Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusvscpbl Structured version   Visualization version   GIF version

Theorem qusvscpbl 30920
Description: The quotient map distributes over the scalar multiplication. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
eqgvscpbl.v 𝐵 = (Base‘𝑀)
eqgvscpbl.e = (𝑀 ~QG 𝐺)
eqgvscpbl.s 𝑆 = (Base‘(Scalar‘𝑀))
eqgvscpbl.p · = ( ·𝑠𝑀)
eqgvscpbl.m (𝜑𝑀 ∈ LMod)
eqgvscpbl.g (𝜑𝐺 ∈ (LSubSp‘𝑀))
eqgvscpbl.k (𝜑𝐾𝑆)
qusscaval.n 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
qusscaval.m = ( ·𝑠𝑁)
qusvscpbl.f 𝐹 = (𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))
qusvscpbl.u (𝜑𝑈𝐵)
qusvscpbl.v (𝜑𝑉𝐵)
Assertion
Ref Expression
qusvscpbl (𝜑 → ((𝐹𝑈) = (𝐹𝑉) → (𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝐾   𝑥,𝑀   𝑥,𝑈   𝑥,𝑉   𝜑,𝑥   𝑥, ·
Allowed substitution hints:   (𝑥)   𝑆(𝑥)   (𝑥)   𝐹(𝑥)   𝑁(𝑥)

Proof of Theorem qusvscpbl
StepHypRef Expression
1 eqgvscpbl.v . . . 4 𝐵 = (Base‘𝑀)
2 eqid 2821 . . . 4 (𝑀 ~QG 𝐺) = (𝑀 ~QG 𝐺)
3 eqgvscpbl.s . . . 4 𝑆 = (Base‘(Scalar‘𝑀))
4 eqgvscpbl.p . . . 4 · = ( ·𝑠𝑀)
5 eqgvscpbl.m . . . 4 (𝜑𝑀 ∈ LMod)
6 eqgvscpbl.g . . . 4 (𝜑𝐺 ∈ (LSubSp‘𝑀))
7 eqgvscpbl.k . . . 4 (𝜑𝐾𝑆)
81, 2, 3, 4, 5, 6, 7eqgvscpbl 30919 . . 3 (𝜑 → (𝑈(𝑀 ~QG 𝐺)𝑉 → (𝐾 · 𝑈)(𝑀 ~QG 𝐺)(𝐾 · 𝑉)))
9 eqid 2821 . . . . . . 7 (LSubSp‘𝑀) = (LSubSp‘𝑀)
109lsssubg 19729 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀))
115, 6, 10syl2anc 586 . . . . 5 (𝜑𝐺 ∈ (SubGrp‘𝑀))
121, 2eqger 18330 . . . . 5 (𝐺 ∈ (SubGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝐵)
1311, 12syl 17 . . . 4 (𝜑 → (𝑀 ~QG 𝐺) Er 𝐵)
14 qusvscpbl.u . . . 4 (𝜑𝑈𝐵)
1513, 14erth 8338 . . 3 (𝜑 → (𝑈(𝑀 ~QG 𝐺)𝑉 ↔ [𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺)))
16 eqid 2821 . . . . . 6 (Scalar‘𝑀) = (Scalar‘𝑀)
171, 16, 4, 3lmodvscl 19651 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑈𝐵) → (𝐾 · 𝑈) ∈ 𝐵)
185, 7, 14, 17syl3anc 1367 . . . 4 (𝜑 → (𝐾 · 𝑈) ∈ 𝐵)
1913, 18erth 8338 . . 3 (𝜑 → ((𝐾 · 𝑈)(𝑀 ~QG 𝐺)(𝐾 · 𝑉) ↔ [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)))
208, 15, 193imtr3d 295 . 2 (𝜑 → ([𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺) → [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)))
21 eceq1 8327 . . . . 5 (𝑥 = 𝑈 → [𝑥](𝑀 ~QG 𝐺) = [𝑈](𝑀 ~QG 𝐺))
22 qusvscpbl.f . . . . 5 𝐹 = (𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))
23 ovex 7189 . . . . . 6 (𝑀 ~QG 𝐺) ∈ V
24 ecexg 8293 . . . . . 6 ((𝑀 ~QG 𝐺) ∈ V → [𝑈](𝑀 ~QG 𝐺) ∈ V)
2523, 24ax-mp 5 . . . . 5 [𝑈](𝑀 ~QG 𝐺) ∈ V
