MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgenidm Structured version   Visualization version   GIF version

Theorem kgenidm 23462
Description: The compact generator is idempotent on compactly generated spaces. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgenidm (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) = 𝐽)

Proof of Theorem kgenidm
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kgenf 23456 . . . 4 𝑘Gen:Top⟶Top
2 ffn 6651 . . . 4 (𝑘Gen:Top⟶Top → 𝑘Gen Fn Top)
3 fvelrnb 6882 . . . 4 (𝑘Gen Fn Top → (𝐽 ∈ ran 𝑘Gen ↔ ∃𝑗 ∈ Top (𝑘Gen‘𝑗) = 𝐽))
41, 2, 3mp2b 10 . . 3 (𝐽 ∈ ran 𝑘Gen ↔ ∃𝑗 ∈ Top (𝑘Gen‘𝑗) = 𝐽)
5 toptopon2 22833 . . . . . . . . . . 11 (𝑗 ∈ Top ↔ 𝑗 ∈ (TopOn‘ 𝑗))
6 kgentopon 23453 . . . . . . . . . . 11 (𝑗 ∈ (TopOn‘ 𝑗) → (𝑘Gen‘𝑗) ∈ (TopOn‘ 𝑗))
75, 6sylbi 217 . . . . . . . . . 10 (𝑗 ∈ Top → (𝑘Gen‘𝑗) ∈ (TopOn‘ 𝑗))
8 kgentopon 23453 . . . . . . . . . 10 ((𝑘Gen‘𝑗) ∈ (TopOn‘ 𝑗) → (𝑘Gen‘(𝑘Gen‘𝑗)) ∈ (TopOn‘ 𝑗))
97, 8syl 17 . . . . . . . . 9 (𝑗 ∈ Top → (𝑘Gen‘(𝑘Gen‘𝑗)) ∈ (TopOn‘ 𝑗))
10 toponss 22842 . . . . . . . . 9 (((𝑘Gen‘(𝑘Gen‘𝑗)) ∈ (TopOn‘ 𝑗) ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → 𝑥 𝑗)
119, 10sylan 580 . . . . . . . 8 ((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → 𝑥 𝑗)
12 simplr 768 . . . . . . . . . . . 12 (((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) ∧ (𝑘 ∈ 𝒫 𝑗 ∧ (𝑗t 𝑘) ∈ Comp)) → 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗)))
13 kgencmp2 23461 . . . . . . . . . . . . . 14 (𝑗 ∈ Top → ((𝑗t 𝑘) ∈ Comp ↔ ((𝑘Gen‘𝑗) ↾t 𝑘) ∈ Comp))
1413biimpa 476 . . . . . . . . . . . . 13 ((𝑗 ∈ Top ∧ (𝑗t 𝑘) ∈ Comp) → ((𝑘Gen‘𝑗) ↾t 𝑘) ∈ Comp)
1514ad2ant2rl 749 . . . . . . . . . . . 12 (((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) ∧ (𝑘 ∈ 𝒫 𝑗 ∧ (𝑗t 𝑘) ∈ Comp)) → ((𝑘Gen‘𝑗) ↾t 𝑘) ∈ Comp)
16 kgeni 23452 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗)) ∧ ((𝑘Gen‘𝑗) ↾t 𝑘) ∈ Comp) → (𝑥𝑘) ∈ ((𝑘Gen‘𝑗) ↾t 𝑘))
1712, 15, 16syl2anc 584 . . . . . . . . . . 11 (((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) ∧ (𝑘 ∈ 𝒫 𝑗 ∧ (𝑗t 𝑘) ∈ Comp)) → (𝑥𝑘) ∈ ((𝑘Gen‘𝑗) ↾t 𝑘))
18 kgencmp 23460 . . . . . . . . . . . 12 ((𝑗 ∈ Top ∧ (𝑗t 𝑘) ∈ Comp) → (𝑗t 𝑘) = ((𝑘Gen‘𝑗) ↾t 𝑘))
1918ad2ant2rl 749 . . . . . . . . . . 11 (((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) ∧ (𝑘 ∈ 𝒫 𝑗 ∧ (𝑗t 𝑘) ∈ Comp)) → (𝑗t 𝑘) = ((𝑘Gen‘𝑗) ↾t 𝑘))
