| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qusvscpbl | Structured version Visualization version GIF version | ||
| Description: The quotient map distributes over the scalar multiplication. (Contributed by Thierry Arnoux, 18-May-2023.) |
| Ref | Expression |
|---|---|
| eqgvscpbl.v | ⊢ 𝐵 = (Base‘𝑀) |
| eqgvscpbl.e | ⊢ ∼ = (𝑀 ~QG 𝐺) |
| eqgvscpbl.s | ⊢ 𝑆 = (Base‘(Scalar‘𝑀)) |
| eqgvscpbl.p | ⊢ · = ( ·𝑠 ‘𝑀) |
| eqgvscpbl.m | ⊢ (𝜑 → 𝑀 ∈ LMod) |
| eqgvscpbl.g | ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) |
| eqgvscpbl.k | ⊢ (𝜑 → 𝐾 ∈ 𝑆) |
| qusvsval.n | ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) |
| qusvsval.m | ⊢ ∙ = ( ·𝑠 ‘𝑁) |
| qusvscpbl.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) |
| qusvscpbl.u | ⊢ (𝜑 → 𝑈 ∈ 𝐵) |
| qusvscpbl.v | ⊢ (𝜑 → 𝑉 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| qusvscpbl | ⊢ (𝜑 → ((𝐹‘𝑈) = (𝐹‘𝑉) → (𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqgvscpbl.v | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | eqid 2734 | . . . 4 ⊢ (𝑀 ~QG 𝐺) = (𝑀 ~QG 𝐺) | |
| 3 | eqgvscpbl.s | . . . 4 ⊢ 𝑆 = (Base‘(Scalar‘𝑀)) | |
| 4 | eqgvscpbl.p | . . . 4 ⊢ · = ( ·𝑠 ‘𝑀) | |
| 5 | eqgvscpbl.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ LMod) | |
| 6 | eqgvscpbl.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) | |
| 7 | eqgvscpbl.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑆) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | eqgvscpbl 33319 | . . 3 ⊢ (𝜑 → (𝑈(𝑀 ~QG 𝐺)𝑉 → (𝐾 · 𝑈)(𝑀 ~QG 𝐺)(𝐾 · 𝑉))) |
| 9 | eqid 2734 | . . . . . . 7 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
| 10 | 9 | lsssubg 20928 | . . . . . 6 ⊢ ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀)) |
| 11 | 5, 6, 10 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (SubGrp‘𝑀)) |
| 12 | 1, 2 | eqger 19170 | . . . . 5 ⊢ (𝐺 ∈ (SubGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝐵) |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀 ~QG 𝐺) Er 𝐵) |
| 14 | qusvscpbl.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝐵) | |
| 15 | 13, 14 | erth 8779 | . . 3 ⊢ (𝜑 → (𝑈(𝑀 ~QG 𝐺)𝑉 ↔ [𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺))) |
| 16 | eqid 2734 | . . . . . 6 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
| 17 | 1, 16, 4, 3 | lmodvscl 20849 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝐾 ∈ 𝑆 ∧ 𝑈 ∈ 𝐵) → (𝐾 · 𝑈) ∈ 𝐵) |
| 18 | 5, 7, 14, 17 | syl3anc 1372 | . . . 4 ⊢ (𝜑 → (𝐾 · 𝑈) ∈ 𝐵) |
| 19 | 13, 18 | erth 8779 | . . 3 ⊢ (𝜑 → ((𝐾 · 𝑈)(𝑀 ~QG 𝐺)(𝐾 · 𝑉) ↔ [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))) |
| 20 | 8, 15, 19 | 3imtr3d 293 | . 2 ⊢ (𝜑 → ([𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺) → [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))) |
| 21 | eceq1 8767 | . . . . 5 ⊢ (𝑥 = 𝑈 → [𝑥](𝑀 ~QG 𝐺) = [𝑈](𝑀 ~QG 𝐺)) | |
| 22 | qusvscpbl.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) | |
| 23 | ovex 7447 | . . . . . 6 ⊢ (𝑀 ~QG 𝐺) ∈ V | |
| 24 | ecexg 8732 | . . . . . 6 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [𝑈](𝑀 ~QG 𝐺) ∈ V) | |
| 25 | 23, 24 | ax-mp 5 | . . . . 5 ⊢ [𝑈](𝑀 ~QG 𝐺) ∈ V |
