Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusvscpbl Structured version   Visualization version   GIF version

Theorem qusvscpbl 31551
Description: The quotient map distributes over the scalar multiplication. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
eqgvscpbl.v 𝐵 = (Base‘𝑀)
eqgvscpbl.e = (𝑀 ~QG 𝐺)
eqgvscpbl.s 𝑆 = (Base‘(Scalar‘𝑀))
eqgvscpbl.p · = ( ·𝑠𝑀)
eqgvscpbl.m (𝜑𝑀 ∈ LMod)
eqgvscpbl.g (𝜑𝐺 ∈ (LSubSp‘𝑀))
eqgvscpbl.k (𝜑𝐾𝑆)
qusscaval.n 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
qusscaval.m = ( ·𝑠𝑁)
qusvscpbl.f 𝐹 = (𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))
qusvscpbl.u (𝜑𝑈𝐵)
qusvscpbl.v (𝜑𝑉𝐵)
Assertion
Ref Expression
qusvscpbl (𝜑 → ((𝐹𝑈) = (𝐹𝑉) → (𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝐾   𝑥,𝑀   𝑥,𝑈   𝑥,𝑉   𝜑,𝑥   𝑥, ·
Allowed substitution hints:   (𝑥)   𝑆(𝑥)   (𝑥)   𝐹(𝑥)   𝑁(𝑥)

Proof of Theorem qusvscpbl
StepHypRef Expression
1 eqgvscpbl.v . . . 4 𝐵 = (Base‘𝑀)
2 eqid 2738 . . . 4 (𝑀 ~QG 𝐺) = (𝑀 ~QG 𝐺)
3 eqgvscpbl.s . . . 4 𝑆 = (Base‘(Scalar‘𝑀))
4 eqgvscpbl.p . . . 4 · = ( ·𝑠𝑀)
5 eqgvscpbl.m . . . 4 (𝜑𝑀 ∈ LMod)
6 eqgvscpbl.g . . . 4 (𝜑𝐺 ∈ (LSubSp‘𝑀))
7 eqgvscpbl.k . . . 4 (𝜑𝐾𝑆)
81, 2, 3, 4, 5, 6, 7eqgvscpbl 31550 . . 3 (𝜑 → (𝑈(𝑀 ~QG 𝐺)𝑉 → (𝐾 · 𝑈)(𝑀 ~QG 𝐺)(𝐾 · 𝑉)))
9 eqid 2738 . . . . . . 7 (LSubSp‘𝑀) = (LSubSp‘𝑀)
109lsssubg 20219 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀))
115, 6, 10syl2anc 584 . . . . 5 (𝜑𝐺 ∈ (SubGrp‘𝑀))
121, 2eqger 18806 . . . . 5 (𝐺 ∈ (SubGrp‘𝑀) → (𝑀 ~QG 𝐺) Er 𝐵)
1311, 12syl 17 . . . 4 (𝜑 → (𝑀 ~QG 𝐺) Er 𝐵)
14 qusvscpbl.u . . . 4 (𝜑𝑈𝐵)
1513, 14erth 8547 . . 3 (𝜑 → (𝑈(𝑀 ~QG 𝐺)𝑉 ↔ [𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺)))
16 eqid 2738 . . . . . 6 (Scalar‘𝑀) = (Scalar‘𝑀)
171, 16, 4, 3lmodvscl 20140 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑈𝐵) → (𝐾 · 𝑈) ∈ 𝐵)
185, 7, 14, 17syl3anc 1370 . . . 4 (𝜑 → (𝐾 · 𝑈) ∈ 𝐵)
1913, 18erth 8547 . . 3 (𝜑 → ((𝐾 · 𝑈)(𝑀 ~QG 𝐺)(𝐾 · 𝑉) ↔ [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)))
208, 15, 193imtr3d 293 . 2 (𝜑 → ([𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺) → [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)))
21 eceq1 8536 . . . . 5 (𝑥 = 𝑈 → [𝑥](𝑀 ~QG 𝐺) = [𝑈](𝑀 ~QG 𝐺))
22 qusvscpbl.f . . . . 5 𝐹 = (𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))
23 ovex 7308 . . . . . 6 (𝑀 ~QG 𝐺) ∈ V
