MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgenss Structured version   Visualization version   GIF version

Theorem kgenss 23479
Description: The compact generator generates a finer topology than the original. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgenss (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽))

Proof of Theorem kgenss
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elssuni 4913 . . . . 5 (𝑥𝐽𝑥 𝐽)
21a1i 11 . . . 4 (𝐽 ∈ Top → (𝑥𝐽𝑥 𝐽))
3 elrestr 17440 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑘 ∈ 𝒫 𝐽𝑥𝐽) → (𝑥𝑘) ∈ (𝐽t 𝑘))
433expa 1118 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑘 ∈ 𝒫 𝐽) ∧ 𝑥𝐽) → (𝑥𝑘) ∈ (𝐽t 𝑘))
54an32s 652 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑘 ∈ 𝒫 𝐽) → (𝑥𝑘) ∈ (𝐽t 𝑘))
65a1d 25 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑘 ∈ 𝒫 𝐽) → ((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))
76ralrimiva 3132 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝐽) → ∀𝑘 ∈ 𝒫 𝐽((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))
87ex 412 . . . 4 (𝐽 ∈ Top → (𝑥𝐽 → ∀𝑘 ∈ 𝒫 𝐽((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))))
92, 8jcad 512 . . 3 (𝐽 ∈ Top → (𝑥𝐽 → (𝑥 𝐽 ∧ ∀𝑘 ∈ 𝒫 𝐽((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
10 toptopon2 22854 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
11 elkgen 23472 . . . 4 (𝐽 ∈ (TopOn‘ 𝐽) → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 𝐽 ∧ ∀𝑘 ∈ 𝒫 𝐽((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
1210, 11sylbi 217 . . 3 (𝐽 ∈ Top → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 𝐽 ∧ ∀𝑘 ∈ 𝒫 𝐽((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
139, 12sylibrd 259 . 2 (𝐽 ∈ Top → (𝑥𝐽𝑥 ∈ (𝑘Gen‘𝐽)))
1413ssrdv 3964 1 (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3051  cin 3925  wss 3926  𝒫 cpw 4575   cuni 4883  cfv 6530  (class class class)co 7403  t crest 17432  Topctop 22829  TopOnctopon 22846  Compccmp 23322  𝑘Genckgen 23469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-rest 17434  df-top 22830  df-topon 22847  df-kgen 23470
This theorem is referenced by:  kgenhaus  23480  kgencmp  23481  kgencmp2  23482  kgenidm  23483  iskgen2  23484  kgencn3  23494  kgen2cn  23495
  Copyright terms: Public domain W3C validator