| Step | Hyp | Ref
| Expression |
| 1 | | cnlnadjlem.5 |
. . 3
⊢ 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵) |
| 2 | | cnlnadjlem.1 |
. . . 4
⊢ 𝑇 ∈ LinOp |
| 3 | | cnlnadjlem.2 |
. . . 4
⊢ 𝑇 ∈ ContOp |
| 4 | | cnlnadjlem.3 |
. . . 4
⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) |
| 5 | | cnlnadjlem.4 |
. . . 4
⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) |
| 6 | 2, 3, 4, 5 | cnlnadjlem3 32088 |
. . 3
⊢ (𝑦 ∈ ℋ → 𝐵 ∈
ℋ) |
| 7 | 1, 6 | fmpti 7132 |
. 2
⊢ 𝐹: ℋ⟶
ℋ |
| 8 | 2 | lnopfi 31988 |
. . . . . . . . . 10
⊢ 𝑇: ℋ⟶
ℋ |
| 9 | 8 | ffvelcdmi 7103 |
. . . . . . . . 9
⊢ (𝑡 ∈ ℋ → (𝑇‘𝑡) ∈ ℋ) |
| 10 | 9 | adantl 481 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑇‘𝑡) ∈ ℋ) |
| 11 | | hvmulcl 31032 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) → (𝑥
·ℎ 𝑓) ∈ ℋ) |
| 12 | 11 | ad2antrr 726 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑥
·ℎ 𝑓) ∈ ℋ) |
| 13 | | simplr 769 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑧 ∈
ℋ) |
| 14 | | his7 31109 |
. . . . . . . 8
⊢ (((𝑇‘𝑡) ∈ ℋ ∧ (𝑥 ·ℎ 𝑓) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑇‘𝑡) ·ih ((𝑥
·ℎ 𝑓) +ℎ 𝑧)) = (((𝑇‘𝑡) ·ih (𝑥
·ℎ 𝑓)) + ((𝑇‘𝑡) ·ih 𝑧))) |
| 15 | 10, 12, 13, 14 | syl3anc 1373 |
. . . . . . 7
⊢ ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇‘𝑡) ·ih ((𝑥
·ℎ 𝑓) +ℎ 𝑧)) = (((𝑇‘𝑡) ·ih (𝑥
·ℎ 𝑓)) + ((𝑇‘𝑡) ·ih 𝑧))) |
| 16 | | hvaddcl 31031 |
. . . . . . . . 9
⊢ (((𝑥
·ℎ 𝑓) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 ·ℎ 𝑓) +ℎ 𝑧) ∈
ℋ) |
| 17 | 11, 16 | sylan 580 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥
·ℎ 𝑓) +ℎ 𝑧) ∈ ℋ) |
| 18 | 2, 3, 4, 5, 1 | cnlnadjlem5 32090 |
. . . . . . . 8
⊢ ((((𝑥
·ℎ 𝑓) +ℎ 𝑧) ∈ ℋ ∧ 𝑡 ∈ ℋ) → ((𝑇‘𝑡) ·ih ((𝑥
·ℎ 𝑓) +ℎ 𝑧)) = (𝑡 ·ih (𝐹‘((𝑥 ·ℎ 𝑓) +ℎ 𝑧)))) |
| 19 | 17, 18 | sylan 580 |
. . . . . . 7
⊢ ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇‘𝑡) ·ih ((𝑥
·ℎ 𝑓) +ℎ 𝑧)) = (𝑡 ·ih (𝐹‘((𝑥 ·ℎ 𝑓) +ℎ 𝑧)))) |
| 20 | | simpll 767 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑥 ∈
ℂ) |
| 21 | 9 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑇‘𝑡) ∈ ℋ) |
| 22 | | simplr 769 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑓 ∈
ℋ) |
| 23 | | his5 31105 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℂ ∧ (𝑇‘𝑡) ∈ ℋ ∧ 𝑓 ∈ ℋ) → ((𝑇‘𝑡) ·ih (𝑥
·ℎ 𝑓)) = ((∗‘𝑥) · ((𝑇‘𝑡) ·ih 𝑓))) |
| 24 | 20, 21, 22, 23 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇‘𝑡) ·ih (𝑥
·ℎ 𝑓)) = ((∗‘𝑥) · ((𝑇‘𝑡) ·ih 𝑓))) |
