| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qusvscpbl | Structured version Visualization version GIF version | ||
| Description: The quotient map distributes over the scalar multiplication. (Contributed by Thierry Arnoux, 18-May-2023.) |
| Ref | Expression |
|---|---|
| eqgvscpbl.v | ⊢ 𝐵 = (Base‘𝑀) |
| eqgvscpbl.e | ⊢ ∼ = (𝑀 ~QG 𝐺) |
| eqgvscpbl.s | ⊢ 𝑆 = (Base‘(Scalar‘𝑀)) |
| eqgvscpbl.p | ⊢ · = ( ·𝑠 ‘𝑀) |
| eqgvscpbl.m | ⊢ (𝜑 → 𝑀 ∈ LMod) |
| eqgvscpbl.g | ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) |
| eqgvscpbl.k | ⊢ (𝜑 → 𝐾 ∈ 𝑆) |
| qusvsval.n | ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) |
| qusvsval.m | ⊢ ∙ = ( ·𝑠 ‘𝑁) |
| qusvscpbl.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) |
| qusvscpbl.u | ⊢ (𝜑 → 𝑈 ∈ 𝐵) |
| qusvscpbl.v | ⊢ (𝜑 → 𝑉 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| qusvscpbl | ⊢ (𝜑 → ((𝐹‘𝑈) = (𝐹‘𝑉) → (𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqgvscpbl.v | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | eqid 2731 | . . . 4 ⊢ (𝑀 ~QG 𝐺) = (𝑀 ~QG 𝐺) | |
| 3 | eqgvscpbl.s | . . . 4 ⊢ 𝑆 = (Base‘(Scalar‘𝑀)) | |
| 4 | eqgvscpbl.p | . . . 4 ⊢ · = ( ·𝑠 ‘𝑀) | |
| 5 | eqgvscpbl.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ LMod) | |
| 6 | eqgvscpbl.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) | |
| 7 | eqgvscpbl.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑆) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | eqgvscpbl 33315 | . . 3 ⊢ (𝜑 → (𝑈(𝑀 ~QG 𝐺)𝑉 → (𝐾 · 𝑈)(𝑀 ~QG 𝐺)(𝐾 · 𝑉))) |
| 9 | eqid 2731 | . . . . . . 7 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
| 10 | 9 | lsssubg 20890 | . . . . . 6 ⊢ ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀)) |
| 11 | 5, 6, 10 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (SubGrp‘𝑀)) |
| 12 | 1, 2 | eqger 19090 | . . . . 5 ⊢ (𝐺 ∈ (SubGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝐵) |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀 ~QG 𝐺) Er 𝐵) |
| 14 | qusvscpbl.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝐵) | |
| 15 | 13, 14 | erth 8676 | . . 3 ⊢ (𝜑 → (𝑈(𝑀 ~QG 𝐺)𝑉 ↔ [𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺))) |
| 16 | eqid 2731 | . . . . . 6 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
| 17 | 1, 16, 4, 3 | lmodvscl 20811 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝐾 ∈ 𝑆 ∧ 𝑈 ∈ 𝐵) → (𝐾 · 𝑈) ∈ 𝐵) |
| 18 | 5, 7, 14, 17 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐾 · 𝑈) ∈ 𝐵) |
| 19 | 13, 18 | erth 8676 | . . 3 ⊢ (𝜑 → ((𝐾 · 𝑈)(𝑀 ~QG 𝐺)(𝐾 · 𝑉) ↔ [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))) |
| 20 | 8, 15, 19 | 3imtr3d 293 | . 2 ⊢ (𝜑 → ([𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺) → [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))) |
| 21 | eceq1 8661 | . . . . 5 ⊢ (𝑥 = 𝑈 → [𝑥](𝑀 ~QG 𝐺) = [𝑈](𝑀 ~QG 𝐺)) | |
| 22 | qusvscpbl.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝑀 ~QG 𝐺)) | |
| 23 | ovex 7379 | . . . . . 6 ⊢ (𝑀 ~QG 𝐺) ∈ V | |
| 24 | ecexg 8626 | . . . . . 6 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [𝑈](𝑀 ~QG 𝐺) ∈ V) | |
