| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kgenss | Structured version Visualization version GIF version | ||
| Description: The compact generator generates a finer topology than the original. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| Ref | Expression |
|---|---|
| kgenss | ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 4901 | . . . . 5 ⊢ (𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽) | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽)) |
| 3 | elrestr 17391 | . . . . . . . . 9 ⊢ ((𝐽 ∈ Top ∧ 𝑘 ∈ 𝒫 ∪ 𝐽 ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) | |
| 4 | 3 | 3expa 1118 | . . . . . . . 8 ⊢ (((𝐽 ∈ Top ∧ 𝑘 ∈ 𝒫 ∪ 𝐽) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
| 5 | 4 | an32s 652 | . . . . . . 7 ⊢ (((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑘 ∈ 𝒫 ∪ 𝐽) → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
| 6 | 5 | a1d 25 | . . . . . 6 ⊢ (((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑘 ∈ 𝒫 ∪ 𝐽) → ((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
| 7 | 6 | ralrimiva 3125 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → ∀𝑘 ∈ 𝒫 ∪ 𝐽((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
| 8 | 7 | ex 412 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝐽 → ∀𝑘 ∈ 𝒫 ∪ 𝐽((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) |
| 9 | 2, 8 | jcad 512 | . . 3 ⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝐽 → (𝑥 ⊆ ∪ 𝐽 ∧ ∀𝑘 ∈ 𝒫 ∪ 𝐽((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
| 10 | toptopon2 22805 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 11 | elkgen 23423 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 ⊆ ∪ 𝐽 ∧ ∀𝑘 ∈ 𝒫 ∪ 𝐽((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) | |
| 12 | 10, 11 | sylbi 217 | . . 3 ⊢ (𝐽 ∈ Top → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 ⊆ ∪ 𝐽 ∧ ∀𝑘 ∈ 𝒫 ∪ 𝐽((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
| 13 | 9, 12 | sylibrd 259 | . 2 ⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝐽 → 𝑥 ∈ (𝑘Gen‘𝐽))) |
| 14 | 13 | ssrdv 3952 | 1 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∩ cin 3913 ⊆ wss 3914 𝒫 cpw 4563 ∪ cuni 4871 ‘cfv 6511 (class class class)co 7387 ↾t crest 17383 Topctop 22780 TopOnctopon 22797 Compccmp 23273 𝑘Genckgen 23420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-rest 17385 df-top 22781 df-topon 22798 df-kgen 23421 |
| This theorem is referenced by: kgenhaus 23431 kgencmp 23432 kgencmp2 23433 kgenidm 23434 iskgen2 23435 kgencn3 23445 kgen2cn 23446 |
| Copyright terms: Public domain | W3C validator |