| 26 | 21, 22, 25 | fvmpt 6997 | . . . 4 ⊢ (𝑈 ∈ 𝐵 → (𝐹‘𝑈) = [𝑈](𝑀 ~QG 𝐺)) |
| 27 | 14, 26 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝑈) = [𝑈](𝑀 ~QG 𝐺)) |
| 28 | qusvscpbl.v | . . . 4 ⊢ (𝜑 → 𝑉 ∈ 𝐵) | |
| 29 | eceq1 8767 | . . . . 5 ⊢ (𝑥 = 𝑉 → [𝑥](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺)) | |
| 30 | ecexg 8732 | . . . . . 6 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [𝑉](𝑀 ~QG 𝐺) ∈ V) | |
| 31 | 23, 30 | ax-mp 5 | . . . . 5 ⊢ [𝑉](𝑀 ~QG 𝐺) ∈ V |
| 32 | 29, 22, 31 | fvmpt 6997 | . . . 4 ⊢ (𝑉 ∈ 𝐵 → (𝐹‘𝑉) = [𝑉](𝑀 ~QG 𝐺)) |
| 33 | 28, 32 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝑉) = [𝑉](𝑀 ~QG 𝐺)) |
| 34 | 27, 33 | eqeq12d 2750 | . 2 ⊢ (𝜑 → ((𝐹‘𝑈) = (𝐹‘𝑉) ↔ [𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺))) |
| 35 | eceq1 8767 | . . . . 5 ⊢ (𝑥 = (𝐾 · 𝑈) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺)) | |
| 36 | ecexg 8732 | . . . . . 6 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) ∈ V) | |
| 37 | 23, 36 | ax-mp 5 | . . . . 5 ⊢ [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) ∈ V |
| 38 | 35, 22, 37 | fvmpt 6997 | . . . 4 ⊢ ((𝐾 · 𝑈) ∈ 𝐵 → (𝐹‘(𝐾 · 𝑈)) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺)) |
| 39 | 18, 38 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘(𝐾 · 𝑈)) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺)) |
| 40 | 1, 16, 4, 3 | lmodvscl 20849 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝐾 ∈ 𝑆 ∧ 𝑉 ∈ 𝐵) → (𝐾 · 𝑉) ∈ 𝐵) |
| 41 | 5, 7, 28, 40 | syl3anc 1372 | . . . 4 ⊢ (𝜑 → (𝐾 · 𝑉) ∈ 𝐵) |
| 42 | eceq1 8767 | . . . . 5 ⊢ (𝑥 = (𝐾 · 𝑉) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)) | |
| 43 | ecexg 8732 | . . . . . 6 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑉)](𝑀 ~QG 𝐺) ∈ V) | |
| 44 | 23, 43 | ax-mp 5 | . . . . 5 ⊢ [(𝐾 · 𝑉)](𝑀 ~QG 𝐺) ∈ V |
| 45 | 42, 22, 44 | fvmpt 6997 | . . . 4 ⊢ ((𝐾 · 𝑉) ∈ 𝐵 → (𝐹‘(𝐾 · 𝑉)) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)) |
| 46 | 41, 45 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘(𝐾 · 𝑉)) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)) |
| 47 | 39, 46 | eqeq12d 2750 | . 2 ⊢ (𝜑 → ((𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉)) ↔ [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))) |
| 48 | 20, 34, 47 | 3imtr4d 294 | 1 ⊢ (𝜑 → ((𝐹‘𝑈) = (𝐹‘𝑉) → (𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3464 class class class wbr 5125 ↦ cmpt 5207 ‘cfv 6542 (class class class)co 7414 Er wer 8725 [cec 8726 Basecbs 17230 Scalarcsca 17280 ·𝑠 cvsca 17281 /s cqus 17526 SubGrpcsubg 19112 ~QG cqg 19114 LModclmod 20831 LSubSpclss 20902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-ec 8730 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-0g 17462 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-grp 18928 df-minusg 18929 df-sbg 18930 df-subg 19115 df-eqg 19117 df-cmn 19773 df-abl 19774 df-mgp 20111 df-rng 20123 df-ur 20152 df-ring 20205 df-lmod 20833 df-lss 20903 |
| This theorem is referenced by: qusvsval 33321 quslmod 33327 quslmhm 33328 |
| Copyright terms: Public domain | W3C validator |