HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadjlem6 Structured version   Visualization version   GIF version

Theorem cnlnadjlem6 29482
Description: Lemma for cnlnadji 29486. 𝐹 is linear. (Contributed by NM, 17-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadjlem.1 𝑇 ∈ LinOp
cnlnadjlem.2 𝑇 ∈ ContOp
cnlnadjlem.3 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
cnlnadjlem.4 𝐵 = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
cnlnadjlem.5 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵)
Assertion
Ref Expression
cnlnadjlem6 𝐹 ∈ LinOp
Distinct variable groups:   𝑣,𝑔,𝑤,𝑦   𝑤,𝐹   𝑇,𝑔,𝑣,𝑤,𝑦   𝑣,𝐺,𝑤
Allowed substitution hints:   𝐵(𝑦,𝑤,𝑣,𝑔)   𝐹(𝑦,𝑣,𝑔)   𝐺(𝑦,𝑔)

Proof of Theorem cnlnadjlem6
Dummy variables 𝑓 𝑧 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnlnadjlem.5 . . 3 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵)
2 cnlnadjlem.1 . . . 4 𝑇 ∈ LinOp
3 cnlnadjlem.2 . . . 4 𝑇 ∈ ContOp
4 cnlnadjlem.3 . . . 4 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
5 cnlnadjlem.4 . . . 4 𝐵 = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
62, 3, 4, 5cnlnadjlem3 29479 . . 3 (𝑦 ∈ ℋ → 𝐵 ∈ ℋ)
71, 6fmpti 6636 . 2 𝐹: ℋ⟶ ℋ
82lnopfi 29379 . . . . . . . . . 10 𝑇: ℋ⟶ ℋ
98ffvelrni 6612 . . . . . . . . 9 (𝑡 ∈ ℋ → (𝑇𝑡) ∈ ℋ)
109adantl 475 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑇𝑡) ∈ ℋ)
11 hvmulcl 28421 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) → (𝑥 · 𝑓) ∈ ℋ)
1211ad2antrr 717 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑥 · 𝑓) ∈ ℋ)
13 simplr 785 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑧 ∈ ℋ)
14 his7 28498 . . . . . . . 8 (((𝑇𝑡) ∈ ℋ ∧ (𝑥 · 𝑓) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑇𝑡) ·ih ((𝑥 · 𝑓) + 𝑧)) = (((𝑇𝑡) ·ih (𝑥 · 𝑓)) + ((𝑇𝑡) ·ih 𝑧)))
1510, 12, 13, 14syl3anc 1494 . . . . . . 7 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih ((𝑥 · 𝑓) + 𝑧)) = (((𝑇𝑡) ·ih (𝑥 · 𝑓)) + ((𝑇𝑡) ·ih 𝑧)))
16 hvaddcl 28420 . . . . . . . . 9 (((𝑥 · 𝑓) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑓) + 𝑧) ∈ ℋ)
1711, 16sylan 575 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑓) + 𝑧) ∈ ℋ)
182, 3, 4, 5, 1cnlnadjlem5 29481 . . . . . . . 8 ((((𝑥 · 𝑓) + 𝑧) ∈ ℋ ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih ((𝑥 · 𝑓) + 𝑧)) = (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))))
1917, 18sylan 575 . . . . . . 7 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih ((𝑥 · 𝑓) + 𝑧)) = (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))))
20 simpll 783 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑥 ∈ ℂ)
219adantl 475 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑇𝑡) ∈ ℋ)
22 simplr 785 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑓 ∈ ℋ)
23 his5 28494 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑇𝑡) ∈ ℋ ∧ 𝑓 ∈ ℋ) → ((𝑇𝑡) ·ih (𝑥 · 𝑓)) = ((∗‘𝑥) · ((𝑇𝑡) ·ih 𝑓)))
2420, 21, 22, 23syl3anc 1494 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih (𝑥 · 𝑓)) = ((∗‘𝑥) · ((𝑇𝑡) ·ih 𝑓)))
25 simpr 479 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑡 ∈ ℋ)
262, 3, 4, 5, 1cnlnadjlem4 29480 . . . . . . . . . . . . . 14 (𝑓 ∈ ℋ → (𝐹𝑓) ∈ ℋ)
2726ad2antlr 718 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝐹𝑓) ∈ ℋ)
28 his5 28494 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑡 ∈ ℋ ∧ (𝐹𝑓) ∈ ℋ) → (𝑡 ·ih (𝑥 · (𝐹𝑓))) = ((∗‘𝑥) · (𝑡 ·ih (𝐹𝑓))))
2920, 25, 27, 28syl3anc 1494 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑡 ·ih (𝑥 · (𝐹𝑓))) = ((∗‘𝑥) · (𝑡 ·ih (𝐹𝑓))))