2017, 19eleqtrrd 2834 . . . . . . . . . 10 (((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) ∧ (𝑘 ∈ 𝒫 𝑗 ∧ (𝑗t 𝑘) ∈ Comp)) → (𝑥𝑘) ∈ (𝑗t 𝑘))
2120expr 456 . . . . . . . . 9 (((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) ∧ 𝑘 ∈ 𝒫 𝑗) → ((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘)))
2221ralrimiva 3124 . . . . . . . 8 ((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘)))
23 simpl 482 . . . . . . . . . 10 ((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → 𝑗 ∈ Top)
2423, 5sylib 218 . . . . . . . . 9 ((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → 𝑗 ∈ (TopOn‘ 𝑗))
25 elkgen 23451 . . . . . . . . 9 (𝑗 ∈ (TopOn‘ 𝑗) → (𝑥 ∈ (𝑘Gen‘𝑗) ↔ (𝑥 𝑗 ∧ ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘)))))
2624, 25syl 17 . . . . . . . 8 ((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → (𝑥 ∈ (𝑘Gen‘𝑗) ↔ (𝑥 𝑗 ∧ ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘)))))
2711, 22, 26mpbir2and 713 . . . . . . 7 ((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → 𝑥 ∈ (𝑘Gen‘𝑗))
2827ex 412 . . . . . 6 (𝑗 ∈ Top → (𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗)) → 𝑥 ∈ (𝑘Gen‘𝑗)))
2928ssrdv 3935 . . . . 5 (𝑗 ∈ Top → (𝑘Gen‘(𝑘Gen‘𝑗)) ⊆ (𝑘Gen‘𝑗))
30 fveq2 6822 . . . . . 6 ((𝑘Gen‘𝑗) = 𝐽 → (𝑘Gen‘(𝑘Gen‘𝑗)) = (𝑘Gen‘𝐽))
31 id 22 . . . . . 6 ((𝑘Gen‘𝑗) = 𝐽 → (𝑘Gen‘𝑗) = 𝐽)
3230, 31sseq12d 3963 . . . . 5 ((𝑘Gen‘𝑗) = 𝐽 → ((𝑘Gen‘(𝑘Gen‘𝑗)) ⊆ (𝑘Gen‘𝑗) ↔ (𝑘Gen‘𝐽) ⊆ 𝐽))
3329, 32syl5ibcom 245 . . . 4 (𝑗 ∈ Top → ((𝑘Gen‘𝑗) = 𝐽 → (𝑘Gen‘𝐽) ⊆ 𝐽))
3433rexlimiv 3126 . . 3 (∃𝑗 ∈ Top (𝑘Gen‘𝑗) = 𝐽 → (𝑘Gen‘𝐽) ⊆ 𝐽)
354, 34sylbi 217 . 2 (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) ⊆ 𝐽)
36 kgentop 23457 . . 3 (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top)
37 kgenss 23458 . . 3 (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽))
3836, 37syl 17 . 2 (𝐽 ∈ ran 𝑘Gen → 𝐽 ⊆ (𝑘Gen‘𝐽))
3935, 38eqssd 3947 1 (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  cin 3896  wss 3897  𝒫 cpw 4547   cuni 4856  ran crn 5615   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  t crest 17324  Topctop 22808  TopOnctopon 22825  Compccmp 23301  𝑘Genckgen 23448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-en 8870  df-fin 8873  df-fi 9295  df-rest 17326  df-topgen 17347  df-top 22809  df-topon 22826  df-bases 22861  df-cmp 23302  df-kgen 23449
This theorem is referenced by:  iskgen2  23463  kgencn3  23473  txkgen  23567
  Copyright terms: Public domain W3C validator