| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intrnfi | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for the intersection of the range of a function to be in the set of finite intersections. (Contributed by Mario Carneiro, 30-Aug-2015.) |
| Ref | Expression |
|---|---|
| intrnfi | ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ ran 𝐹 ∈ (fi‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 1195 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | frnd 6719 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ran 𝐹 ⊆ 𝐵) |
| 3 | 1 | fdmd 6721 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → dom 𝐹 = 𝐴) |
| 4 | simpr2 1196 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ≠ ∅) | |
| 5 | 3, 4 | eqnetrd 3000 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → dom 𝐹 ≠ ∅) |
| 6 | dm0rn0 5909 | . . . . 5 ⊢ (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅) | |
| 7 | 6 | necon3bii 2985 | . . . 4 ⊢ (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅) |
| 8 | 5, 7 | sylib 218 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ran 𝐹 ≠ ∅) |
| 9 | simpr3 1197 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ Fin) | |
| 10 | 1 | ffnd 6712 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐹 Fn 𝐴) |
| 11 | dffn4 6801 | . . . . 5 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) | |
| 12 | 10, 11 | sylib 218 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐹:𝐴–onto→ran 𝐹) |
| 13 | fofi 9328 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→ran 𝐹) → ran 𝐹 ∈ Fin) | |
| 14 | 9, 12, 13 | syl2anc 584 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ran 𝐹 ∈ Fin) |
| 15 | 2, 8, 14 | 3jca 1128 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → (ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ≠ ∅ ∧ ran 𝐹 ∈ Fin)) |
| 16 | elfir 9432 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ (ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ≠ ∅ ∧ ran 𝐹 ∈ Fin)) → ∩ ran 𝐹 ∈ (fi‘𝐵)) | |
| 17 | 15, 16 | syldan 591 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ ran 𝐹 ∈ (fi‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2933 ⊆ wss 3931 ∅c0 4313 ∩ cint 4927 dom cdm 5659 ran crn 5660 Fn wfn 6531 ⟶wf 6532 –onto→wfo 6534 ‘cfv 6536 Fincfn 8964 ficfi 9427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7867 df-1o 8485 df-en 8965 df-dom 8966 df-fin 8968 df-fi 9428 |
| This theorem is referenced by: iinfi 9434 firest 17451 |
| Copyright terms: Public domain | W3C validator |