Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > qusvscpbl | Structured version Visualization version GIF version |
Description: The quotient map distributes over the scalar multiplication. (Contributed by Thierry Arnoux, 18-May-2023.) |
Ref | Expression |
---|---|
eqgvscpbl.v | ⊢ 𝐵 = (Base‘𝑀) |
eqgvscpbl.e | ⊢ ∼ = (𝑀 ~QG 𝐺) |
eqgvscpbl.s | ⊢ 𝑆 = (Base‘(Scalar‘𝑀)) |
eqgvscpbl.p | ⊢ · = ( ·𝑠 ‘𝑀) |
eqgvscpbl.m | ⊢ (𝜑 → 𝑀 ∈ LMod) |
eqgvscpbl.g | ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) |
eqgvscpbl.k | ⊢ (𝜑 → 𝐾 ∈ 𝑆) |
qusscaval.n | ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) |
qusscaval.m | ⊢ ∙ = ( ·𝑠 ‘𝑁) |
qusvscpbl.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) |
qusvscpbl.u | ⊢ (𝜑 → 𝑈 ∈ 𝐵) |
qusvscpbl.v | ⊢ (𝜑 → 𝑉 ∈ 𝐵) |
Ref | Expression |
---|---|
qusvscpbl | ⊢ (𝜑 → ((𝐹‘𝑈) = (𝐹‘𝑉) → (𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqgvscpbl.v | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
2 | eqid 2738 | . . . 4 ⊢ (𝑀 ~QG 𝐺) = (𝑀 ~QG 𝐺) | |
3 | eqgvscpbl.s | . . . 4 ⊢ 𝑆 = (Base‘(Scalar‘𝑀)) | |
4 | eqgvscpbl.p | . . . 4 ⊢ · = ( ·𝑠 ‘𝑀) | |
5 | eqgvscpbl.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ LMod) | |
6 | eqgvscpbl.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) | |
7 | eqgvscpbl.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑆) | |
8 | 1, 2, 3, 4, 5, 6, 7 | eqgvscpbl 31452 | . . 3 ⊢ (𝜑 → (𝑈(𝑀 ~QG 𝐺)𝑉 → (𝐾 · 𝑈)(𝑀 ~QG 𝐺)(𝐾 · 𝑉))) |
9 | eqid 2738 | . . . . . . 7 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
10 | 9 | lsssubg 20134 | . . . . . 6 ⊢ ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀)) |
11 | 5, 6, 10 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (SubGrp‘𝑀)) |
12 | 1, 2 | eqger 18721 | . . . . 5 ⊢ (𝐺 ∈ (SubGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝐵) |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀 ~QG 𝐺) Er 𝐵) |
14 | qusvscpbl.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝐵) | |
15 | 13, 14 | erth 8505 | . . 3 ⊢ (𝜑 → (𝑈(𝑀 ~QG 𝐺)𝑉 ↔ [𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺))) |
16 | eqid 2738 | . . . . . 6 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
17 | 1, 16, 4, 3 | lmodvscl 20055 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝐾 ∈ 𝑆 ∧ 𝑈 ∈ 𝐵) → (𝐾 · 𝑈) ∈ 𝐵) |
18 | 5, 7, 14, 17 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → (𝐾 · 𝑈) ∈ 𝐵) |
19 | 13, 18 | erth 8505 | . . 3 ⊢ (𝜑 → ((𝐾 · 𝑈)(𝑀 ~QG 𝐺)(𝐾 · 𝑉) ↔ [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))) |
20 | 8, 15, 19 | 3imtr3d 292 | . 2 ⊢ (𝜑 → ([𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺) → [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))) |
21 | eceq1 8494 | . . . . 5 ⊢ (𝑥 = 𝑈 → [𝑥](𝑀 ~QG 𝐺) = [𝑈](𝑀 ~QG 𝐺)) | |
22 | qusvscpbl.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) | |
23 | ovex 7288 | . . . . . 6 ⊢ (𝑀 ~QG 𝐺) ∈ V | |
