Proof of Theorem hoiqssbllem1
Step | Hyp | Ref
| Expression |
1 | | hoiqssbllem1.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ (ℝ ↑m 𝑋)) |
2 | 1 | elexd 3442 |
. . 3
⊢ (𝜑 → 𝑌 ∈ V) |
3 | | elmapfn 8611 |
. . . 4
⊢ (𝑌 ∈ (ℝ
↑m 𝑋)
→ 𝑌 Fn 𝑋) |
4 | 1, 3 | syl 17 |
. . 3
⊢ (𝜑 → 𝑌 Fn 𝑋) |
5 | | hoiqssbllem1.i |
. . . 4
⊢
Ⅎ𝑖𝜑 |
6 | | hoiqssbllem1.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶:𝑋⟶ℝ) |
7 | 6 | ffvelrnda 6943 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐶‘𝑖) ∈ ℝ) |
8 | 7 | rexrd 10956 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐶‘𝑖) ∈
ℝ*) |
9 | | hoiqssbllem1.d |
. . . . . . . 8
⊢ (𝜑 → 𝐷:𝑋⟶ℝ) |
10 | 9 | ffvelrnda 6943 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐷‘𝑖) ∈ ℝ) |
11 | 10 | rexrd 10956 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐷‘𝑖) ∈
ℝ*) |
12 | | elmapi 8595 |
. . . . . . . . 9
⊢ (𝑌 ∈ (ℝ
↑m 𝑋)
→ 𝑌:𝑋⟶ℝ) |
13 | 1, 12 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑌:𝑋⟶ℝ) |
14 | 13 | ffvelrnda 6943 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝑌‘𝑖) ∈ ℝ) |
15 | 14 | rexrd 10956 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝑌‘𝑖) ∈
ℝ*) |
16 | | hoiqssbllem1.e |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
17 | | 2rp 12664 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℝ+ |
18 | 17 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 2 ∈
ℝ+) |
19 | | hoiqssbllem1.n |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑋 ≠ ∅) |
20 | | hoiqssbllem1.x |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑋 ∈ Fin) |
21 | | hashnncl 14009 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑋 ∈ Fin →
((♯‘𝑋) ∈
ℕ ↔ 𝑋 ≠
∅)) |
22 | 20, 21 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅)) |
23 | 19, 22 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (♯‘𝑋) ∈
ℕ) |
24 | 23 | nnred 11918 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (♯‘𝑋) ∈
ℝ) |
25 | 23 | nngt0d 11952 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 <
(♯‘𝑋)) |
26 | 24, 25 | elrpd 12698 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (♯‘𝑋) ∈
ℝ+) |
27 | 26 | rpsqrtcld 15051 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(√‘(♯‘𝑋)) ∈
ℝ+) |
28 | 18, 27 | rpmulcld 12717 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (2 ·
(√‘(♯‘𝑋))) ∈
ℝ+) |
29 | 16, 28 | rpdivcld 12718 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸 / (2 ·
(√‘(♯‘𝑋)))) ∈
ℝ+) |
30 | 29 | rpred 12701 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸 / (2 ·
(√‘(♯‘𝑋)))) ∈ ℝ) |
31 | 30 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐸 / (2 ·
(√‘(♯‘𝑋)))) ∈ ℝ) |
32 | 14, 31 | resubcld 11333 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋))))) ∈ ℝ) |
33 | 32 | rexrd 10956 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋))))) ∈
ℝ*) |
34 | | hoiqssbllem1.l |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐶‘𝑖) ∈ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) |
35 | | iooltub 42938 |
. . . . . . . 8
⊢ ((((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋))))) ∈ ℝ* ∧
(𝑌‘𝑖) ∈ ℝ* ∧ (𝐶‘𝑖) ∈ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) → (𝐶‘𝑖) < (𝑌‘𝑖)) |
36 | 33, 15, 34, 35 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐶‘𝑖) < (𝑌‘𝑖)) |
37 | 7, 14, 36 | ltled 11053 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐶‘𝑖) ≤ (𝑌‘𝑖)) |
38 | 14, 31 | readdcld 10935 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))) ∈ ℝ) |
39 | 38 | rexrd 10956 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))) ∈
ℝ*) |
40 | | hoiqssbllem1.r |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐷‘𝑖) ∈ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) |
41 | | ioogtlb 42923 |
. . . . . . 7
⊢ (((𝑌‘𝑖) ∈ ℝ* ∧ ((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))) ∈ ℝ* ∧
(𝐷‘𝑖) ∈ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) → (𝑌‘𝑖) < (𝐷‘𝑖)) |
42 | 15, 39, 40, 41 | syl3anc 1369 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝑌‘𝑖) < (𝐷‘𝑖)) |
43 | 8, 11, 15, 37, 42 | elicod 13058 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝑌‘𝑖) ∈ ((𝐶‘𝑖)[,)(𝐷‘𝑖))) |
44 | 43 | ex 412 |
. . . 4
⊢ (𝜑 → (𝑖 ∈ 𝑋 → (𝑌‘𝑖) ∈ ((𝐶‘𝑖)[,)(𝐷‘𝑖)))) |
45 | 5, 44 | ralrimi 3139 |
. . 3
⊢ (𝜑 → ∀𝑖 ∈ 𝑋 (𝑌‘𝑖) ∈ ((𝐶‘𝑖)[,)(𝐷‘𝑖))) |
46 | 2, 4, 45 | 3jca 1126 |
. 2
⊢ (𝜑 → (𝑌 ∈ V ∧ 𝑌 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑌‘𝑖) ∈ ((𝐶‘𝑖)[,)(𝐷‘𝑖)))) |
47 | | elixp2 8647 |
. 2
⊢ (𝑌 ∈ X𝑖 ∈
𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖)) ↔ (𝑌 ∈ V ∧ 𝑌 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑌‘𝑖) ∈ ((𝐶‘𝑖)[,)(𝐷‘𝑖)))) |
48 | 46, 47 | sylibr 233 |
1
⊢ (𝜑 → 𝑌 ∈ X𝑖 ∈ 𝑋 ((𝐶‘𝑖)[,)(𝐷‘𝑖))) |