HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadjlem6 Structured version   Visualization version   GIF version

Theorem cnlnadjlem6 29855
Description: Lemma for cnlnadji 29859. 𝐹 is linear. (Contributed by NM, 17-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadjlem.1 𝑇 ∈ LinOp
cnlnadjlem.2 𝑇 ∈ ContOp
cnlnadjlem.3 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
cnlnadjlem.4 𝐵 = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
cnlnadjlem.5 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵)
Assertion
Ref Expression
cnlnadjlem6 𝐹 ∈ LinOp
Distinct variable groups:   𝑣,𝑔,𝑤,𝑦   𝑤,𝐹   𝑇,𝑔,𝑣,𝑤,𝑦   𝑣,𝐺,𝑤
Allowed substitution hints:   𝐵(𝑦,𝑤,𝑣,𝑔)   𝐹(𝑦,𝑣,𝑔)   𝐺(𝑦,𝑔)

Proof of Theorem cnlnadjlem6
Dummy variables 𝑓 𝑧 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnlnadjlem.5 . . 3 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵)
2 cnlnadjlem.1 . . . 4 𝑇 ∈ LinOp
3 cnlnadjlem.2 . . . 4 𝑇 ∈ ContOp
4 cnlnadjlem.3 . . . 4 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
5 cnlnadjlem.4 . . . 4 𝐵 = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
62, 3, 4, 5cnlnadjlem3 29852 . . 3 (𝑦 ∈ ℋ → 𝐵 ∈ ℋ)
71, 6fmpti 6853 . 2 𝐹: ℋ⟶ ℋ
82lnopfi 29752 . . . . . . . . . 10 𝑇: ℋ⟶ ℋ
98ffvelrni 6827 . . . . . . . . 9 (𝑡 ∈ ℋ → (𝑇𝑡) ∈ ℋ)
109adantl 485 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑇𝑡) ∈ ℋ)
11 hvmulcl 28796 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) → (𝑥 · 𝑓) ∈ ℋ)
1211ad2antrr 725 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑥 · 𝑓) ∈ ℋ)
13 simplr 768 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑧 ∈ ℋ)
14 his7 28873 . . . . . . . 8 (((𝑇𝑡) ∈ ℋ ∧ (𝑥 · 𝑓) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑇𝑡) ·ih ((𝑥 · 𝑓) + 𝑧)) = (((𝑇𝑡) ·ih (𝑥 · 𝑓)) + ((𝑇𝑡) ·ih 𝑧)))
1510, 12, 13, 14syl3anc 1368 . . . . . . 7 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih ((𝑥 · 𝑓) + 𝑧)) = (((𝑇𝑡) ·ih (𝑥 · 𝑓)) + ((𝑇𝑡) ·ih 𝑧)))
16 hvaddcl 28795 . . . . . . . . 9 (((𝑥 · 𝑓) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑓) + 𝑧) ∈ ℋ)
1711, 16sylan 583 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑓) + 𝑧) ∈ ℋ)
182, 3, 4, 5, 1cnlnadjlem5 29854 . . . . . . . 8 ((((𝑥 · 𝑓) + 𝑧) ∈ ℋ ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih ((𝑥 · 𝑓) + 𝑧)) = (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))))
1917, 18sylan 583 . . . . . . 7 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih ((𝑥 · 𝑓) + 𝑧)) = (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))))
20 simpll 766 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑥 ∈ ℂ)
219adantl 485 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑇𝑡) ∈ ℋ)
22 simplr 768 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑓 ∈ ℋ)
23 his5 28869 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑇𝑡) ∈ ℋ ∧ 𝑓 ∈ ℋ) → ((𝑇𝑡) ·ih (𝑥 · 𝑓)) = ((∗‘𝑥) · ((𝑇𝑡) ·ih 𝑓)))