302, 3, 4, 5, 1cnlnadjlem5 29481 . . . . . . . . . . . . . 14 ((𝑓 ∈ ℋ ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih 𝑓) = (𝑡 ·ih (𝐹𝑓)))
3130adantll 705 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih 𝑓) = (𝑡 ·ih (𝐹𝑓)))
3231oveq2d 6926 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((∗‘𝑥) · ((𝑇𝑡) ·ih 𝑓)) = ((∗‘𝑥) · (𝑡 ·ih (𝐹𝑓))))
3329, 32eqtr4d 2864 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑡 ·ih (𝑥 · (𝐹𝑓))) = ((∗‘𝑥) · ((𝑇𝑡) ·ih 𝑓)))
3424, 33eqtr4d 2864 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih (𝑥 · 𝑓)) = (𝑡 ·ih (𝑥 · (𝐹𝑓))))
3534adantlr 706 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih (𝑥 · 𝑓)) = (𝑡 ·ih (𝑥 · (𝐹𝑓))))
362, 3, 4, 5, 1cnlnadjlem5 29481 . . . . . . . . . 10 ((𝑧 ∈ ℋ ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih 𝑧) = (𝑡 ·ih (𝐹𝑧)))
3736adantll 705 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih 𝑧) = (𝑡 ·ih (𝐹𝑧)))
3835, 37oveq12d 6928 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (((𝑇𝑡) ·ih (𝑥 · 𝑓)) + ((𝑇𝑡) ·ih 𝑧)) = ((𝑡 ·ih (𝑥 · (𝐹𝑓))) + (𝑡 ·ih (𝐹𝑧))))
39 simpr 479 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑡 ∈ ℋ)
40 hvmulcl 28421 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝐹𝑓) ∈ ℋ) → (𝑥 · (𝐹𝑓)) ∈ ℋ)
4126, 40sylan2 586 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) → (𝑥 · (𝐹𝑓)) ∈ ℋ)
4241ad2antrr 717 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑥 · (𝐹𝑓)) ∈ ℋ)
432, 3, 4, 5, 1cnlnadjlem4 29480 . . . . . . . . . 10 (𝑧 ∈ ℋ → (𝐹𝑧) ∈ ℋ)
4443ad2antlr 718 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝐹𝑧) ∈ ℋ)
45 his7 28498 . . . . . . . . 9 ((𝑡 ∈ ℋ ∧ (𝑥 · (𝐹𝑓)) ∈ ℋ ∧ (𝐹𝑧) ∈ ℋ) → (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))) = ((𝑡 ·ih (𝑥 · (𝐹𝑓))) + (𝑡 ·ih (𝐹𝑧))))
4639, 42, 44, 45syl3anc 1494 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))) = ((𝑡 ·ih (𝑥 · (𝐹𝑓))) + (𝑡 ·ih (𝐹𝑧))))
4738, 46eqtr4d 2864 . . . . . . 7 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (((𝑇𝑡) ·ih (𝑥 · 𝑓)) + ((𝑇𝑡) ·ih 𝑧)) = (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
4815, 19, 473eqtr3d 2869 . . . . . 6 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))) = (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
4948ralrimiva 3175 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ∀𝑡 ∈ ℋ (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))) = (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
502, 3, 4, 5, 1cnlnadjlem4 29480 . . . . . . 7 (((𝑥 · 𝑓) + 𝑧) ∈ ℋ → (𝐹‘((𝑥 · 𝑓) + 𝑧)) ∈ ℋ)
5117, 50syl 17 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝐹‘((𝑥 · 𝑓) + 𝑧)) ∈ ℋ)
52 hvaddcl 28420 . . . . . . 7 (((𝑥 · (𝐹𝑓)) ∈ ℋ ∧ (𝐹𝑧) ∈ ℋ) → ((𝑥 · (𝐹𝑓)) + (𝐹𝑧)) ∈ ℋ)
5341, 43, 52syl2an 589 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (𝐹𝑓)) + (𝐹𝑧)) ∈ ℋ)
54 hial2eq2 28515 . . . . . 6 (((𝐹‘((𝑥 · 𝑓) + 𝑧)) ∈ ℋ ∧ ((𝑥 · (𝐹𝑓)) + (𝐹𝑧)) ∈ ℋ) → (∀𝑡 ∈ ℋ (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))) = (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))) ↔ (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
5551, 53, 54syl2anc 579 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (∀𝑡 ∈ ℋ (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))) = (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))) ↔ (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
5649, 55mpbid 224 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧)))
5756ralrimiva 3175 . . 3 ((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) → ∀𝑧 ∈ ℋ (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧)))
