MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iskgen3 Structured version   Visualization version   GIF version

Theorem iskgen3 22749
Description: Derive the usual definition of "compactly generated". A topology is compactly generated if every subset of 𝑋 that is open in every compact subset is open. (Contributed by Mario Carneiro, 20-Mar-2015.)
Hypothesis
Ref Expression
iskgen3.1 𝑋 = 𝐽
Assertion
Ref Expression
iskgen3 (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽)))
Distinct variable groups:   𝑥,𝑘,𝐽   𝑘,𝑋
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem iskgen3
StepHypRef Expression
1 iskgen2 22748 . 2 (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽))
2 iskgen3.1 . . . . . . . . . 10 𝑋 = 𝐽
32toptopon 22115 . . . . . . . . 9 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
4 elkgen 22736 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
53, 4sylbi 216 . . . . . . . 8 (𝐽 ∈ Top → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
6 vex 3441 . . . . . . . . . 10 𝑥 ∈ V
76elpw 4543 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
87anbi1i 625 . . . . . . . 8 ((𝑥 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))))
95, 8bitr4di 289 . . . . . . 7 (𝐽 ∈ Top → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
109imbi1d 342 . . . . . 6 (𝐽 ∈ Top → ((𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥𝐽) ↔ ((𝑥 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))) → 𝑥𝐽)))
11 impexp 452 . . . . . 6 (((𝑥 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))) → 𝑥𝐽) ↔ (𝑥 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽)))
1210, 11bitrdi 287 . . . . 5 (𝐽 ∈ Top → ((𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥𝐽) ↔ (𝑥 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽))))
1312albidv 1921 . . . 4 (𝐽 ∈ Top → (∀𝑥(𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥𝐽) ↔ ∀𝑥(𝑥 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽))))
14 dfss2 3912 . . . 4 ((𝑘Gen‘𝐽) ⊆ 𝐽 ↔ ∀𝑥(𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥𝐽))
15 df-ral 3063 . . . 4 (∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽) ↔ ∀𝑥(𝑥 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽)))
1613, 14, 153bitr4g 314 . . 3 (𝐽 ∈ Top → ((𝑘Gen‘𝐽) ⊆ 𝐽 ↔ ∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽)))
1716pm5.32i 576 . 2 ((𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽) ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽)))
181, 17bitri 275 1 (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1537   = wceq 1539  wcel 2104  wral 3062  cin 3891  wss 3892  𝒫 cpw 4539   cuni 4844  ran crn 5601  cfv 6458  (class class class)co 7307  t crest 17180  Topctop 22091  TopOnctopon 22108  Compccmp 22586  𝑘Genckgen 22733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-en 8765  df-fin 8768  df-fi 9218  df-rest 17182  df-topgen 17203  df-top 22092  df-topon 22109  df-bases 22145  df-cmp 22587  df-kgen 22734
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator