![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intrnfi | Structured version Visualization version GIF version |
Description: Sufficient condition for the intersection of the range of a function to be in the set of finite intersections. (Contributed by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
intrnfi | β’ ((π΅ β π β§ (πΉ:π΄βΆπ΅ β§ π΄ β β β§ π΄ β Fin)) β β© ran πΉ β (fiβπ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1194 | . . . 4 β’ ((π΅ β π β§ (πΉ:π΄βΆπ΅ β§ π΄ β β β§ π΄ β Fin)) β πΉ:π΄βΆπ΅) | |
2 | 1 | frnd 6725 | . . 3 β’ ((π΅ β π β§ (πΉ:π΄βΆπ΅ β§ π΄ β β β§ π΄ β Fin)) β ran πΉ β π΅) |
3 | 1 | fdmd 6728 | . . . . 5 β’ ((π΅ β π β§ (πΉ:π΄βΆπ΅ β§ π΄ β β β§ π΄ β Fin)) β dom πΉ = π΄) |
4 | simpr2 1195 | . . . . 5 β’ ((π΅ β π β§ (πΉ:π΄βΆπ΅ β§ π΄ β β β§ π΄ β Fin)) β π΄ β β ) | |
5 | 3, 4 | eqnetrd 3008 | . . . 4 β’ ((π΅ β π β§ (πΉ:π΄βΆπ΅ β§ π΄ β β β§ π΄ β Fin)) β dom πΉ β β ) |
6 | dm0rn0 5924 | . . . . 5 β’ (dom πΉ = β β ran πΉ = β ) | |
7 | 6 | necon3bii 2993 | . . . 4 β’ (dom πΉ β β β ran πΉ β β ) |
8 | 5, 7 | sylib 217 | . . 3 β’ ((π΅ β π β§ (πΉ:π΄βΆπ΅ β§ π΄ β β β§ π΄ β Fin)) β ran πΉ β β ) |
9 | simpr3 1196 | . . . 4 β’ ((π΅ β π β§ (πΉ:π΄βΆπ΅ β§ π΄ β β β§ π΄ β Fin)) β π΄ β Fin) | |
10 | 1 | ffnd 6718 | . . . . 5 β’ ((π΅ β π β§ (πΉ:π΄βΆπ΅ β§ π΄ β β β§ π΄ β Fin)) β πΉ Fn π΄) |
11 | dffn4 6811 | . . . . 5 β’ (πΉ Fn π΄ β πΉ:π΄βontoβran πΉ) | |
12 | 10, 11 | sylib 217 | . . . 4 β’ ((π΅ β π β§ (πΉ:π΄βΆπ΅ β§ π΄ β β β§ π΄ β Fin)) β πΉ:π΄βontoβran πΉ) |
13 | fofi 9337 | . . . 4 β’ ((π΄ β Fin β§ πΉ:π΄βontoβran πΉ) β ran πΉ β Fin) | |
14 | 9, 12, 13 | syl2anc 584 | . . 3 β’ ((π΅ β π β§ (πΉ:π΄βΆπ΅ β§ π΄ β β β§ π΄ β Fin)) β ran πΉ β Fin) |
15 | 2, 8, 14 | 3jca 1128 | . 2 β’ ((π΅ β π β§ (πΉ:π΄βΆπ΅ β§ π΄ β β β§ π΄ β Fin)) β (ran πΉ β π΅ β§ ran πΉ β β β§ ran πΉ β Fin)) |
16 | elfir 9409 | . 2 β’ ((π΅ β π β§ (ran πΉ β π΅ β§ ran πΉ β β β§ ran πΉ β Fin)) β β© ran πΉ β (fiβπ΅)) | |
17 | 15, 16 | syldan 591 | 1 β’ ((π΅ β π β§ (πΉ:π΄βΆπ΅ β§ π΄ β β β§ π΄ β Fin)) β β© ran πΉ β (fiβπ΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 β wcel 2106 β wne 2940 β wss 3948 β c0 4322 β© cint 4950 dom cdm 5676 ran crn 5677 Fn wfn 6538 βΆwf 6539 βontoβwfo 6541 βcfv 6543 Fincfn 8938 ficfi 9404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-om 7855 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-fin 8942 df-fi 9405 |
This theorem is referenced by: iinfi 9411 firest 17377 |
Copyright terms: Public domain | W3C validator |