MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iskgen3 Structured version   Visualization version   GIF version

Theorem iskgen3 22806
Description: Derive the usual definition of "compactly generated". A topology is compactly generated if every subset of 𝑋 that is open in every compact subset is open. (Contributed by Mario Carneiro, 20-Mar-2015.)
Hypothesis
Ref Expression
iskgen3.1 𝑋 = 𝐽
Assertion
Ref Expression
iskgen3 (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽)))
Distinct variable groups:   𝑥,𝑘,𝐽   𝑘,𝑋
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem iskgen3
StepHypRef Expression
1 iskgen2 22805 . 2 (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽))
2 iskgen3.1 . . . . . . . . . 10 𝑋 = 𝐽
32toptopon 22172 . . . . . . . . 9 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
4 elkgen 22793 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
53, 4sylbi 216 . . . . . . . 8 (𝐽 ∈ Top → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
6 vex 3445 . . . . . . . . . 10 𝑥 ∈ V
76elpw 4551 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
87anbi1i 624 . . . . . . . 8 ((𝑥 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))))
95, 8bitr4di 288 . . . . . . 7 (𝐽 ∈ Top → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
109imbi1d 341 . . . . . 6 (𝐽 ∈ Top → ((𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥𝐽) ↔ ((𝑥 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))) → 𝑥𝐽)))
11 impexp 451 . . . . . 6 (((𝑥 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))) → 𝑥𝐽) ↔ (𝑥 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽)))
1210, 11bitrdi 286 . . . . 5 (𝐽 ∈ Top → ((𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥𝐽) ↔ (𝑥 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽))))
1312albidv 1922 . . . 4 (𝐽 ∈ Top → (∀𝑥(𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥𝐽) ↔ ∀𝑥(𝑥 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽))))
14 dfss2 3918 . . . 4 ((𝑘Gen‘𝐽) ⊆ 𝐽 ↔ ∀𝑥(𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥𝐽))
15 df-ral 3062 . . . 4 (∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽) ↔ ∀𝑥(𝑥 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽)))
1613, 14, 153bitr4g 313 . . 3 (𝐽 ∈ Top → ((𝑘Gen‘𝐽) ⊆ 𝐽 ↔ ∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽)))
1716pm5.32i 575 . 2 ((𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽) ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽)))
181, 17bitri 274 1 (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1538   = wceq 1540  wcel 2105  wral 3061  cin 3897  wss 3898  𝒫 cpw 4547   cuni 4852  ran crn 5621  cfv 6479  (class class class)co 7337  t crest 17228  Topctop 22148  TopOnctopon 22165  Compccmp 22643  𝑘Genckgen 22790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-en 8805  df-fin 8808  df-fi 9268  df-rest 17230  df-topgen 17251  df-top 22149  df-topon 22166  df-bases 22202  df-cmp 22644  df-kgen 22791
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator