| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iskgen3 | Structured version Visualization version GIF version | ||
| Description: Derive the usual definition of "compactly generated". A topology is compactly generated if every subset of 𝑋 that is open in every compact subset is open. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| Ref | Expression |
|---|---|
| iskgen3.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| iskgen3 | ⊢ (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) → 𝑥 ∈ 𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iskgen2 23435 | . 2 ⊢ (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽)) | |
| 2 | iskgen3.1 | . . . . . . . . . 10 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | toptopon 22804 | . . . . . . . . 9 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 4 | elkgen 23423 | . . . . . . . . 9 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) | |
| 5 | 3, 4 | sylbi 217 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
| 6 | vex 3451 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
| 7 | 6 | elpw 4567 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝒫 𝑋 ↔ 𝑥 ⊆ 𝑋) |
| 8 | 7 | anbi1i 624 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) ↔ (𝑥 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) |
| 9 | 5, 8 | bitr4di 289 | . . . . . . 7 ⊢ (𝐽 ∈ Top → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
| 10 | 9 | imbi1d 341 | . . . . . 6 ⊢ (𝐽 ∈ Top → ((𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥 ∈ 𝐽) ↔ ((𝑥 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) → 𝑥 ∈ 𝐽))) |
| 11 | impexp 450 | . . . . . 6 ⊢ (((𝑥 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) → 𝑥 ∈ 𝐽) ↔ (𝑥 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) → 𝑥 ∈ 𝐽))) | |
| 12 | 10, 11 | bitrdi 287 | . . . . 5 ⊢ (𝐽 ∈ Top → ((𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥 ∈ 𝐽) ↔ (𝑥 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) → 𝑥 ∈ 𝐽)))) |
| 13 | 12 | albidv 1920 | . . . 4 ⊢ (𝐽 ∈ Top → (∀𝑥(𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥 ∈ 𝐽) ↔ ∀𝑥(𝑥 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) → 𝑥 ∈ 𝐽)))) |
| 14 | df-ss 3931 | . . . 4 ⊢ ((𝑘Gen‘𝐽) ⊆ 𝐽 ↔ ∀𝑥(𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥 ∈ 𝐽)) | |
| 15 | df-ral 3045 | . . . 4 ⊢ (∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) → 𝑥 ∈ 𝐽) ↔ ∀𝑥(𝑥 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) → 𝑥 ∈ 𝐽))) | |
| 16 | 13, 14, 15 | 3bitr4g 314 | . . 3 ⊢ (𝐽 ∈ Top → ((𝑘Gen‘𝐽) ⊆ 𝐽 ↔ ∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) → 𝑥 ∈ 𝐽))) |
| 17 | 16 | pm5.32i 574 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽) ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) → 𝑥 ∈ 𝐽))) |
| 18 | 1, 17 | bitri 275 | 1 ⊢ (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) → 𝑥 ∈ 𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∩ cin 3913 ⊆ wss 3914 𝒫 cpw 4563 ∪ cuni 4871 ran crn 5639 ‘cfv 6511 (class class class)co 7387 ↾t crest 17383 Topctop 22780 TopOnctopon 22797 Compccmp 23273 𝑘Genckgen 23420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-en 8919 df-fin 8922 df-fi 9362 df-rest 17385 df-topgen 17406 df-top 22781 df-topon 22798 df-bases 22833 df-cmp 23274 df-kgen 23421 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |