MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intrnfi Structured version   Visualization version   GIF version

Theorem intrnfi 9175
Description: Sufficient condition for the intersection of the range of a function to be in the set of finite intersections. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
intrnfi ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ran 𝐹 ∈ (fi‘𝐵))

Proof of Theorem intrnfi
StepHypRef Expression
1 simpr1 1193 . . . 4 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐹:𝐴𝐵)
21frnd 6608 . . 3 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ran 𝐹𝐵)
31fdmd 6611 . . . . 5 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → dom 𝐹 = 𝐴)
4 simpr2 1194 . . . . 5 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ≠ ∅)
53, 4eqnetrd 3011 . . . 4 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → dom 𝐹 ≠ ∅)
6 dm0rn0 5834 . . . . 5 (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅)
76necon3bii 2996 . . . 4 (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅)
85, 7sylib 217 . . 3 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ran 𝐹 ≠ ∅)
9 simpr3 1195 . . . 4 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ Fin)
101ffnd 6601 . . . . 5 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐹 Fn 𝐴)
11 dffn4 6694 . . . . 5 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
1210, 11sylib 217 . . . 4 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐹:𝐴onto→ran 𝐹)
13 fofi 9105 . . . 4 ((𝐴 ∈ Fin ∧ 𝐹:𝐴onto→ran 𝐹) → ran 𝐹 ∈ Fin)
149, 12, 13syl2anc 584 . . 3 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ran 𝐹 ∈ Fin)
152, 8, 143jca 1127 . 2 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → (ran 𝐹𝐵 ∧ ran 𝐹 ≠ ∅ ∧ ran 𝐹 ∈ Fin))
16 elfir 9174 . 2 ((𝐵𝑉 ∧ (ran 𝐹𝐵 ∧ ran 𝐹 ≠ ∅ ∧ ran 𝐹 ∈ Fin)) → ran 𝐹 ∈ (fi‘𝐵))
1715, 16syldan 591 1 ((𝐵𝑉 ∧ (𝐹:𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ran 𝐹 ∈ (fi‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2106  wne 2943  wss 3887  c0 4256   cint 4879  dom cdm 5589  ran crn 5590   Fn wfn 6428  wf 6429  ontowfo 6431  cfv 6433  Fincfn 8733  ficfi 9169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-fin 8737  df-fi 9170
This theorem is referenced by:  iinfi  9176  firest  17143
  Copyright terms: Public domain W3C validator