MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intrnfi Structured version   Visualization version   GIF version

Theorem intrnfi 9325
Description: Sufficient condition for the intersection of the range of a function to be in the set of finite intersections. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
intrnfi ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ran 𝐹 ∈ (fi‘𝐵))

Proof of Theorem intrnfi
StepHypRef Expression
1 simpr1 1195 . . . 4 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐹:𝐴𝐵)
21frnd 6664 . . 3 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ran 𝐹𝐵)
31fdmd 6666 . . . . 5 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → dom 𝐹 = 𝐴)
4 simpr2 1196 . . . . 5 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ≠ ∅)
53, 4eqnetrd 2992 . . . 4 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → dom 𝐹 ≠ ∅)
6 dm0rn0 5871 . . . . 5 (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅)
76necon3bii 2977 . . . 4 (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅)
85, 7sylib 218 . . 3 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ran 𝐹 ≠ ∅)
9 simpr3 1197 . . . 4 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ Fin)
101ffnd 6657 . . . . 5 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐹 Fn 𝐴)
11 dffn4 6746 . . . . 5 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
1210, 11sylib 218 . . . 4 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐹:𝐴onto→ran 𝐹)
13 fofi 9220 . . . 4 ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto→ran 𝐹) → ran 𝐹 ∈ Fin)
149, 12, 13syl2anc 584 . . 3 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ran 𝐹 ∈ Fin)
152, 8, 143jca 1128 . 2 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → (ran 𝐹𝐵 ∧ ran 𝐹 ≠ ∅ ∧ ran 𝐹 ∈ Fin))
16 elfir 9324 . 2 ((𝐵𝑉 ∧ (ran 𝐹𝐵 ∧ ran 𝐹 ≠ ∅ ∧ ran 𝐹 ∈ Fin)) → ran 𝐹 ∈ (fi‘𝐵))
1715, 16syldan 591 1 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ran 𝐹 ∈ (fi‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wne 2925  wss 3905  c0 4286   cint 4899  dom cdm 5623  ran crn 5624   Fn wfn 6481  wf 6482  ontowfo 6484  cfv 6486  Fincfn 8879  ficfi 9319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-om 7807  df-1o 8395  df-en 8880  df-dom 8881  df-fin 8883  df-fi 9320
This theorem is referenced by:  iinfi  9326  firest  17354
  Copyright terms: Public domain W3C validator