MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgenss Structured version   Visualization version   GIF version

Theorem kgenss 22394
Description: The compact generator generates a finer topology than the original. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgenss (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽))

Proof of Theorem kgenss
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elssuni 4837 . . . . 5 (𝑥𝐽𝑥 𝐽)
21a1i 11 . . . 4 (𝐽 ∈ Top → (𝑥𝐽𝑥 𝐽))
3 elrestr 16887 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑘 ∈ 𝒫 𝐽𝑥𝐽) → (𝑥𝑘) ∈ (𝐽t 𝑘))
433expa 1120 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑘 ∈ 𝒫 𝐽) ∧ 𝑥𝐽) → (𝑥𝑘) ∈ (𝐽t 𝑘))
54an32s 652 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑘 ∈ 𝒫 𝐽) → (𝑥𝑘) ∈ (𝐽t 𝑘))
65a1d 25 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑘 ∈ 𝒫 𝐽) → ((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))
76ralrimiva 3095 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝐽) → ∀𝑘 ∈ 𝒫 𝐽((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))
87ex 416 . . . 4 (𝐽 ∈ Top → (𝑥𝐽 → ∀𝑘 ∈ 𝒫 𝐽((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))))
92, 8jcad 516 . . 3 (𝐽 ∈ Top → (𝑥𝐽 → (𝑥 𝐽 ∧ ∀𝑘 ∈ 𝒫 𝐽((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
10 toptopon2 21769 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
11 elkgen 22387 . . . 4 (𝐽 ∈ (TopOn‘ 𝐽) → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 𝐽 ∧ ∀𝑘 ∈ 𝒫 𝐽((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
1210, 11sylbi 220 . . 3 (𝐽 ∈ Top → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 𝐽 ∧ ∀𝑘 ∈ 𝒫 𝐽((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
139, 12sylibrd 262 . 2 (𝐽 ∈ Top → (𝑥𝐽𝑥 ∈ (𝑘Gen‘𝐽)))
1413ssrdv 3893 1 (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2112  wral 3051  cin 3852  wss 3853  𝒫 cpw 4499   cuni 4805  cfv 6358  (class class class)co 7191  t crest 16879  Topctop 21744  TopOnctopon 21761  Compccmp 22237  𝑘Genckgen 22384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-rest 16881  df-top 21745  df-topon 21762  df-kgen 22385
This theorem is referenced by:  kgenhaus  22395  kgencmp  22396  kgencmp2  22397  kgenidm  22398  iskgen2  22399  kgencn3  22409  kgen2cn  22410
  Copyright terms: Public domain W3C validator