Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusvscpbl Structured version   Visualization version   GIF version

Theorem qusvscpbl 32143
Description: The quotient map distributes over the scalar multiplication. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
eqgvscpbl.v 𝐵 = (Base‘𝑀)
eqgvscpbl.e = (𝑀 ~QG 𝐺)
eqgvscpbl.s 𝑆 = (Base‘(Scalar‘𝑀))
eqgvscpbl.p · = ( ·𝑠𝑀)
eqgvscpbl.m (𝜑𝑀 ∈ LMod)
eqgvscpbl.g (𝜑𝐺 ∈ (LSubSp‘𝑀))
eqgvscpbl.k (𝜑𝐾𝑆)
qusscaval.n 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
qusscaval.m = ( ·𝑠𝑁)
qusvscpbl.f 𝐹 = (𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))
qusvscpbl.u (𝜑𝑈𝐵)
qusvscpbl.v (𝜑𝑉𝐵)
Assertion
Ref Expression
qusvscpbl (𝜑 → ((𝐹𝑈) = (𝐹𝑉) → (𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝐾   𝑥,𝑀   𝑥,𝑈   𝑥,𝑉   𝜑,𝑥   𝑥, ·
Allowed substitution hints:   (𝑥)   𝑆(𝑥)   (𝑥)   𝐹(𝑥)   𝑁(𝑥)

Proof of Theorem qusvscpbl
StepHypRef Expression
1 eqgvscpbl.v . . . 4 𝐵 = (Base‘𝑀)
2 eqid 2736 . . . 4 (𝑀 ~QG 𝐺) = (𝑀 ~QG 𝐺)
3 eqgvscpbl.s . . . 4 𝑆 = (Base‘(Scalar‘𝑀))
4 eqgvscpbl.p . . . 4 · = ( ·𝑠𝑀)
5 eqgvscpbl.m . . . 4 (𝜑𝑀 ∈ LMod)
6 eqgvscpbl.g . . . 4 (𝜑𝐺 ∈ (LSubSp‘𝑀))
7 eqgvscpbl.k . . . 4 (𝜑𝐾𝑆)
81, 2, 3, 4, 5, 6, 7eqgvscpbl 32142 . . 3 (𝜑 → (𝑈(𝑀 ~QG 𝐺)𝑉 → (𝐾 · 𝑈)(𝑀 ~QG 𝐺)(𝐾 · 𝑉)))
9 eqid 2736 . . . . . . 7 (LSubSp‘𝑀) = (LSubSp‘𝑀)
109lsssubg 20418 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀))
115, 6, 10syl2anc 584 . . . . 5 (𝜑𝐺 ∈ (SubGrp‘𝑀))
121, 2eqger 18980 . . . . 5 (𝐺 ∈ (SubGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝐵)
1311, 12syl 17 . . . 4 (𝜑 → (𝑀 ~QG 𝐺) Er 𝐵)
14 qusvscpbl.u . . . 4 (𝜑𝑈𝐵)
1513, 14erth 8697 . . 3 (𝜑 → (𝑈(𝑀 ~QG 𝐺)𝑉 ↔ [𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺)))
16 eqid 2736 . . . . . 6 (Scalar‘𝑀) = (Scalar‘𝑀)
171, 16, 4, 3lmodvscl 20339 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑈𝐵) → (𝐾 · 𝑈) ∈ 𝐵)
185, 7, 14, 17syl3anc 1371 . . . 4 (𝜑 → (𝐾 · 𝑈) ∈ 𝐵)
1913, 18erth 8697 . . 3 (𝜑 → ((𝐾 · 𝑈)(𝑀 ~QG 𝐺)(𝐾 · 𝑉) ↔ [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)))
208, 15, 193imtr3d 292 . 2 (𝜑 → ([𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺) → [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)))
21 eceq1 8686 . . . . 5 (𝑥 = 𝑈 → [𝑥](𝑀 ~QG 𝐺) = [𝑈](𝑀 ~QG 𝐺))
22 qusvscpbl.f . . . . 5 𝐹 = (𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))
23 ovex 7390 . . . . . 6 (𝑀 ~QG 𝐺) ∈ V
24 ecexg 8652 . . . . . 6 ((𝑀 ~QG 𝐺) ∈ V → [𝑈](𝑀 ~QG 𝐺) ∈ V)
2523, 24ax-mp 5 . . . . 5 [𝑈](𝑀 ~QG 𝐺) ∈ V
