427, 33eqeq12d 2747 . 2 (𝜑 → ((𝐹𝑈) = (𝐹𝑉) ↔ [𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺)))
35 eceq1 8661 . . . . 5 (𝑥 = (𝐾 · 𝑈) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺))
36 ecexg 8626 . . . . . 6 ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) ∈ V)
3723, 36ax-mp 5 . . . . 5 [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) ∈ V
3835, 22, 37fvmpt 6929 . . . 4 ((𝐾 · 𝑈) ∈ 𝐵 → (𝐹‘(𝐾 · 𝑈)) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺))
3918, 38syl 17 . . 3 (𝜑 → (𝐹‘(𝐾 · 𝑈)) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺))
401, 16, 4, 3lmodvscl 20811 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑉𝐵) → (𝐾 · 𝑉) ∈ 𝐵)
415, 7, 28, 40syl3anc 1373 . . . 4 (𝜑 → (𝐾 · 𝑉) ∈ 𝐵)
42 eceq1 8661 . . . . 5 (𝑥 = (𝐾 · 𝑉) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))
43 ecexg 8626 . . . . . 6 ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑉)](𝑀 ~QG 𝐺) ∈ V)
4423, 43ax-mp 5 . . . . 5 [(𝐾 · 𝑉)](𝑀 ~QG 𝐺) ∈ V
4542, 22, 44fvmpt 6929 . . . 4 ((𝐾 · 𝑉) ∈ 𝐵 → (𝐹‘(𝐾 · 𝑉)) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))
4641, 45syl 17 . . 3 (𝜑 → (𝐹‘(𝐾 · 𝑉)) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))
4739, 46eqeq12d 2747 . 2 (𝜑 → ((𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉)) ↔ [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)))
4820, 34, 473imtr4d 294 1 (𝜑 → ((𝐹𝑈) = (𝐹𝑉) → (𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436   class class class wbr 5089  cmpt 5170  cfv 6481  (class class class)co 7346   Er wer 8619  [cec 8620  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165   /s cqus 17409  SubGrpcsubg 19033   ~QG cqg 19035  LModclmod 20793  LSubSpclss 20864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-ec 8624  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-eqg 19038  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-lmod 20795  df-lss 20865
This theorem is referenced by:  qusvsval  33317  quslmod  33323  quslmhm  33324
  Copyright terms: Public domain W3C validator