MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgenss Structured version   Visualization version   GIF version

Theorem kgenss 22694
Description: The compact generator generates a finer topology than the original. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgenss (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽))

Proof of Theorem kgenss
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elssuni 4871 . . . . 5 (𝑥𝐽𝑥 𝐽)
21a1i 11 . . . 4 (𝐽 ∈ Top → (𝑥𝐽𝑥 𝐽))
3 elrestr 17139 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑘 ∈ 𝒫 𝐽𝑥𝐽) → (𝑥𝑘) ∈ (𝐽t 𝑘))
433expa 1117 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑘 ∈ 𝒫 𝐽) ∧ 𝑥𝐽) → (𝑥𝑘) ∈ (𝐽t 𝑘))
54an32s 649 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑘 ∈ 𝒫 𝐽) → (𝑥𝑘) ∈ (𝐽t 𝑘))
65a1d 25 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑘 ∈ 𝒫 𝐽) → ((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))
76ralrimiva 3103 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝐽) → ∀𝑘 ∈ 𝒫 𝐽((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))
87ex 413 . . . 4 (𝐽 ∈ Top → (𝑥𝐽 → ∀𝑘 ∈ 𝒫 𝐽((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))))
92, 8jcad 513 . . 3 (𝐽 ∈ Top → (𝑥𝐽 → (𝑥 𝐽 ∧ ∀𝑘 ∈ 𝒫 𝐽((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
10 toptopon2 22067 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
11 elkgen 22687 . . . 4 (𝐽 ∈ (TopOn‘ 𝐽) → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 𝐽 ∧ ∀𝑘 ∈ 𝒫 𝐽((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
1210, 11sylbi 216 . . 3 (𝐽 ∈ Top → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 𝐽 ∧ ∀𝑘 ∈ 𝒫 𝐽((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
139, 12sylibrd 258 . 2 (𝐽 ∈ Top → (𝑥𝐽𝑥 ∈ (𝑘Gen‘𝐽)))
1413ssrdv 3927 1 (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wral 3064  cin 3886  wss 3887  𝒫 cpw 4533   cuni 4839  cfv 6433  (class class class)co 7275  t crest 17131  Topctop 22042  TopOnctopon 22059  Compccmp 22537  𝑘Genckgen 22684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-rest 17133  df-top 22043  df-topon 22060  df-kgen 22685
This theorem is referenced by:  kgenhaus  22695  kgencmp  22696  kgencmp2  22697  kgenidm  22698  iskgen2  22699  kgencn3  22709  kgen2cn  22710
  Copyright terms: Public domain W3C validator