MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgenidm Structured version   Visualization version   GIF version

Theorem kgenidm 23441
Description: The compact generator is idempotent on compactly generated spaces. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgenidm (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) = 𝐽)

Proof of Theorem kgenidm
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kgenf 23435 . . . 4 𝑘Gen:Top⟶Top
2 ffn 6691 . . . 4 (𝑘Gen:Top⟶Top → 𝑘Gen Fn Top)
3 fvelrnb 6924 . . . 4 (𝑘Gen Fn Top → (𝐽 ∈ ran 𝑘Gen ↔ ∃𝑗 ∈ Top (𝑘Gen‘𝑗) = 𝐽))
41, 2, 3mp2b 10 . . 3 (𝐽 ∈ ran 𝑘Gen ↔ ∃𝑗 ∈ Top (𝑘Gen‘𝑗) = 𝐽)
5 toptopon2 22812 . . . . . . . . . . 11 (𝑗 ∈ Top ↔ 𝑗 ∈ (TopOn‘ 𝑗))
6 kgentopon 23432 . . . . . . . . . . 11 (𝑗 ∈ (TopOn‘ 𝑗) → (𝑘Gen‘𝑗) ∈ (TopOn‘ 𝑗))
75, 6sylbi 217 . . . . . . . . . 10 (𝑗 ∈ Top → (𝑘Gen‘𝑗) ∈ (TopOn‘ 𝑗))
8 kgentopon 23432 . . . . . . . . . 10 ((𝑘Gen‘𝑗) ∈ (TopOn‘ 𝑗) → (𝑘Gen‘(𝑘Gen‘𝑗)) ∈ (TopOn‘ 𝑗))
97, 8syl 17 . . . . . . . . 9 (𝑗 ∈ Top → (𝑘Gen‘(𝑘Gen‘𝑗)) ∈ (TopOn‘ 𝑗))
10 toponss 22821 . . . . . . . . 9 (((𝑘Gen‘(𝑘Gen‘𝑗)) ∈ (TopOn‘ 𝑗) ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → 𝑥 𝑗)
119, 10sylan 580 . . . . . . . 8 ((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → 𝑥 𝑗)
12 simplr 768 . . . . . . . . . . . 12 (((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) ∧ (𝑘 ∈ 𝒫 𝑗 ∧ (𝑗t 𝑘) ∈ Comp)) → 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗)))
13 kgencmp2 23440 . . . . . . . . . . . . . 14 (𝑗 ∈ Top → ((𝑗t 𝑘) ∈ Comp ↔ ((𝑘Gen‘𝑗) ↾t 𝑘) ∈ Comp))
1413biimpa 476 . . . . . . . . . . . . 13 ((𝑗 ∈ Top ∧ (𝑗t 𝑘) ∈ Comp) → ((𝑘Gen‘𝑗) ↾t 𝑘) ∈ Comp)
1514ad2ant2rl 749 . . . . . . . . . . . 12 (((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) ∧ (𝑘 ∈ 𝒫 𝑗 ∧ (𝑗t 𝑘) ∈ Comp)) → ((𝑘Gen‘𝑗) ↾t 𝑘) ∈ Comp)
16 kgeni 23431 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗)) ∧ ((𝑘Gen‘𝑗) ↾t 𝑘) ∈ Comp) → (𝑥𝑘) ∈ ((𝑘Gen‘𝑗) ↾t 𝑘))
1712, 15, 16syl2anc 584 . . . . . . . . . . 11 (((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) ∧ (𝑘 ∈ 𝒫 𝑗 ∧ (𝑗t 𝑘) ∈ Comp)) → (𝑥𝑘) ∈ ((𝑘Gen‘𝑗) ↾t 𝑘))
18 kgencmp 23439 . . . . . . . . . . . 12 ((𝑗 ∈ Top ∧ (𝑗t 𝑘) ∈ Comp) → (𝑗t 𝑘) = ((𝑘Gen‘𝑗) ↾t 𝑘))
1918ad2ant2rl 749 . . . . . . . . . . 11 (((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) ∧ (𝑘 ∈ 𝒫 𝑗 ∧ (𝑗t 𝑘) ∈ Comp)) → (𝑗t 𝑘) = ((𝑘Gen‘𝑗) ↾t 𝑘))
