![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kgenss | Structured version Visualization version GIF version |
Description: The compact generator generates a finer topology than the original. (Contributed by Mario Carneiro, 20-Mar-2015.) |
Ref | Expression |
---|---|
kgenss | ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 4934 | . . . . 5 ⊢ (𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽) | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽)) |
3 | elrestr 17356 | . . . . . . . . 9 ⊢ ((𝐽 ∈ Top ∧ 𝑘 ∈ 𝒫 ∪ 𝐽 ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) | |
4 | 3 | 3expa 1118 | . . . . . . . 8 ⊢ (((𝐽 ∈ Top ∧ 𝑘 ∈ 𝒫 ∪ 𝐽) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
5 | 4 | an32s 650 | . . . . . . 7 ⊢ (((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑘 ∈ 𝒫 ∪ 𝐽) → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
6 | 5 | a1d 25 | . . . . . 6 ⊢ (((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑘 ∈ 𝒫 ∪ 𝐽) → ((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
7 | 6 | ralrimiva 3145 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → ∀𝑘 ∈ 𝒫 ∪ 𝐽((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
8 | 7 | ex 413 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝐽 → ∀𝑘 ∈ 𝒫 ∪ 𝐽((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) |
9 | 2, 8 | jcad 513 | . . 3 ⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝐽 → (𝑥 ⊆ ∪ 𝐽 ∧ ∀𝑘 ∈ 𝒫 ∪ 𝐽((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
10 | toptopon2 22349 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
11 | elkgen 22969 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 ⊆ ∪ 𝐽 ∧ ∀𝑘 ∈ 𝒫 ∪ 𝐽((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) | |
12 | 10, 11 | sylbi 216 | . . 3 ⊢ (𝐽 ∈ Top → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 ⊆ ∪ 𝐽 ∧ ∀𝑘 ∈ 𝒫 ∪ 𝐽((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
13 | 9, 12 | sylibrd 258 | . 2 ⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝐽 → 𝑥 ∈ (𝑘Gen‘𝐽))) |
14 | 13 | ssrdv 3984 | 1 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∀wral 3060 ∩ cin 3943 ⊆ wss 3944 𝒫 cpw 4596 ∪ cuni 4901 ‘cfv 6532 (class class class)co 7393 ↾t crest 17348 Topctop 22324 TopOnctopon 22341 Compccmp 22819 𝑘Genckgen 22966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-ov 7396 df-oprab 7397 df-mpo 7398 df-rest 17350 df-top 22325 df-topon 22342 df-kgen 22967 |
This theorem is referenced by: kgenhaus 22977 kgencmp 22978 kgencmp2 22979 kgenidm 22980 iskgen2 22981 kgencn3 22991 kgen2cn 22992 |
Copyright terms: Public domain | W3C validator |