![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intrnfi | Structured version Visualization version GIF version |
Description: Sufficient condition for the intersection of the range of a function to be in the set of finite intersections. (Contributed by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
intrnfi | ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ ran 𝐹 ∈ (fi‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1191 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐹:𝐴⟶𝐵) | |
2 | 1 | frnd 6731 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ran 𝐹 ⊆ 𝐵) |
3 | 1 | fdmd 6733 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → dom 𝐹 = 𝐴) |
4 | simpr2 1192 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ≠ ∅) | |
5 | 3, 4 | eqnetrd 2997 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → dom 𝐹 ≠ ∅) |
6 | dm0rn0 5927 | . . . . 5 ⊢ (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅) | |
7 | 6 | necon3bii 2982 | . . . 4 ⊢ (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅) |
8 | 5, 7 | sylib 217 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ran 𝐹 ≠ ∅) |
9 | simpr3 1193 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ Fin) | |
10 | 1 | ffnd 6724 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐹 Fn 𝐴) |
11 | dffn4 6816 | . . . . 5 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) | |
12 | 10, 11 | sylib 217 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐹:𝐴–onto→ran 𝐹) |
13 | fofi 9369 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→ran 𝐹) → ran 𝐹 ∈ Fin) | |
14 | 9, 12, 13 | syl2anc 582 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ran 𝐹 ∈ Fin) |
15 | 2, 8, 14 | 3jca 1125 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → (ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ≠ ∅ ∧ ran 𝐹 ∈ Fin)) |
16 | elfir 9445 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ (ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ≠ ∅ ∧ ran 𝐹 ∈ Fin)) → ∩ ran 𝐹 ∈ (fi‘𝐵)) | |
17 | 15, 16 | syldan 589 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ ran 𝐹 ∈ (fi‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 ∈ wcel 2098 ≠ wne 2929 ⊆ wss 3944 ∅c0 4322 ∩ cint 4950 dom cdm 5678 ran crn 5679 Fn wfn 6544 ⟶wf 6545 –onto→wfo 6547 ‘cfv 6549 Fincfn 8964 ficfi 9440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-om 7872 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-fin 8968 df-fi 9441 |
This theorem is referenced by: iinfi 9447 firest 17422 |
Copyright terms: Public domain | W3C validator |