24 | ecexg 8460 | . . . . . 6 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [𝑈](𝑀 ~QG 𝐺) ∈ V) | |
25 | 23, 24 | ax-mp 5 | . . . . 5 ⊢ [𝑈](𝑀 ~QG 𝐺) ∈ V |
26 | 21, 22, 25 | fvmpt 6857 | . . . 4 ⊢ (𝑈 ∈ 𝐵 → (𝐹‘𝑈) = [𝑈](𝑀 ~QG 𝐺)) |
27 | 14, 26 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝑈) = [𝑈](𝑀 ~QG 𝐺)) |
28 | qusvscpbl.v | . . . 4 ⊢ (𝜑 → 𝑉 ∈ 𝐵) | |
29 | eceq1 8494 | . . . . 5 ⊢ (𝑥 = 𝑉 → [𝑥](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺)) | |
30 | ecexg 8460 | . . . . . 6 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [𝑉](𝑀 ~QG 𝐺) ∈ V) | |
31 | 23, 30 | ax-mp 5 | . . . . 5 ⊢ [𝑉](𝑀 ~QG 𝐺) ∈ V |
32 | 29, 22, 31 | fvmpt 6857 | . . . 4 ⊢ (𝑉 ∈ 𝐵 → (𝐹‘𝑉) = [𝑉](𝑀 ~QG 𝐺)) |
33 | 28, 32 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝑉) = [𝑉](𝑀 ~QG 𝐺)) |
34 | 27, 33 | eqeq12d 2754 | . 2 ⊢ (𝜑 → ((𝐹‘𝑈) = (𝐹‘𝑉) ↔ [𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺))) |
35 | eceq1 8494 | . . . . 5 ⊢ (𝑥 = (𝐾 · 𝑈) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺)) | |
36 | ecexg 8460 | . . . . . 6 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) ∈ V) | |
37 | 23, 36 | ax-mp 5 | . . . . 5 ⊢ [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) ∈ V |
38 | 35, 22, 37 | fvmpt 6857 | . . . 4 ⊢ ((𝐾 · 𝑈) ∈ 𝐵 → (𝐹‘(𝐾 · 𝑈)) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺)) |
39 | 18, 38 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘(𝐾 · 𝑈)) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺)) |
40 | 1, 16, 4, 3 | lmodvscl 20055 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝐾 ∈ 𝑆 ∧ 𝑉 ∈ 𝐵) → (𝐾 · 𝑉) ∈ 𝐵) |
41 | 5, 7, 28, 40 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → (𝐾 · 𝑉) ∈ 𝐵) |
42 | eceq1 8494 | . . . . 5 ⊢ (𝑥 = (𝐾 · 𝑉) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)) | |
43 | ecexg 8460 | . . . . . 6 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑉)](𝑀 ~QG 𝐺) ∈ V) | |
44 | 23, 43 | ax-mp 5 | . . . . 5 ⊢ [(𝐾 · 𝑉)](𝑀 ~QG 𝐺) ∈ V |
45 | 42, 22, 44 | fvmpt 6857 | . . . 4 ⊢ ((𝐾 · 𝑉) ∈ 𝐵 → (𝐹‘(𝐾 · 𝑉)) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)) |
46 | 41, 45 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘(𝐾 · 𝑉)) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)) |
47 | 39, 46 | eqeq12d 2754 | . 2 ⊢ (𝜑 → ((𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉)) ↔ [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))) |
48 | 20, 34, 47 | 3imtr4d 293 | 1 ⊢ (𝜑 → ((𝐹‘𝑈) = (𝐹‘𝑉) → (𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 Er wer 8453 [cec 8454 Basecbs 16840 Scalarcsca 16891 ·𝑠 cvsca 16892 /s cqus 17133 SubGrpcsubg 18664 ~QG cqg 18666 LModclmod 20038 LSubSpclss 20108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-ec 8458 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-eqg 18669 df-mgp 19636 df-ur 19653 df-ring 19700 df-lmod 20040 df-lss 20109 |
This theorem is referenced by: qusscaval 31454 quslmod 31456 quslmhm 31457 |
Copyright terms: Public domain | W3C validator |