5857rgen2 3184 . 2 𝑥 ∈ ℂ ∀𝑓 ∈ ℋ ∀𝑧 ∈ ℋ (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))
59 ellnop 29268 . 2 (𝐹 ∈ LinOp ↔ (𝐹: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑓 ∈ ℋ ∀𝑧 ∈ ℋ (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
607, 58, 59mpbir2an 702 1 𝐹 ∈ LinOp
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386   = wceq 1656  wcel 2164  wral 3117  cmpt 4954  wf 6123  cfv 6127  crio 6870  (class class class)co 6910  cc 10257   + caddc 10262   · cmul 10264  ccj 14220  chba 28327   + cva 28328   · csm 28329   ·ih csp 28330  ContOpccop 28354  LinOpclo 28355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cc 9579  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337  ax-addf 10338  ax-mulf 10339  ax-hilex 28407  ax-hfvadd 28408  ax-hvcom 28409  ax-hvass 28410  ax-hv0cl 28411  ax-hvaddid 28412  ax-hfvmul 28413  ax-hvmulid 28414  ax-hvmulass 28415  ax-hvdistr1 28416  ax-hvdistr2 28417  ax-hvmul0 28418  ax-hfi 28487  ax-his1 28490  ax-his2 28491  ax-his3 28492  ax-his4 28493  ax-hcompl 28610
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-of 7162  df-om 7332  df-1st 7433  df-2nd 7434  df-supp 7565  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-2o 7832  df-oadd 7835  df-omul 7836  df-er 8014  df-map 8129  df-pm 8130  df-ixp 8182  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fsupp 8551  df-fi 8592  df-sup 8623  df-inf 8624  df-oi 8691  df-card 9085  df-acn 9088  df-cda 9312  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-q 12079  df-rp 12120  df-xneg 12239  df-xadd 12240  df-xmul 12241  df-ioo 12474  df-ico 12476  df-icc 12477  df-fz 12627  df-fzo 12768  df-fl 12895  df-seq 13103  df-exp 13162  df-hash 13418  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-clim 14603  df-rlim 14604  df-sum 14801  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-starv 16327  df-sca 16328  df-vsca 16329  df-ip 16330  df-tset 16331  df-ple 16332  df-ds 16334  df-unif 16335  df-hom 16336  df-cco 16337  df-rest 16443  df-topn 16444  df-0g 16462  df-gsum 16463  df-topgen 16464  df-pt 16465  df-prds 16468  df-xrs 16522  df-qtop 16527  df-imas 16528  df-xps 16530  df-mre 16606  df-mrc 16607  df-acs 16609  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-submnd 17696  df-mulg 17902  df-cntz 18107  df-cmn 18555  df-psmet 20105  df-xmet 20106  df-met 20107  df-bl 20108  df-mopn 20109  df-fbas 20110  df-fg 20111  df-cnfld 20114  df-top 21076  df-topon 21093  df-topsp 21115  df-bases 21128  df-cld 21201  df-ntr 21202  df-cls 21203  df-nei 21280  df-cn 21409  df-cnp 21410  df-lm 21411  df-t1 21496  df-haus 21497  df-tx 21743  df-hmeo 21936  df-fil 22027  df-fm 22119  df-flim 22120  df-flf 22121  df-xms 22502  df-ms 22503  df-tms 22504  df-cfil 23430  df-cau 23431  df-cmet 23432  df-grpo 27899  df-gid 27900  df-ginv 27901  df-gdiv 27902  df-ablo 27951  df-vc 27965  df-nv 27998  df-va 28001  df-ba 28002  df-sm 28003  df-0v 28004  df-vs 28005  df-nmcv 28006  df-ims 28007  df-dip 28107  df-ssp 28128  df-ph 28219  df-cbn 28270  df-hnorm 28376  df-hba 28377  df-hvsub 28379  df-hlim 28380  df-hcau 28381  df-sh 28615  df-ch 28629  df-oc 28660  df-ch0 28661  df-nmop 29249  df-cnop 29250  df-lnop 29251  df-nmfn 29255  df-nlfn 29256  df-cnfn 29257  df-lnfn 29258
This theorem is referenced by:  cnlnadjlem8  29484  cnlnadjlem9  29485
  Copyright terms: Public domain W3C validator