![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kgenss | Structured version Visualization version GIF version |
Description: The compact generator generates a finer topology than the original. (Contributed by Mario Carneiro, 20-Mar-2015.) |
Ref | Expression |
---|---|
kgenss | β’ (π½ β Top β π½ β (πGenβπ½)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 4941 | . . . . 5 β’ (π₯ β π½ β π₯ β βͺ π½) | |
2 | 1 | a1i 11 | . . . 4 β’ (π½ β Top β (π₯ β π½ β π₯ β βͺ π½)) |
3 | elrestr 17379 | . . . . . . . . 9 β’ ((π½ β Top β§ π β π« βͺ π½ β§ π₯ β π½) β (π₯ β© π) β (π½ βΎt π)) | |
4 | 3 | 3expa 1117 | . . . . . . . 8 β’ (((π½ β Top β§ π β π« βͺ π½) β§ π₯ β π½) β (π₯ β© π) β (π½ βΎt π)) |
5 | 4 | an32s 649 | . . . . . . 7 β’ (((π½ β Top β§ π₯ β π½) β§ π β π« βͺ π½) β (π₯ β© π) β (π½ βΎt π)) |
6 | 5 | a1d 25 | . . . . . 6 β’ (((π½ β Top β§ π₯ β π½) β§ π β π« βͺ π½) β ((π½ βΎt π) β Comp β (π₯ β© π) β (π½ βΎt π))) |
7 | 6 | ralrimiva 3145 | . . . . 5 β’ ((π½ β Top β§ π₯ β π½) β βπ β π« βͺ π½((π½ βΎt π) β Comp β (π₯ β© π) β (π½ βΎt π))) |
8 | 7 | ex 412 | . . . 4 β’ (π½ β Top β (π₯ β π½ β βπ β π« βͺ π½((π½ βΎt π) β Comp β (π₯ β© π) β (π½ βΎt π)))) |
9 | 2, 8 | jcad 512 | . . 3 β’ (π½ β Top β (π₯ β π½ β (π₯ β βͺ π½ β§ βπ β π« βͺ π½((π½ βΎt π) β Comp β (π₯ β© π) β (π½ βΎt π))))) |
10 | toptopon2 22641 | . . . 4 β’ (π½ β Top β π½ β (TopOnββͺ π½)) | |
11 | elkgen 23261 | . . . 4 β’ (π½ β (TopOnββͺ π½) β (π₯ β (πGenβπ½) β (π₯ β βͺ π½ β§ βπ β π« βͺ π½((π½ βΎt π) β Comp β (π₯ β© π) β (π½ βΎt π))))) | |
12 | 10, 11 | sylbi 216 | . . 3 β’ (π½ β Top β (π₯ β (πGenβπ½) β (π₯ β βͺ π½ β§ βπ β π« βͺ π½((π½ βΎt π) β Comp β (π₯ β© π) β (π½ βΎt π))))) |
13 | 9, 12 | sylibrd 259 | . 2 β’ (π½ β Top β (π₯ β π½ β π₯ β (πGenβπ½))) |
14 | 13 | ssrdv 3988 | 1 β’ (π½ β Top β π½ β (πGenβπ½)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β wcel 2105 βwral 3060 β© cin 3947 β wss 3948 π« cpw 4602 βͺ cuni 4908 βcfv 6543 (class class class)co 7412 βΎt crest 17371 Topctop 22616 TopOnctopon 22633 Compccmp 23111 πGenckgen 23258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-rest 17373 df-top 22617 df-topon 22634 df-kgen 23259 |
This theorem is referenced by: kgenhaus 23269 kgencmp 23270 kgencmp2 23271 kgenidm 23272 iskgen2 23273 kgencn3 23283 kgen2cn 23284 |
Copyright terms: Public domain | W3C validator |