MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iskgen3 Structured version   Visualization version   GIF version

Theorem iskgen3 23469
Description: Derive the usual definition of "compactly generated". A topology is compactly generated if every subset of 𝑋 that is open in every compact subset is open. (Contributed by Mario Carneiro, 20-Mar-2015.)
Hypothesis
Ref Expression
iskgen3.1 𝑋 = 𝐽
Assertion
Ref Expression
iskgen3 (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽)))
Distinct variable groups:   𝑥,𝑘,𝐽   𝑘,𝑋
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem iskgen3
StepHypRef Expression
1 iskgen2 23468 . 2 (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽))
2 iskgen3.1 . . . . . . . . . 10 𝑋 = 𝐽
32toptopon 22837 . . . . . . . . 9 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
4 elkgen 23456 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
53, 4sylbi 217 . . . . . . . 8 (𝐽 ∈ Top → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
6 vex 3448 . . . . . . . . . 10 𝑥 ∈ V
76elpw 4563 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
87anbi1i 624 . . . . . . . 8 ((𝑥 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))))
95, 8bitr4di 289 . . . . . . 7 (𝐽 ∈ Top → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
109imbi1d 341 . . . . . 6 (𝐽 ∈ Top → ((𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥𝐽) ↔ ((𝑥 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))) → 𝑥𝐽)))
11 impexp 450 . . . . . 6 (((𝑥 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))) → 𝑥𝐽) ↔ (𝑥 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽)))
1210, 11bitrdi 287 . . . . 5 (𝐽 ∈ Top → ((𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥𝐽) ↔ (𝑥 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽))))
1312albidv 1920 . . . 4 (𝐽 ∈ Top → (∀𝑥(𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥𝐽) ↔ ∀𝑥(𝑥 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽))))
14 df-ss 3928 . . . 4 ((𝑘Gen‘𝐽) ⊆ 𝐽 ↔ ∀𝑥(𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥𝐽))
15 df-ral 3045 . . . 4 (∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽) ↔ ∀𝑥(𝑥 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽)))
1613, 14, 153bitr4g 314 . . 3 (𝐽 ∈ Top → ((𝑘Gen‘𝐽) ⊆ 𝐽 ↔ ∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽)))
1716pm5.32i 574 . 2 ((𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽) ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽)))
181, 17bitri 275 1 (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3044  cin 3910  wss 3911  𝒫 cpw 4559   cuni 4867  ran crn 5632  cfv 6499  (class class class)co 7369  t crest 17359  Topctop 22813  TopOnctopon 22830  Compccmp 23306  𝑘Genckgen 23453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-en 8896  df-fin 8899  df-fi 9338  df-rest 17361  df-topgen 17382  df-top 22814  df-topon 22831  df-bases 22866  df-cmp 23307  df-kgen 23454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator