MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgenss Structured version   Visualization version   GIF version

Theorem kgenss 22602
Description: The compact generator generates a finer topology than the original. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgenss (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽))

Proof of Theorem kgenss
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elssuni 4868 . . . . 5 (𝑥𝐽𝑥 𝐽)
21a1i 11 . . . 4 (𝐽 ∈ Top → (𝑥𝐽𝑥 𝐽))
3 elrestr 17056 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑘 ∈ 𝒫 𝐽𝑥𝐽) → (𝑥𝑘) ∈ (𝐽t 𝑘))
433expa 1116 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑘 ∈ 𝒫 𝐽) ∧ 𝑥𝐽) → (𝑥𝑘) ∈ (𝐽t 𝑘))
54an32s 648 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑘 ∈ 𝒫 𝐽) → (𝑥𝑘) ∈ (𝐽t 𝑘))
65a1d 25 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑘 ∈ 𝒫 𝐽) → ((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))
76ralrimiva 3107 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝐽) → ∀𝑘 ∈ 𝒫 𝐽((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))
87ex 412 . . . 4 (𝐽 ∈ Top → (𝑥𝐽 → ∀𝑘 ∈ 𝒫 𝐽((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))))
92, 8jcad 512 . . 3 (𝐽 ∈ Top → (𝑥𝐽 → (𝑥 𝐽 ∧ ∀𝑘 ∈ 𝒫 𝐽((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
10 toptopon2 21975 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
11 elkgen 22595 . . . 4 (𝐽 ∈ (TopOn‘ 𝐽) → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 𝐽 ∧ ∀𝑘 ∈ 𝒫 𝐽((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
1210, 11sylbi 216 . . 3 (𝐽 ∈ Top → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 𝐽 ∧ ∀𝑘 ∈ 𝒫 𝐽((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
139, 12sylibrd 258 . 2 (𝐽 ∈ Top → (𝑥𝐽𝑥 ∈ (𝑘Gen‘𝐽)))
1413ssrdv 3923 1 (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  wral 3063  cin 3882  wss 3883  𝒫 cpw 4530   cuni 4836  cfv 6418  (class class class)co 7255  t crest 17048  Topctop 21950  TopOnctopon 21967  Compccmp 22445  𝑘Genckgen 22592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-rest 17050  df-top 21951  df-topon 21968  df-kgen 22593
This theorem is referenced by:  kgenhaus  22603  kgencmp  22604  kgencmp2  22605  kgenidm  22606  iskgen2  22607  kgencn3  22617  kgen2cn  22618
  Copyright terms: Public domain W3C validator