2420, 21, 22, 23syl3anc 1368 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih (𝑥 · 𝑓)) = ((∗‘𝑥) · ((𝑇𝑡) ·ih 𝑓)))
25 simpr 488 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑡 ∈ ℋ)
262, 3, 4, 5, 1cnlnadjlem4 29853 . . . . . . . . . . . . . 14 (𝑓 ∈ ℋ → (𝐹𝑓) ∈ ℋ)
2726ad2antlr 726 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝐹𝑓) ∈ ℋ)
28 his5 28869 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑡 ∈ ℋ ∧ (𝐹𝑓) ∈ ℋ) → (𝑡 ·ih (𝑥 · (𝐹𝑓))) = ((∗‘𝑥) · (𝑡 ·ih (𝐹𝑓))))
2920, 25, 27, 28syl3anc 1368 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑡 ·ih (𝑥 · (𝐹𝑓))) = ((∗‘𝑥) · (𝑡 ·ih (𝐹𝑓))))
302, 3, 4, 5, 1cnlnadjlem5 29854 . . . . . . . . . . . . . 14 ((𝑓 ∈ ℋ ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih 𝑓) = (𝑡 ·ih (𝐹𝑓)))
3130adantll 713 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih 𝑓) = (𝑡 ·ih (𝐹𝑓)))
3231oveq2d 7151 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((∗‘𝑥) · ((𝑇𝑡) ·ih 𝑓)) = ((∗‘𝑥) · (𝑡 ·ih (𝐹𝑓))))
3329, 32eqtr4d 2836 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑡 ·ih (𝑥 · (𝐹𝑓))) = ((∗‘𝑥) · ((𝑇𝑡) ·ih 𝑓)))
3424, 33eqtr4d 2836 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih (𝑥 · 𝑓)) = (𝑡 ·ih (𝑥 · (𝐹𝑓))))
3534adantlr 714 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih (𝑥 · 𝑓)) = (𝑡 ·ih (𝑥 · (𝐹𝑓))))
362, 3, 4, 5, 1cnlnadjlem5 29854 . . . . . . . . . 10 ((𝑧 ∈ ℋ ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih 𝑧) = (𝑡 ·ih (𝐹𝑧)))
3736adantll 713 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih 𝑧) = (𝑡 ·ih (𝐹𝑧)))
3835, 37oveq12d 7153 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (((𝑇𝑡) ·ih (𝑥 · 𝑓)) + ((𝑇𝑡) ·ih 𝑧)) = ((𝑡 ·ih (𝑥 · (𝐹𝑓))) + (𝑡 ·ih (𝐹𝑧))))
39 simpr 488 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑡 ∈ ℋ)
40 hvmulcl 28796 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝐹𝑓) ∈ ℋ) → (𝑥 · (𝐹𝑓)) ∈ ℋ)
4126, 40sylan2 595 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) → (𝑥 · (𝐹𝑓)) ∈ ℋ)
4241ad2antrr 725 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑥 · (𝐹𝑓)) ∈ ℋ)
432, 3, 4, 5, 1cnlnadjlem4 29853 . . . . . . . . . 10 (𝑧 ∈ ℋ → (𝐹𝑧) ∈ ℋ)
4443ad2antlr 726 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝐹𝑧) ∈ ℋ)
45 his7 28873 . . . . . . . . 9 ((𝑡 ∈ ℋ ∧ (𝑥 · (𝐹𝑓)) ∈ ℋ ∧ (𝐹𝑧) ∈ ℋ) → (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))) = ((𝑡 ·ih (𝑥 · (𝐹𝑓))) + (𝑡 ·ih (𝐹𝑧))))
4639, 42, 44, 45syl3anc 1368 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))) = ((𝑡 ·ih (𝑥 · (𝐹𝑓))) + (𝑡 ·ih (𝐹𝑧))))
4738, 46eqtr4d 2836 . . . . . . 7 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (((𝑇𝑡) ·ih (𝑥 · 𝑓)) + ((𝑇𝑡) ·ih 𝑧)) = (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
4815, 19, 473eqtr3d 2841 . . . . . 6 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))) = (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
4948ralrimiva 3149 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ∀𝑡 ∈ ℋ (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))) = (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
