MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgenidm Structured version   Visualization version   GIF version

Theorem kgenidm 22606
Description: The compact generator is idempotent on compactly generated spaces. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgenidm (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) = 𝐽)

Proof of Theorem kgenidm
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kgenf 22600 . . . 4 𝑘Gen:Top⟶Top
2 ffn 6584 . . . 4 (𝑘Gen:Top⟶Top → 𝑘Gen Fn Top)
3 fvelrnb 6812 . . . 4 (𝑘Gen Fn Top → (𝐽 ∈ ran 𝑘Gen ↔ ∃𝑗 ∈ Top (𝑘Gen‘𝑗) = 𝐽))
41, 2, 3mp2b 10 . . 3 (𝐽 ∈ ran 𝑘Gen ↔ ∃𝑗 ∈ Top (𝑘Gen‘𝑗) = 𝐽)
5 toptopon2 21975 . . . . . . . . . . 11 (𝑗 ∈ Top ↔ 𝑗 ∈ (TopOn‘ 𝑗))
6 kgentopon 22597 . . . . . . . . . . 11 (𝑗 ∈ (TopOn‘ 𝑗) → (𝑘Gen‘𝑗) ∈ (TopOn‘ 𝑗))
75, 6sylbi 216 . . . . . . . . . 10 (𝑗 ∈ Top → (𝑘Gen‘𝑗) ∈ (TopOn‘ 𝑗))
8 kgentopon 22597 . . . . . . . . . 10 ((𝑘Gen‘𝑗) ∈ (TopOn‘ 𝑗) → (𝑘Gen‘(𝑘Gen‘𝑗)) ∈ (TopOn‘ 𝑗))
97, 8syl 17 . . . . . . . . 9 (𝑗 ∈ Top → (𝑘Gen‘(𝑘Gen‘𝑗)) ∈ (TopOn‘ 𝑗))
10 toponss 21984 . . . . . . . . 9 (((𝑘Gen‘(𝑘Gen‘𝑗)) ∈ (TopOn‘ 𝑗) ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → 𝑥 𝑗)
119, 10sylan 579 . . . . . . . 8 ((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → 𝑥 𝑗)
12 simplr 765 . . . . . . . . . . . 12 (((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) ∧ (𝑘 ∈ 𝒫 𝑗 ∧ (𝑗t 𝑘) ∈ Comp)) → 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗)))
13 kgencmp2 22605 . . . . . . . . . . . . . 14 (𝑗 ∈ Top → ((𝑗t 𝑘) ∈ Comp ↔ ((𝑘Gen‘𝑗) ↾t 𝑘) ∈ Comp))
1413biimpa 476 . . . . . . . . . . . . 13 ((𝑗 ∈ Top ∧ (𝑗t 𝑘) ∈ Comp) → ((𝑘Gen‘𝑗) ↾t 𝑘) ∈ Comp)
1514ad2ant2rl 745 . . . . . . . . . . . 12 (((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) ∧ (𝑘 ∈ 𝒫 𝑗 ∧ (𝑗t 𝑘) ∈ Comp)) → ((𝑘Gen‘𝑗) ↾t 𝑘) ∈ Comp)
16 kgeni 22596 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗)) ∧ ((𝑘Gen‘𝑗) ↾t 𝑘) ∈ Comp) → (𝑥𝑘) ∈ ((𝑘Gen‘𝑗) ↾t 𝑘))
1712, 15, 16syl2anc 583 . . . . . . . . . . 11 (((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) ∧ (𝑘 ∈ 𝒫 𝑗 ∧ (𝑗t 𝑘) ∈ Comp)) → (𝑥𝑘) ∈ ((𝑘Gen‘𝑗) ↾t 𝑘))
18 kgencmp 22604 . . . . . . . . . . . 12 ((𝑗 ∈ Top ∧ (𝑗t 𝑘) ∈ Comp) → (𝑗t 𝑘) = ((𝑘Gen‘𝑗) ↾t 𝑘))
1918ad2ant2rl 745 . . . . . . . . . . 11 (((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) ∧ (𝑘 ∈ 𝒫 𝑗 ∧ (𝑗t 𝑘) ∈ Comp)) → (𝑗t 𝑘) = ((𝑘Gen‘𝑗) ↾t 𝑘))
