MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intrnfi Structured version   Visualization version   GIF version

Theorem intrnfi 9105
Description: Sufficient condition for the intersection of the range of a function to be in the set of finite intersections. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
intrnfi ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ran 𝐹 ∈ (fi‘𝐵))

Proof of Theorem intrnfi
StepHypRef Expression
1 simpr1 1192 . . . 4 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐹:𝐴𝐵)
21frnd 6592 . . 3 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ran 𝐹𝐵)
31fdmd 6595 . . . . 5 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → dom 𝐹 = 𝐴)
4 simpr2 1193 . . . . 5 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ≠ ∅)
53, 4eqnetrd 3010 . . . 4 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → dom 𝐹 ≠ ∅)
6 dm0rn0 5823 . . . . 5 (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅)
76necon3bii 2995 . . . 4 (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅)
85, 7sylib 217 . . 3 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ran 𝐹 ≠ ∅)
9 simpr3 1194 . . . 4 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ Fin)
101ffnd 6585 . . . . 5 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐹 Fn 𝐴)
11 dffn4 6678 . . . . 5 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
1210, 11sylib 217 . . . 4 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐹:𝐴onto→ran 𝐹)
13 fofi 9035 . . . 4 ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto→ran 𝐹) → ran 𝐹 ∈ Fin)
149, 12, 13syl2anc 583 . . 3 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ran 𝐹 ∈ Fin)
152, 8, 143jca 1126 . 2 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → (ran 𝐹𝐵 ∧ ran 𝐹 ≠ ∅ ∧ ran 𝐹 ∈ Fin))
16 elfir 9104 . 2 ((𝐵𝑉 ∧ (ran 𝐹𝐵 ∧ ran 𝐹 ≠ ∅ ∧ ran 𝐹 ∈ Fin)) → ran 𝐹 ∈ (fi‘𝐵))
1715, 16syldan 590 1 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ran 𝐹 ∈ (fi‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2108  wne 2942  wss 3883  c0 4253   cint 4876  dom cdm 5580  ran crn 5581   Fn wfn 6413  wf 6414  ontowfo 6416  cfv 6418  Fincfn 8691  ficfi 9099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-fin 8695  df-fi 9100
This theorem is referenced by:  iinfi  9106  firest  17060
  Copyright terms: Public domain W3C validator