2621, 22, 25fvmpt 6768 . . . 4 (𝑈𝐵 → (𝐹𝑈) = [𝑈](𝑀 ~QG 𝐺))
2714, 26syl 17 . . 3 (𝜑 → (𝐹𝑈) = [𝑈](𝑀 ~QG 𝐺))
28 qusvscpbl.v . . . 4 (𝜑𝑉𝐵)
29 eceq1 8327 . . . . 5 (𝑥 = 𝑉 → [𝑥](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺))
30 ecexg 8293 . . . . . 6 ((𝑀 ~QG 𝐺) ∈ V → [𝑉](𝑀 ~QG 𝐺) ∈ V)
3123, 30ax-mp 5 . . . . 5 [𝑉](𝑀 ~QG 𝐺) ∈ V
3229, 22, 31fvmpt 6768 . . . 4 (𝑉𝐵 → (𝐹𝑉) = [𝑉](𝑀 ~QG 𝐺))
3328, 32syl 17 . . 3 (𝜑 → (𝐹𝑉) = [𝑉](𝑀 ~QG 𝐺))
3427, 33eqeq12d 2837 . 2 (𝜑 → ((𝐹𝑈) = (𝐹𝑉) ↔ [𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺)))
35 eceq1 8327 . . . . 5 (𝑥 = (𝐾 · 𝑈) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺))
36 ecexg 8293 . . . . . 6 ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) ∈ V)
3723, 36ax-mp 5 . . . . 5 [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) ∈ V
3835, 22, 37fvmpt 6768 . . . 4 ((𝐾 · 𝑈) ∈ 𝐵 → (𝐹‘(𝐾 · 𝑈)) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺))
3918, 38syl 17 . . 3 (𝜑 → (𝐹‘(𝐾 · 𝑈)) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺))
401, 16, 4, 3lmodvscl 19651 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑉𝐵) → (𝐾 · 𝑉) ∈ 𝐵)
415, 7, 28, 40syl3anc 1367 . . . 4 (𝜑 → (𝐾 · 𝑉) ∈ 𝐵)
42 eceq1 8327 . . . . 5 (𝑥 = (𝐾 · 𝑉) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))
43 ecexg 8293 . . . . . 6 ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑉)](𝑀 ~QG 𝐺) ∈ V)
4423, 43ax-mp 5 . . . . 5 [(𝐾 · 𝑉)](𝑀 ~QG 𝐺) ∈ V
4542, 22, 44fvmpt 6768 . . . 4 ((𝐾 · 𝑉) ∈ 𝐵 → (𝐹‘(𝐾 · 𝑉)) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))
4641, 45syl 17 . . 3 (𝜑 → (𝐹‘(𝐾 · 𝑉)) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))
4739, 46eqeq12d 2837 . 2 (𝜑 → ((𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉)) ↔ [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)))
4820, 34, 473imtr4d 296 1 (𝜑 → ((𝐹𝑈) = (𝐹𝑉) → (𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  Vcvv 3494   class class class wbr 5066  cmpt 5146  cfv 6355  (class class class)co 7156   Er wer 8286  [cec 8287  Basecbs 16483  Scalarcsca 16568   ·𝑠 cvsca 16569   /s cqus 16778  SubGrpcsubg 18273   ~QG cqg 18275  LModclmod 19634  LSubSpclss 19703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-ec 8291  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-eqg 18278  df-mgp 19240  df-ur 19252  df-ring 19299  df-lmod 19636  df-lss 19704
This theorem is referenced by:  qusscaval  30921  quslmod  30923  quslmhm  30924
  Copyright terms: Public domain W3C validator