2621, 22, 25fvmpt 6948 . . . 4 (𝑈𝐵 → (𝐹𝑈) = [𝑈](𝑀 ~QG 𝐺))
2714, 26syl 17 . . 3 (𝜑 → (𝐹𝑈) = [𝑈](𝑀 ~QG 𝐺))
28 qusvscpbl.v . . . 4 (𝜑𝑉𝐵)
29 eceq1 8686 . . . . 5 (𝑥 = 𝑉 → [𝑥](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺))
30 ecexg 8652 . . . . . 6 ((𝑀 ~QG 𝐺) ∈ V → [𝑉](𝑀 ~QG 𝐺) ∈ V)
3123, 30ax-mp 5 . . . . 5 [𝑉](𝑀 ~QG 𝐺) ∈ V
3229, 22, 31fvmpt 6948 . . . 4 (𝑉𝐵 → (𝐹𝑉) = [𝑉](𝑀 ~QG 𝐺))
3328, 32syl 17 . . 3 (𝜑 → (𝐹𝑉) = [𝑉](𝑀 ~QG 𝐺))
3427, 33eqeq12d 2752 . 2 (𝜑 → ((𝐹𝑈) = (𝐹𝑉) ↔ [𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺)))
35 eceq1 8686 . . . . 5 (𝑥 = (𝐾 · 𝑈) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺))
36 ecexg 8652 . . . . . 6 ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) ∈ V)
3723, 36ax-mp 5 . . . . 5 [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) ∈ V
3835, 22, 37fvmpt 6948 . . . 4 ((𝐾 · 𝑈) ∈ 𝐵 → (𝐹‘(𝐾 · 𝑈)) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺))
3918, 38syl 17 . . 3 (𝜑 → (𝐹‘(𝐾 · 𝑈)) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺))
401, 16, 4, 3lmodvscl 20339 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑉𝐵) → (𝐾 · 𝑉) ∈ 𝐵)
415, 7, 28, 40syl3anc 1371 . . . 4 (𝜑 → (𝐾 · 𝑉) ∈ 𝐵)
42 eceq1 8686 . . . . 5 (𝑥 = (𝐾 · 𝑉) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))
43 ecexg 8652 . . . . . 6 ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑉)](𝑀 ~QG 𝐺) ∈ V)
4423, 43ax-mp 5 . . . . 5 [(𝐾 · 𝑉)](𝑀 ~QG 𝐺) ∈ V
4542, 22, 44fvmpt 6948 . . . 4 ((𝐾 · 𝑉) ∈ 𝐵 → (𝐹‘(𝐾 · 𝑉)) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))
4641, 45syl 17 . . 3 (𝜑 → (𝐹‘(𝐾 · 𝑉)) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))
4739, 46eqeq12d 2752 . 2 (𝜑 → ((𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉)) ↔ [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)))
4820, 34, 473imtr4d 293 1 (𝜑 → ((𝐹𝑈) = (𝐹𝑉) → (𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3445   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357   Er wer 8645  [cec 8646  Basecbs 17083  Scalarcsca 17136   ·𝑠 cvsca 17137   /s cqus 17387  SubGrpcsubg 18922   ~QG cqg 18924  LModclmod 20322  LSubSpclss 20392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-ec 8650  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-eqg 18927  df-mgp 19897  df-ur 19914  df-ring 19966  df-lmod 20324  df-lss 20393
This theorem is referenced by:  qusscaval  32144  quslmod  32146  quslmhm  32147
  Copyright terms: Public domain W3C validator