Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > kgenss | Structured version Visualization version GIF version |
Description: The compact generator generates a finer topology than the original. (Contributed by Mario Carneiro, 20-Mar-2015.) |
Ref | Expression |
---|---|
kgenss | ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 4868 | . . . . 5 ⊢ (𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽) | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽)) |
3 | elrestr 17056 | . . . . . . . . 9 ⊢ ((𝐽 ∈ Top ∧ 𝑘 ∈ 𝒫 ∪ 𝐽 ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) | |
4 | 3 | 3expa 1116 | . . . . . . . 8 ⊢ (((𝐽 ∈ Top ∧ 𝑘 ∈ 𝒫 ∪ 𝐽) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
5 | 4 | an32s 648 | . . . . . . 7 ⊢ (((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑘 ∈ 𝒫 ∪ 𝐽) → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) |
6 | 5 | a1d 25 | . . . . . 6 ⊢ (((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) ∧ 𝑘 ∈ 𝒫 ∪ 𝐽) → ((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
7 | 6 | ralrimiva 3107 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → ∀𝑘 ∈ 𝒫 ∪ 𝐽((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
8 | 7 | ex 412 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝐽 → ∀𝑘 ∈ 𝒫 ∪ 𝐽((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) |
9 | 2, 8 | jcad 512 | . . 3 ⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝐽 → (𝑥 ⊆ ∪ 𝐽 ∧ ∀𝑘 ∈ 𝒫 ∪ 𝐽((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
10 | toptopon2 21975 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
11 | elkgen 22595 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 ⊆ ∪ 𝐽 ∧ ∀𝑘 ∈ 𝒫 ∪ 𝐽((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) | |
12 | 10, 11 | sylbi 216 | . . 3 ⊢ (𝐽 ∈ Top → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 ⊆ ∪ 𝐽 ∧ ∀𝑘 ∈ 𝒫 ∪ 𝐽((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
13 | 9, 12 | sylibrd 258 | . 2 ⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝐽 → 𝑥 ∈ (𝑘Gen‘𝐽))) |
14 | 13 | ssrdv 3923 | 1 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 ‘cfv 6418 (class class class)co 7255 ↾t crest 17048 Topctop 21950 TopOnctopon 21967 Compccmp 22445 𝑘Genckgen 22592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-rest 17050 df-top 21951 df-topon 21968 df-kgen 22593 |
This theorem is referenced by: kgenhaus 22603 kgencmp 22604 kgencmp2 22605 kgenidm 22606 iskgen2 22607 kgencn3 22617 kgen2cn 22618 |
Copyright terms: Public domain | W3C validator |