| 25 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑡 ∈
ℋ) |
| 26 | 2, 3, 4, 5, 1 | cnlnadjlem4 32089 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∈ ℋ → (𝐹‘𝑓) ∈ ℋ) |
| 27 | 26 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝐹‘𝑓) ∈ ℋ) |
| 28 | | his5 31105 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℂ ∧ 𝑡 ∈ ℋ ∧ (𝐹‘𝑓) ∈ ℋ) → (𝑡 ·ih (𝑥
·ℎ (𝐹‘𝑓))) = ((∗‘𝑥) · (𝑡 ·ih (𝐹‘𝑓)))) |
| 29 | 20, 25, 27, 28 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑡
·ih (𝑥 ·ℎ (𝐹‘𝑓))) = ((∗‘𝑥) · (𝑡 ·ih (𝐹‘𝑓)))) |
| 30 | 2, 3, 4, 5, 1 | cnlnadjlem5 32090 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ ℋ ∧ 𝑡 ∈ ℋ) → ((𝑇‘𝑡) ·ih 𝑓) = (𝑡 ·ih (𝐹‘𝑓))) |
| 31 | 30 | adantll 714 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇‘𝑡) ·ih 𝑓) = (𝑡 ·ih (𝐹‘𝑓))) |
| 32 | 31 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) →
((∗‘𝑥)
· ((𝑇‘𝑡)
·ih 𝑓)) = ((∗‘𝑥) · (𝑡 ·ih (𝐹‘𝑓)))) |
| 33 | 29, 32 | eqtr4d 2780 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑡
·ih (𝑥 ·ℎ (𝐹‘𝑓))) = ((∗‘𝑥) · ((𝑇‘𝑡) ·ih 𝑓))) |
| 34 | 24, 33 | eqtr4d 2780 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇‘𝑡) ·ih (𝑥
·ℎ 𝑓)) = (𝑡 ·ih (𝑥
·ℎ (𝐹‘𝑓)))) |
| 35 | 34 | adantlr 715 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇‘𝑡) ·ih (𝑥
·ℎ 𝑓)) = (𝑡 ·ih (𝑥
·ℎ (𝐹‘𝑓)))) |
| 36 | 2, 3, 4, 5, 1 | cnlnadjlem5 32090 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℋ ∧ 𝑡 ∈ ℋ) → ((𝑇‘𝑡) ·ih 𝑧) = (𝑡 ·ih (𝐹‘𝑧))) |
| 37 | 36 | adantll 714 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇‘𝑡) ·ih 𝑧) = (𝑡 ·ih (𝐹‘𝑧))) |
| 38 | 35, 37 | oveq12d 7449 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (((𝑇‘𝑡) ·ih (𝑥
·ℎ 𝑓)) + ((𝑇‘𝑡) ·ih 𝑧)) = ((𝑡 ·ih (𝑥
·ℎ (𝐹‘𝑓))) + (𝑡 ·ih (𝐹‘𝑧)))) |
| 39 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑡 ∈
ℋ) |
| 40 | | hvmulcl 31032 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ (𝐹‘𝑓) ∈ ℋ) → (𝑥 ·ℎ (𝐹‘𝑓)) ∈ ℋ) |
| 41 | 26, 40 | sylan2 593 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) → (𝑥
·ℎ (𝐹‘𝑓)) ∈ ℋ) |
| 42 | 41 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑥
·ℎ (𝐹‘𝑓)) ∈ ℋ) |
| 43 | 2, 3, 4, 5, 1 | cnlnadjlem4 32089 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℋ → (𝐹‘𝑧) ∈ ℋ) |
| 44 | 43 | ad2antlr 727 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝐹‘𝑧) ∈ ℋ) |
| 45 | | his7 31109 |
. . . . . . . . 9
⊢ ((𝑡 ∈ ℋ ∧ (𝑥
·ℎ (𝐹‘𝑓)) ∈ ℋ ∧ (𝐹‘𝑧) ∈ ℋ) → (𝑡 ·ih ((𝑥
·ℎ (𝐹‘𝑓)) +ℎ (𝐹‘𝑧))) = ((𝑡 ·ih (𝑥
