Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiqssbllem1 Structured version   Visualization version   GIF version

Theorem hoiqssbllem1 46651
Description: The center of the n-dimensional ball belongs to the half-open interval. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoiqssbllem1.i 𝑖𝜑
hoiqssbllem1.x (𝜑𝑋 ∈ Fin)
hoiqssbllem1.n (𝜑𝑋 ≠ ∅)
hoiqssbllem1.y (𝜑𝑌 ∈ (ℝ ↑m 𝑋))
hoiqssbllem1.c (𝜑𝐶:𝑋⟶ℝ)
hoiqssbllem1.d (𝜑𝐷:𝑋⟶ℝ)
hoiqssbllem1.e (𝜑𝐸 ∈ ℝ+)
hoiqssbllem1.l ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
hoiqssbllem1.r ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
Assertion
Ref Expression
hoiqssbllem1 (𝜑𝑌X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
Distinct variable groups:   𝑖,𝑋   𝑖,𝑌
Allowed substitution hints:   𝜑(𝑖)   𝐶(𝑖)   𝐷(𝑖)   𝐸(𝑖)

Proof of Theorem hoiqssbllem1
StepHypRef Expression
1 hoiqssbllem1.y . . . 4 (𝜑𝑌 ∈ (ℝ ↑m 𝑋))
21elexd 3483 . . 3 (𝜑𝑌 ∈ V)
3 elmapfn 8879 . . . 4 (𝑌 ∈ (ℝ ↑m 𝑋) → 𝑌 Fn 𝑋)
41, 3syl 17 . . 3 (𝜑𝑌 Fn 𝑋)
5 hoiqssbllem1.i . . . 4 𝑖𝜑
6 hoiqssbllem1.c . . . . . . . 8 (𝜑𝐶:𝑋⟶ℝ)
76ffvelcdmda 7074 . . . . . . 7 ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ ℝ)
87rexrd 11285 . . . . . 6 ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ ℝ*)
9 hoiqssbllem1.d . . . . . . . 8 (𝜑𝐷:𝑋⟶ℝ)
109ffvelcdmda 7074 . . . . . . 7 ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ℝ)
1110rexrd 11285 . . . . . 6 ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ℝ*)
12 elmapi 8863 . . . . . . . . 9 (𝑌 ∈ (ℝ ↑m 𝑋) → 𝑌:𝑋⟶ℝ)
131, 12syl 17 . . . . . . . 8 (𝜑𝑌:𝑋⟶ℝ)
1413ffvelcdmda 7074 . . . . . . 7 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ℝ)
1514rexrd 11285 . . . . . 6 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ℝ*)
16 hoiqssbllem1.e . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ+)
17 2rp 13013 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
1817a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ+)
19 hoiqssbllem1.n . . . . . . . . . . . . . . . . . 18 (𝜑𝑋 ≠ ∅)
20 hoiqssbllem1.x . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 ∈ Fin)
21 hashnncl 14384 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
2220, 21syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
2319, 22mpbird 257 . . . . . . . . . . . . . . . . 17 (𝜑 → (♯‘𝑋) ∈ ℕ)
2423nnred 12255 . . . . . . . . . . . . . . . 16 (𝜑 → (♯‘𝑋) ∈ ℝ)
2523nngt0d 12289 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < (♯‘𝑋))
2624, 25elrpd 13048 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘𝑋) ∈ ℝ+)
2726rpsqrtcld 15430 . . . . . . . . . . . . . 14 (𝜑 → (√‘(♯‘𝑋)) ∈ ℝ+)
2818, 27rpmulcld 13067 . . . . . . . . . . . . 13 (𝜑 → (2 · (√‘(♯‘𝑋))) ∈ ℝ+)
2916, 28rpdivcld 13068 . . . . . . . . . . . 12 (𝜑 → (𝐸 / (2 · (√‘(♯‘𝑋)))) ∈ ℝ+)
3029rpred 13051 . . . . . . . . . . 11 (𝜑 → (𝐸 / (2 · (√‘(♯‘𝑋)))) ∈ ℝ)
3130adantr 480 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝐸 / (2 · (√‘(♯‘𝑋)))) ∈ ℝ)
3214, 31resubcld 11665 . . . . . . . . 9 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ)
3332rexrd 11285 . . . . . . . 8 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ*)
34 hoiqssbllem1.l . . . . . . . 8 ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
35 iooltub 45539 . . . . . . . 8 ((((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ* ∧ (𝑌𝑖) ∈ ℝ* ∧ (𝐶𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) → (𝐶𝑖) < (𝑌𝑖))
3633, 15, 34, 35syl3anc 1373 . . . . . . 7 ((𝜑𝑖𝑋) → (𝐶𝑖) < (𝑌𝑖))
377, 14, 36ltled 11383 . . . . . 6 ((𝜑𝑖𝑋) → (𝐶𝑖) ≤ (𝑌𝑖))
3814, 31readdcld 11264 . . . . . . . 8 ((𝜑𝑖𝑋) → ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ)
3938rexrd 11285 . . . . . . 7 ((𝜑𝑖𝑋) → ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ*)
40 hoiqssbllem1.r . . . . . . 7 ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
41 ioogtlb 45524 . . . . . . 7 (((𝑌𝑖) ∈ ℝ* ∧ ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ* ∧ (𝐷𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) → (𝑌𝑖) < (𝐷𝑖))
4215, 39, 40, 41syl3anc 1373 . . . . . 6 ((𝜑𝑖𝑋) → (𝑌𝑖) < (𝐷𝑖))
438, 11, 15, 37, 42elicod 13412 . . . . 5 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)))
4443ex 412 . . . 4 (𝜑 → (𝑖𝑋 → (𝑌𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖))))
455, 44ralrimi 3240 . . 3 (𝜑 → ∀𝑖𝑋 (𝑌𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)))
462, 4, 453jca 1128 . 2 (𝜑 → (𝑌 ∈ V ∧ 𝑌 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑌𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖))))
47 elixp2 8915 . 2 (𝑌X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ↔ (𝑌 ∈ V ∧ 𝑌 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑌𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖))))
4846, 47sylibr 234 1 (𝜑𝑌X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wnf 1783  wcel 2108  wne 2932  wral 3051  Vcvv 3459  c0 4308   class class class wbr 5119   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  m cmap 8840  Xcixp 8911  Fincfn 8959  cr 11128   + caddc 11132   · cmul 11134  *cxr 11268   < clt 11269  cmin 11466   / cdiv 11894  cn 12240  2c2 12295  +crp 13008  (,)cioo 13362  [,)cico 13364  chash 14348  csqrt 15252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-ioo 13366  df-ico 13368  df-fz 13525  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254
This theorem is referenced by:  hoiqssbllem3  46653
  Copyright terms: Public domain W3C validator