| 25 | 23, 24 | ax-mp 5 | . . . . 5 ⊢ [𝑈](𝑀 ~QG 𝐺) ∈ V |
| 26 | 21, 22, 25 | fvmpt 6929 | . . . 4 ⊢ (𝑈 ∈ 𝐵 → (𝐹‘𝑈) = [𝑈](𝑀 ~QG 𝐺)) |
| 27 | 14, 26 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝑈) = [𝑈](𝑀 ~QG 𝐺)) |
| 28 | qusvscpbl.v | . . . 4 ⊢ (𝜑 → 𝑉 ∈ 𝐵) | |
| 29 | eceq1 8661 | . . . . 5 ⊢ (𝑥 = 𝑉 → [𝑥](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺)) | |
| 30 | ecexg 8626 | . . . . . 6 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [𝑉](𝑀 ~QG 𝐺) ∈ V) | |
| 31 | 23, 30 | ax-mp 5 | . . . . 5 ⊢ [𝑉](𝑀 ~QG 𝐺) ∈ V |
| 32 | 29, 22, 31 | fvmpt 6929 | . . . 4 ⊢ (𝑉 ∈ 𝐵 → (𝐹‘𝑉) = [𝑉](𝑀 ~QG 𝐺)) |
| 33 | 28, 32 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝑉) = [𝑉](𝑀 ~QG 𝐺)) |
| 34 | 27, 33 | eqeq12d 2747 | . 2 ⊢ (𝜑 → ((𝐹‘𝑈) = (𝐹‘𝑉) ↔ [𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺))) |
| 35 | eceq1 8661 | . . . . 5 ⊢ (𝑥 = (𝐾 · 𝑈) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺)) | |
| 36 | ecexg 8626 | . . . . . 6 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) ∈ V) | |
| 37 | 23, 36 | ax-mp 5 | . . . . 5 ⊢ [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) ∈ V |
| 38 | 35, 22, 37 | fvmpt 6929 | . . . 4 ⊢ ((𝐾 · 𝑈) ∈ 𝐵 → (𝐹‘(𝐾 · 𝑈)) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺)) |
| 39 | 18, 38 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘(𝐾 · 𝑈)) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺)) |
| 40 | 1, 16, 4, 3 | lmodvscl 20811 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝐾 ∈ 𝑆 ∧ 𝑉 ∈ 𝐵) → (𝐾 · 𝑉) ∈ 𝐵) |
| 41 | 5, 7, 28, 40 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐾 · 𝑉) ∈ 𝐵) |
| 42 | eceq1 8661 | . . . . 5 ⊢ (𝑥 = (𝐾 · 𝑉) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)) | |
| 43 | ecexg 8626 | . . . . . 6 ⊢ ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑉)](𝑀 ~QG 𝐺) ∈ V) | |
| 44 | 23, 43 | ax-mp 5 | . . . . 5 ⊢ [(𝐾 · 𝑉)](𝑀 ~QG 𝐺) ∈ V |
| 45 | 42, 22, 44 | fvmpt 6929 | . . . 4 ⊢ ((𝐾 · 𝑉) ∈ 𝐵 → (𝐹‘(𝐾 · 𝑉)) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)) |
| 46 | 41, 45 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘(𝐾 · 𝑉)) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)) |
| 47 | 39, 46 | eqeq12d 2747 | . 2 ⊢ (𝜑 → ((𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉)) ↔ [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))) |
| 48 | 20, 34, 47 | 3imtr4d 294 | 1 ⊢ (𝜑 → ((𝐹‘𝑈) = (𝐹‘𝑉) → (𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 class class class wbr 5089 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 Er wer 8619 [cec 8620 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 /s cqus 17409 SubGrpcsubg 19033 ~QG cqg 19035 LModclmod 20793 LSubSpclss 20864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-ec 8624 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-eqg 19038 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-lmod 20795 df-lss 20865 |
| This theorem is referenced by: qusvsval 33317 quslmod 33323 quslmhm 33324 |
| Copyright terms: Public domain | W3C validator |