·ℎ (𝐹‘𝑓))) + (𝑡 ·ih (𝐹‘𝑧)))) |
| 46 | 39, 42, 44, 45 | syl3anc 1373 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑡
·ih ((𝑥 ·ℎ (𝐹‘𝑓)) +ℎ (𝐹‘𝑧))) = ((𝑡 ·ih (𝑥
·ℎ (𝐹‘𝑓))) + (𝑡 ·ih (𝐹‘𝑧)))) |
| 47 | 38, 46 | eqtr4d 2780 |
. . . . . . 7
⊢ ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (((𝑇‘𝑡) ·ih (𝑥
·ℎ 𝑓)) + ((𝑇‘𝑡) ·ih 𝑧)) = (𝑡 ·ih ((𝑥
·ℎ (𝐹‘𝑓)) +ℎ (𝐹‘𝑧)))) |
| 48 | 15, 19, 47 | 3eqtr3d 2785 |
. . . . . 6
⊢ ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑡
·ih (𝐹‘((𝑥 ·ℎ 𝑓) +ℎ 𝑧))) = (𝑡 ·ih ((𝑥
·ℎ (𝐹‘𝑓)) +ℎ (𝐹‘𝑧)))) |
| 49 | 48 | ralrimiva 3146 |
. . . . 5
⊢ (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) →
∀𝑡 ∈ ℋ
(𝑡
·ih (𝐹‘((𝑥 ·ℎ 𝑓) +ℎ 𝑧))) = (𝑡 ·ih ((𝑥
·ℎ (𝐹‘𝑓)) +ℎ (𝐹‘𝑧)))) |
| 50 | 2, 3, 4, 5, 1 | cnlnadjlem4 32089 |
. . . . . . 7
⊢ (((𝑥
·ℎ 𝑓) +ℎ 𝑧) ∈ ℋ → (𝐹‘((𝑥 ·ℎ 𝑓) +ℎ 𝑧)) ∈
ℋ) |
| 51 | 17, 50 | syl 17 |
. . . . . 6
⊢ (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝐹‘((𝑥 ·ℎ 𝑓) +ℎ 𝑧)) ∈
ℋ) |
| 52 | | hvaddcl 31031 |
. . . . . . 7
⊢ (((𝑥
·ℎ (𝐹‘𝑓)) ∈ ℋ ∧ (𝐹‘𝑧) ∈ ℋ) → ((𝑥 ·ℎ (𝐹‘𝑓)) +ℎ (𝐹‘𝑧)) ∈ ℋ) |
| 53 | 41, 43, 52 | syl2an 596 |
. . . . . 6
⊢ (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥
·ℎ (𝐹‘𝑓)) +ℎ (𝐹‘𝑧)) ∈ ℋ) |
| 54 | | hial2eq2 31126 |
. . . . . 6
⊢ (((𝐹‘((𝑥 ·ℎ 𝑓) +ℎ 𝑧)) ∈ ℋ ∧ ((𝑥
·ℎ (𝐹‘𝑓)) +ℎ (𝐹‘𝑧)) ∈ ℋ) → (∀𝑡 ∈ ℋ (𝑡
·ih (𝐹‘((𝑥 ·ℎ 𝑓) +ℎ 𝑧))) = (𝑡 ·ih ((𝑥
·ℎ (𝐹‘𝑓)) +ℎ (𝐹‘𝑧))) ↔ (𝐹‘((𝑥 ·ℎ 𝑓) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝐹‘𝑓)) +ℎ (𝐹‘𝑧)))) |
| 55 | 51, 53, 54 | syl2anc 584 |
. . . . 5
⊢ (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) →
(∀𝑡 ∈ ℋ
(𝑡
·ih (𝐹‘((𝑥 ·ℎ 𝑓) +ℎ 𝑧))) = (𝑡 ·ih ((𝑥
·ℎ (𝐹‘𝑓)) +ℎ (𝐹‘𝑧))) ↔ (𝐹‘((𝑥 ·ℎ 𝑓) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝐹‘𝑓)) +ℎ (𝐹‘𝑧)))) |
| 56 | 49, 55 | mpbid 232 |
. . . 4
⊢ (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝐹‘((𝑥 ·ℎ 𝑓) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝐹‘𝑓)) +ℎ (𝐹‘𝑧))) |
| 57 | 56 | ralrimiva 3146 |
. . 3
⊢ ((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) →
∀𝑧 ∈ ℋ
(𝐹‘((𝑥
·ℎ 𝑓) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝐹‘𝑓)) +ℎ (𝐹‘𝑧))) |
| 58 | 57 | rgen2 3199 |
. 2
⊢
∀𝑥 ∈
ℂ ∀𝑓 ∈
ℋ ∀𝑧 ∈
ℋ (𝐹‘((𝑥
·ℎ 𝑓) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝐹‘𝑓)) +ℎ (𝐹‘𝑧)) |
| 59 | | ellnop 31877 |
. 2
⊢ (𝐹 ∈ LinOp ↔ (𝐹: ℋ⟶ ℋ ∧
∀𝑥 ∈ ℂ
∀𝑓 ∈ ℋ
∀𝑧 ∈ ℋ
(𝐹‘((𝑥
·ℎ 𝑓) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝐹‘𝑓)) +ℎ (𝐹‘𝑧)))) |
| 60 | 7, 58, 59 | mpbir2an 711 |
1
⊢ 𝐹 ∈ LinOp |