![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prdsbasprj | Structured version Visualization version GIF version |
Description: Each point in a structure product restricts on each coordinate to the relevant base set. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
Ref | Expression |
---|---|
prdsbasmpt.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prdsbasmpt.b | ⊢ 𝐵 = (Base‘𝑌) |
prdsbasmpt.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prdsbasmpt.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdsbasmpt.r | ⊢ (𝜑 → 𝑅 Fn 𝐼) |
prdsbasmpt.t | ⊢ (𝜑 → 𝑇 ∈ 𝐵) |
prdsbasprj.j | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
Ref | Expression |
---|---|
prdsbasprj | ⊢ (𝜑 → (𝑇‘𝐽) ∈ (Base‘(𝑅‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6410 | . . 3 ⊢ (𝑥 = 𝐽 → (𝑇‘𝑥) = (𝑇‘𝐽)) | |
2 | 2fveq3 6415 | . . 3 ⊢ (𝑥 = 𝐽 → (Base‘(𝑅‘𝑥)) = (Base‘(𝑅‘𝐽))) | |
3 | 1, 2 | eleq12d 2871 | . 2 ⊢ (𝑥 = 𝐽 → ((𝑇‘𝑥) ∈ (Base‘(𝑅‘𝑥)) ↔ (𝑇‘𝐽) ∈ (Base‘(𝑅‘𝐽)))) |
4 | prdsbasmpt.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝐵) | |
5 | prdsbasmpt.y | . . . . 5 ⊢ 𝑌 = (𝑆Xs𝑅) | |
6 | prdsbasmpt.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑌) | |
7 | prdsbasmpt.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
8 | prdsbasmpt.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
9 | prdsbasmpt.r | . . . . 5 ⊢ (𝜑 → 𝑅 Fn 𝐼) | |
10 | 5, 6, 7, 8, 9 | prdsbas2 16441 | . . . 4 ⊢ (𝜑 → 𝐵 = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) |
11 | 4, 10 | eleqtrd 2879 | . . 3 ⊢ (𝜑 → 𝑇 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) |
12 | elixp2 8151 | . . . 4 ⊢ (𝑇 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↔ (𝑇 ∈ V ∧ 𝑇 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑇‘𝑥) ∈ (Base‘(𝑅‘𝑥)))) | |
13 | 12 | simp3bi 1178 | . . 3 ⊢ (𝑇 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) → ∀𝑥 ∈ 𝐼 (𝑇‘𝑥) ∈ (Base‘(𝑅‘𝑥))) |
14 | 11, 13 | syl 17 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝑇‘𝑥) ∈ (Base‘(𝑅‘𝑥))) |
15 | prdsbasprj.j | . 2 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
16 | 3, 14, 15 | rspcdva 3502 | 1 ⊢ (𝜑 → (𝑇‘𝐽) ∈ (Base‘(𝑅‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 ∀wral 3088 Vcvv 3384 Fn wfn 6095 ‘cfv 6100 (class class class)co 6877 Xcixp 8147 Basecbs 16181 Xscprds 16418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-rep 4963 ax-sep 4974 ax-nul 4982 ax-pow 5034 ax-pr 5096 ax-un 7182 ax-cnex 10279 ax-resscn 10280 ax-1cn 10281 ax-icn 10282 ax-addcl 10283 ax-addrcl 10284 ax-mulcl 10285 ax-mulrcl 10286 ax-mulcom 10287 ax-addass 10288 ax-mulass 10289 ax-distr 10290 ax-i2m1 10291 ax-1ne0 10292 ax-1rid 10293 ax-rnegex 10294 ax-rrecex 10295 ax-cnre 10296 ax-pre-lttri 10297 ax-pre-lttrn 10298 ax-pre-ltadd 10299 ax-pre-mulgt0 10300 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ne 2971 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3386 df-sbc 3633 df-csb 3728 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-pss 3784 df-nul 4115 df-if 4277 df-pw 4350 df-sn 4368 df-pr 4370 df-tp 4372 df-op 4374 df-uni 4628 df-int 4667 df-iun 4711 df-br 4843 df-opab 4905 df-mpt 4922 df-tr 4945 df-id 5219 df-eprel 5224 df-po 5232 df-so 5233 df-fr 5270 df-we 5272 df-xp 5317 df-rel 5318 df-cnv 5319 df-co 5320 df-dm 5321 df-rn 5322 df-res 5323 df-ima 5324 df-pred 5897 df-ord 5943 df-on 5944 df-lim 5945 df-suc 5946 df-iota 6063 df-fun 6102 df-fn 6103 df-f 6104 df-f1 6105 df-fo 6106 df-f1o 6107 df-fv 6108 df-riota 6838 df-ov 6880 df-oprab 6881 df-mpt2 6882 df-om 7299 df-1st 7400 df-2nd 7401 df-wrecs 7644 df-recs 7706 df-rdg 7744 df-1o 7798 df-oadd 7802 df-er 7981 df-map 8096 df-ixp 8148 df-en 8195 df-dom 8196 df-sdom 8197 df-fin 8198 df-sup 8589 df-pnf 10364 df-mnf 10365 df-xr 10366 df-ltxr 10367 df-le 10368 df-sub 10557 df-neg 10558 df-nn 11312 df-2 11373 df-3 11374 df-4 11375 df-5 11376 df-6 11377 df-7 11378 df-8 11379 df-9 11380 df-n0 11578 df-z 11664 df-dec 11781 df-uz 11928 df-fz 12578 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-plusg 16277 df-mulr 16278 df-sca 16280 df-vsca 16281 df-ip 16282 df-tset 16283 df-ple 16284 df-ds 16286 df-hom 16288 df-cco 16289 df-prds 16420 |
This theorem is referenced by: prdsplusgcl 17633 prdsidlem 17634 prdsmndd 17635 prdspjmhm 17679 prdsinvlem 17837 prdscmnd 18576 prdsmulrcl 18924 prdsringd 18925 prdsvscacl 19286 prdslmodd 19287 |
Copyright terms: Public domain | W3C validator |