2017, 19eleqtrrd 2842 . . . . . . . . . 10 (((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) ∧ (𝑘 ∈ 𝒫 𝑗 ∧ (𝑗t 𝑘) ∈ Comp)) → (𝑥𝑘) ∈ (𝑗t 𝑘))
2120expr 456 . . . . . . . . 9 (((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) ∧ 𝑘 ∈ 𝒫 𝑗) → ((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘)))
2221ralrimiva 3107 . . . . . . . 8 ((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘)))
23 simpl 482 . . . . . . . . . 10 ((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → 𝑗 ∈ Top)
2423, 5sylib 217 . . . . . . . . 9 ((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → 𝑗 ∈ (TopOn‘ 𝑗))
25 elkgen 22595 . . . . . . . . 9 (𝑗 ∈ (TopOn‘ 𝑗) → (𝑥 ∈ (𝑘Gen‘𝑗) ↔ (𝑥 𝑗 ∧ ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘)))))
2624, 25syl 17 . . . . . . . 8 ((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → (𝑥 ∈ (𝑘Gen‘𝑗) ↔ (𝑥 𝑗 ∧ ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘)))))
2711, 22, 26mpbir2and 709 . . . . . . 7 ((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → 𝑥 ∈ (𝑘Gen‘𝑗))
2827ex 412 . . . . . 6 (𝑗 ∈ Top → (𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗)) → 𝑥 ∈ (𝑘Gen‘𝑗)))
2928ssrdv 3923 . . . . 5 (𝑗 ∈ Top → (𝑘Gen‘(𝑘Gen‘𝑗)) ⊆ (𝑘Gen‘𝑗))
30 fveq2 6756 . . . . . 6 ((𝑘Gen‘𝑗) = 𝐽 → (𝑘Gen‘(𝑘Gen‘𝑗)) = (𝑘Gen‘𝐽))
31 id 22 . . . . . 6 ((𝑘Gen‘𝑗) = 𝐽 → (𝑘Gen‘𝑗) = 𝐽)
3230, 31sseq12d 3950 . . . . 5 ((𝑘Gen‘𝑗) = 𝐽 → ((𝑘Gen‘(𝑘Gen‘𝑗)) ⊆ (𝑘Gen‘𝑗) ↔ (𝑘Gen‘𝐽) ⊆ 𝐽))
3329, 32syl5ibcom 244 . . . 4 (𝑗 ∈ Top → ((𝑘Gen‘𝑗) = 𝐽 → (𝑘Gen‘𝐽) ⊆ 𝐽))
3433rexlimiv 3208 . . 3 (∃𝑗 ∈ Top (𝑘Gen‘𝑗) = 𝐽 → (𝑘Gen‘𝐽) ⊆ 𝐽)
354, 34sylbi 216 . 2 (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) ⊆ 𝐽)
36 kgentop 22601 . . 3 (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top)
37 kgenss 22602 . . 3 (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽))
3836, 37syl 17 . 2 (𝐽 ∈ ran 𝑘Gen → 𝐽 ⊆ (𝑘Gen‘𝐽))
3935, 38eqssd 3934 1 (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cin 3882  wss 3883  𝒫 cpw 4530   cuni 4836  ran crn 5581   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  t crest 17048  Topctop 21950  TopOnctopon 21967  Compccmp 22445  𝑘Genckgen 22592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-en 8692  df-fin 8695  df-fi 9100  df-rest 17050  df-topgen 17071  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-kgen 22593
This theorem is referenced by:  iskgen2  22607  kgencn3  22617  txkgen  22711
  Copyright terms: Public domain W3C validator