2017, 19eleqtrrd 2832 . . . . . . . . . 10 (((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) ∧ (𝑘 ∈ 𝒫 𝑗 ∧ (𝑗t 𝑘) ∈ Comp)) → (𝑥𝑘) ∈ (𝑗t 𝑘))
2120expr 456 . . . . . . . . 9 (((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) ∧ 𝑘 ∈ 𝒫 𝑗) → ((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘)))
2221ralrimiva 3126 . . . . . . . 8 ((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘)))
23 simpl 482 . . . . . . . . . 10 ((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → 𝑗 ∈ Top)
2423, 5sylib 218 . . . . . . . . 9 ((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → 𝑗 ∈ (TopOn‘ 𝑗))
25 elkgen 23430 . . . . . . . . 9 (𝑗 ∈ (TopOn‘ 𝑗) → (𝑥 ∈ (𝑘Gen‘𝑗) ↔ (𝑥 𝑗 ∧ ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘)))))
2624, 25syl 17 . . . . . . . 8 ((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → (𝑥 ∈ (𝑘Gen‘𝑗) ↔ (𝑥 𝑗 ∧ ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘)))))
2711, 22, 26mpbir2and 713 . . . . . . 7 ((𝑗 ∈ Top ∧ 𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗))) → 𝑥 ∈ (𝑘Gen‘𝑗))
2827ex 412 . . . . . 6 (𝑗 ∈ Top → (𝑥 ∈ (𝑘Gen‘(𝑘Gen‘𝑗)) → 𝑥 ∈ (𝑘Gen‘𝑗)))
2928ssrdv 3955 . . . . 5 (𝑗 ∈ Top → (𝑘Gen‘(𝑘Gen‘𝑗)) ⊆ (𝑘Gen‘𝑗))
30 fveq2 6861 . . . . . 6 ((𝑘Gen‘𝑗) = 𝐽 → (𝑘Gen‘(𝑘Gen‘𝑗)) = (𝑘Gen‘𝐽))
31 id 22 . . . . . 6 ((𝑘Gen‘𝑗) = 𝐽 → (𝑘Gen‘𝑗) = 𝐽)
3230, 31sseq12d 3983 . . . . 5 ((𝑘Gen‘𝑗) = 𝐽 → ((𝑘Gen‘(𝑘Gen‘𝑗)) ⊆ (𝑘Gen‘𝑗) ↔ (𝑘Gen‘𝐽) ⊆ 𝐽))
3329, 32syl5ibcom 245 . . . 4 (𝑗 ∈ Top → ((𝑘Gen‘𝑗) = 𝐽 → (𝑘Gen‘𝐽) ⊆ 𝐽))
3433rexlimiv 3128 . . 3 (∃𝑗 ∈ Top (𝑘Gen‘𝑗) = 𝐽 → (𝑘Gen‘𝐽) ⊆ 𝐽)
354, 34sylbi 217 . 2 (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) ⊆ 𝐽)
36 kgentop 23436 . . 3 (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top)
37 kgenss 23437 . . 3 (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽))
3836, 37syl 17 . 2 (𝐽 ∈ ran 𝑘Gen → 𝐽 ⊆ (𝑘Gen‘𝐽))
3935, 38eqssd 3967 1 (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  cin 3916  wss 3917  𝒫 cpw 4566   cuni 4874  ran crn 5642   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  t crest 17390  Topctop 22787  TopOnctopon 22804  Compccmp 23280  𝑘Genckgen 23427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-en 8922  df-fin 8925  df-fi 9369  df-rest 17392  df-topgen 17413  df-top 22788  df-topon 22805  df-bases 22840  df-cmp 23281  df-kgen 23428
This theorem is referenced by:  iskgen2  23442  kgencn3  23452  txkgen  23546
  Copyright terms: Public domain W3C validator