![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intrnfi | Structured version Visualization version GIF version |
Description: Sufficient condition for the intersection of the range of a function to be in the set of finite intersections. (Contributed by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
intrnfi | β’ ((π΅ β π β§ (πΉ:π΄βΆπ΅ β§ π΄ β β β§ π΄ β Fin)) β β© ran πΉ β (fiβπ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1191 | . . . 4 β’ ((π΅ β π β§ (πΉ:π΄βΆπ΅ β§ π΄ β β β§ π΄ β Fin)) β πΉ:π΄βΆπ΅) | |
2 | 1 | frnd 6718 | . . 3 β’ ((π΅ β π β§ (πΉ:π΄βΆπ΅ β§ π΄ β β β§ π΄ β Fin)) β ran πΉ β π΅) |
3 | 1 | fdmd 6721 | . . . . 5 β’ ((π΅ β π β§ (πΉ:π΄βΆπ΅ β§ π΄ β β β§ π΄ β Fin)) β dom πΉ = π΄) |
4 | simpr2 1192 | . . . . 5 β’ ((π΅ β π β§ (πΉ:π΄βΆπ΅ β§ π΄ β β β§ π΄ β Fin)) β π΄ β β ) | |
5 | 3, 4 | eqnetrd 3002 | . . . 4 β’ ((π΅ β π β§ (πΉ:π΄βΆπ΅ β§ π΄ β β β§ π΄ β Fin)) β dom πΉ β β ) |
6 | dm0rn0 5917 | . . . . 5 β’ (dom πΉ = β β ran πΉ = β ) | |
7 | 6 | necon3bii 2987 | . . . 4 β’ (dom πΉ β β β ran πΉ β β ) |
8 | 5, 7 | sylib 217 | . . 3 β’ ((π΅ β π β§ (πΉ:π΄βΆπ΅ β§ π΄ β β β§ π΄ β Fin)) β ran πΉ β β ) |
9 | simpr3 1193 | . . . 4 β’ ((π΅ β π β§ (πΉ:π΄βΆπ΅ β§ π΄ β β β§ π΄ β Fin)) β π΄ β Fin) | |
10 | 1 | ffnd 6711 | . . . . 5 β’ ((π΅ β π β§ (πΉ:π΄βΆπ΅ β§ π΄ β β β§ π΄ β Fin)) β πΉ Fn π΄) |
11 | dffn4 6804 | . . . . 5 β’ (πΉ Fn π΄ β πΉ:π΄βontoβran πΉ) | |
12 | 10, 11 | sylib 217 | . . . 4 β’ ((π΅ β π β§ (πΉ:π΄βΆπ΅ β§ π΄ β β β§ π΄ β Fin)) β πΉ:π΄βontoβran πΉ) |
13 | fofi 9337 | . . . 4 β’ ((π΄ β Fin β§ πΉ:π΄βontoβran πΉ) β ran πΉ β Fin) | |
14 | 9, 12, 13 | syl2anc 583 | . . 3 β’ ((π΅ β π β§ (πΉ:π΄βΆπ΅ β§ π΄ β β β§ π΄ β Fin)) β ran πΉ β Fin) |
15 | 2, 8, 14 | 3jca 1125 | . 2 β’ ((π΅ β π β§ (πΉ:π΄βΆπ΅ β§ π΄ β β β§ π΄ β Fin)) β (ran πΉ β π΅ β§ ran πΉ β β β§ ran πΉ β Fin)) |
16 | elfir 9409 | . 2 β’ ((π΅ β π β§ (ran πΉ β π΅ β§ ran πΉ β β β§ ran πΉ β Fin)) β β© ran πΉ β (fiβπ΅)) | |
17 | 15, 16 | syldan 590 | 1 β’ ((π΅ β π β§ (πΉ:π΄βΆπ΅ β§ π΄ β β β§ π΄ β Fin)) β β© ran πΉ β (fiβπ΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1084 β wcel 2098 β wne 2934 β wss 3943 β c0 4317 β© cint 4943 dom cdm 5669 ran crn 5670 Fn wfn 6531 βΆwf 6532 βontoβwfo 6534 βcfv 6536 Fincfn 8938 ficfi 9404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7852 df-1o 8464 df-er 8702 df-en 8939 df-dom 8940 df-fin 8942 df-fi 9405 |
This theorem is referenced by: iinfi 9411 firest 17384 |
Copyright terms: Public domain | W3C validator |