24 ecexg 8502 . . . . . 6 ((𝑀 ~QG 𝐺) ∈ V → [𝑈](𝑀 ~QG 𝐺) ∈ V)
2523, 24ax-mp 5 . . . . 5 [𝑈](𝑀 ~QG 𝐺) ∈ V
2621, 22, 25fvmpt 6875 . . . 4 (𝑈𝐵 → (𝐹𝑈) = [𝑈](𝑀 ~QG 𝐺))
2714, 26syl 17 . . 3 (𝜑 → (𝐹𝑈) = [𝑈](𝑀 ~QG 𝐺))
28 qusvscpbl.v . . . 4 (𝜑𝑉𝐵)
29 eceq1 8536 . . . . 5 (𝑥 = 𝑉 → [𝑥](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺))
30 ecexg 8502 . . . . . 6 ((𝑀 ~QG 𝐺) ∈ V → [𝑉](𝑀 ~QG 𝐺) ∈ V)
3123, 30ax-mp 5 . . . . 5 [𝑉](𝑀 ~QG 𝐺) ∈ V
3229, 22, 31fvmpt 6875 . . . 4 (𝑉𝐵 → (𝐹𝑉) = [𝑉](𝑀 ~QG 𝐺))
3328, 32syl 17 . . 3 (𝜑 → (𝐹𝑉) = [𝑉](𝑀 ~QG 𝐺))
3427, 33eqeq12d 2754 . 2 (𝜑 → ((𝐹𝑈) = (𝐹𝑉) ↔ [𝑈](𝑀 ~QG 𝐺) = [𝑉](𝑀 ~QG 𝐺)))
35 eceq1 8536 . . . . 5 (𝑥 = (𝐾 · 𝑈) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺))
36 ecexg 8502 . . . . . 6 ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) ∈ V)
3723, 36ax-mp 5 . . . . 5 [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) ∈ V
3835, 22, 37fvmpt 6875 . . . 4 ((𝐾 · 𝑈) ∈ 𝐵 → (𝐹‘(𝐾 · 𝑈)) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺))
3918, 38syl 17 . . 3 (𝜑 → (𝐹‘(𝐾 · 𝑈)) = [(𝐾 · 𝑈)](𝑀 ~QG 𝐺))
401, 16, 4, 3lmodvscl 20140 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑉𝐵) → (𝐾 · 𝑉) ∈ 𝐵)
415, 7, 28, 40syl3anc 1370 . . . 4 (𝜑 → (𝐾 · 𝑉) ∈ 𝐵)
42 eceq1 8536 . . . . 5 (𝑥 = (𝐾 · 𝑉) → [𝑥](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))
43 ecexg 8502 . . . . . 6 ((𝑀 ~QG 𝐺) ∈ V → [(𝐾 · 𝑉)](𝑀 ~QG 𝐺) ∈ V)
4423, 43ax-mp 5 . . . . 5 [(𝐾 · 𝑉)](𝑀 ~QG 𝐺) ∈ V
4542, 22, 44fvmpt 6875 . . . 4 ((𝐾 · 𝑉) ∈ 𝐵 → (𝐹‘(𝐾 · 𝑉)) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))
4641, 45syl 17 . . 3 (𝜑 → (𝐹‘(𝐾 · 𝑉)) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺))
4739, 46eqeq12d 2754 . 2 (𝜑 → ((𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉)) ↔ [(𝐾 · 𝑈)](𝑀 ~QG 𝐺) = [(𝐾 · 𝑉)](𝑀 ~QG 𝐺)))
4820, 34, 473imtr4d 294 1 (𝜑 → ((𝐹𝑈) = (𝐹𝑉) → (𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275   Er wer 8495  [cec 8496  Basecbs 16912  Scalarcsca 16965   ·𝑠 cvsca 16966   /s cqus 17216  SubGrpcsubg 18749   ~QG cqg 18751  LModclmod 20123  LSubSpclss 20193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-ec 8500  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-eqg 18754  df-mgp 19721  df-ur 19738  df-ring 19785  df-lmod 20125  df-lss 20194
This theorem is referenced by:  qusscaval  31552  quslmod  31554  quslmhm  31555
  Copyright terms: Public domain W3C validator