502, 3, 4, 5, 1cnlnadjlem4 29853 . . . . . . 7 (((𝑥 · 𝑓) + 𝑧) ∈ ℋ → (𝐹‘((𝑥 · 𝑓) + 𝑧)) ∈ ℋ)
5117, 50syl 17 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝐹‘((𝑥 · 𝑓) + 𝑧)) ∈ ℋ)
52 hvaddcl 28795 . . . . . . 7 (((𝑥 · (𝐹𝑓)) ∈ ℋ ∧ (𝐹𝑧) ∈ ℋ) → ((𝑥 · (𝐹𝑓)) + (𝐹𝑧)) ∈ ℋ)
5341, 43, 52syl2an 598 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (𝐹𝑓)) + (𝐹𝑧)) ∈ ℋ)
54 hial2eq2 28890 . . . . . 6 (((𝐹‘((𝑥 · 𝑓) + 𝑧)) ∈ ℋ ∧ ((𝑥 · (𝐹𝑓)) + (𝐹𝑧)) ∈ ℋ) → (∀𝑡 ∈ ℋ (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))) = (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))) ↔ (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
5551, 53, 54syl2anc 587 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (∀𝑡 ∈ ℋ (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))) = (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))) ↔ (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
5649, 55mpbid 235 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧)))
5756ralrimiva 3149 . . 3 ((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) → ∀𝑧 ∈ ℋ (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧)))
5857rgen2 3168 . 2 𝑥 ∈ ℂ ∀𝑓 ∈ ℋ ∀𝑧 ∈ ℋ (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))
59 ellnop 29641 . 2 (𝐹 ∈ LinOp ↔ (𝐹: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑓 ∈ ℋ ∀𝑧 ∈ ℋ (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
607, 58, 59mpbir2an 710 1 𝐹 ∈ LinOp
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  cmpt 5110  wf 6320  cfv 6324  crio 7092  (class class class)co 7135  cc 10524   + caddc 10529   · cmul 10531  ccj 14447  chba 28702   + cva 28703   · csm 28704   ·ih csp 28705  ContOpccop 28729  LinOpclo 28730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606  ax-hilex 28782  ax-hfvadd 28783  ax-hvcom 28784  ax-hvass 28785  ax-hv0cl 28786  ax-hvaddid 28787  ax-hfvmul 28788  ax-hvmulid 28789  ax-hvmulass 28790  ax-hvdistr1 28791  ax-hvdistr2 28792  ax-hvmul0 28793  ax-hfi 28862  ax-his1 28865  ax-his2 28866  ax-his3 28867  ax-his4 28868  ax-hcompl 28985
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-cn 21832  df-cnp 21833  df-lm 21834  df-t1 21919  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cfil 23859  df-cau 23860  df-cmet 23861  df-grpo 28276  df-gid 28277  df-ginv 28278  df-gdiv 28279  df-ablo 28328  df-vc 28342  df-nv 28375  df-va 28378  df-ba 28379  df-sm 28380  df-0v 28381  df-vs 28382  df-nmcv 28383  df-ims 28384  df-dip 28484  df-ssp 28505  df-ph 28596  df-cbn 28646  df-hnorm 28751  df-hba 28752  df-hvsub 28754  df-hlim 28755  df-hcau 28756  df-sh 28990  df-ch 29004  df-oc 29035  df-ch0 29036  df-nmop 29622  df-cnop 29623  df-lnop 29624  df-nmfn 29628  df-nlfn 29629  df-cnfn 29630  df-lnfn 29631
This theorem is referenced by:  cnlnadjlem8  29857  cnlnadjlem9  29858
  Copyright terms: Public domain W3C validator