HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadjlem6 Structured version   Visualization version   GIF version

Theorem cnlnadjlem6 32091
Description: Lemma for cnlnadji 32095. 𝐹 is linear. (Contributed by NM, 17-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadjlem.1 𝑇 ∈ LinOp
cnlnadjlem.2 𝑇 ∈ ContOp
cnlnadjlem.3 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
cnlnadjlem.4 𝐵 = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
cnlnadjlem.5 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵)
Assertion
Ref Expression
cnlnadjlem6 𝐹 ∈ LinOp
Distinct variable groups:   𝑣,𝑔,𝑤,𝑦   𝑤,𝐹   𝑇,𝑔,𝑣,𝑤,𝑦   𝑣,𝐺,𝑤
Allowed substitution hints:   𝐵(𝑦,𝑤,𝑣,𝑔)   𝐹(𝑦,𝑣,𝑔)   𝐺(𝑦,𝑔)

Proof of Theorem cnlnadjlem6
Dummy variables 𝑓 𝑧 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnlnadjlem.5 . . 3 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵)
2 cnlnadjlem.1 . . . 4 𝑇 ∈ LinOp
3 cnlnadjlem.2 . . . 4 𝑇 ∈ ContOp
4 cnlnadjlem.3 . . . 4 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
5 cnlnadjlem.4 . . . 4 𝐵 = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
62, 3, 4, 5cnlnadjlem3 32088 . . 3 (𝑦 ∈ ℋ → 𝐵 ∈ ℋ)
71, 6fmpti 7132 . 2 𝐹: ℋ⟶ ℋ
82lnopfi 31988 . . . . . . . . . 10 𝑇: ℋ⟶ ℋ
98ffvelcdmi 7103 . . . . . . . . 9 (𝑡 ∈ ℋ → (𝑇𝑡) ∈ ℋ)
109adantl 481 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑇𝑡) ∈ ℋ)
11 hvmulcl 31032 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) → (𝑥 · 𝑓) ∈ ℋ)
1211ad2antrr 726 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑥 · 𝑓) ∈ ℋ)
13 simplr 769 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑧 ∈ ℋ)
14 his7 31109 . . . . . . . 8 (((𝑇𝑡) ∈ ℋ ∧ (𝑥 · 𝑓) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑇𝑡) ·ih ((𝑥 · 𝑓) + 𝑧)) = (((𝑇𝑡) ·ih (𝑥 · 𝑓)) + ((𝑇𝑡) ·ih 𝑧)))
1510, 12, 13, 14syl3anc 1373 . . . . . . 7 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih ((𝑥 · 𝑓) + 𝑧)) = (((𝑇𝑡) ·ih (𝑥 · 𝑓)) + ((𝑇𝑡) ·ih 𝑧)))
16 hvaddcl 31031 . . . . . . . . 9 (((𝑥 · 𝑓) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑓) + 𝑧) ∈ ℋ)
1711, 16sylan 580 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑓) + 𝑧) ∈ ℋ)
182, 3, 4, 5, 1cnlnadjlem5 32090 . . . . . . . 8 ((((𝑥 · 𝑓) + 𝑧) ∈ ℋ ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih ((𝑥 · 𝑓) + 𝑧)) = (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))))
1917, 18sylan 580 . . . . . . 7 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih ((𝑥 · 𝑓) + 𝑧)) = (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))))
20 simpll 767 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑥 ∈ ℂ)
219adantl 481 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑇𝑡) ∈ ℋ)
22 simplr 769 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑓 ∈ ℋ)
23 his5 31105 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑇𝑡) ∈ ℋ ∧ 𝑓 ∈ ℋ) → ((𝑇𝑡) ·ih (𝑥 · 𝑓)) = ((∗‘𝑥) · ((𝑇𝑡) ·ih 𝑓)))
2420, 21, 22, 23syl3anc 1373 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih (𝑥 · 𝑓)) = ((∗‘𝑥) · ((𝑇𝑡) ·ih 𝑓)))
25 simpr 484 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑡 ∈ ℋ)
262, 3, 4, 5, 1cnlnadjlem4 32089 . . . . . . . . . . . . . 14 (𝑓 ∈ ℋ → (𝐹𝑓) ∈ ℋ)
2726ad2antlr 727 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝐹𝑓) ∈ ℋ)
28 his5 31105 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑡 ∈ ℋ ∧ (𝐹𝑓) ∈ ℋ) → (𝑡 ·ih (𝑥 · (𝐹𝑓))) = ((∗‘𝑥) · (𝑡 ·ih (𝐹𝑓))))
2920, 25, 27, 28syl3anc 1373 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑡 ·ih (𝑥 · (𝐹𝑓))) = ((∗‘𝑥) · (𝑡 ·ih (𝐹𝑓))))
302, 3, 4, 5, 1cnlnadjlem5 32090 . . . . . . . . . . . . . 14 ((𝑓 ∈ ℋ ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih 𝑓) = (𝑡 ·ih (𝐹𝑓)))
3130adantll 714 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih 𝑓) = (𝑡 ·ih (𝐹𝑓)))
3231oveq2d 7447 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((∗‘𝑥) · ((𝑇𝑡) ·ih 𝑓)) = ((∗‘𝑥) · (𝑡 ·ih (𝐹𝑓))))
3329, 32eqtr4d 2780 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑡 ·ih (𝑥 · (𝐹𝑓))) = ((∗‘𝑥) · ((𝑇𝑡) ·ih 𝑓)))
3424, 33eqtr4d 2780 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih (𝑥 · 𝑓)) = (𝑡 ·ih (𝑥 · (𝐹𝑓))))
3534adantlr 715 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih (𝑥 · 𝑓)) = (𝑡 ·ih (𝑥 · (𝐹𝑓))))
362, 3, 4, 5, 1cnlnadjlem5 32090 . . . . . . . . . 10 ((𝑧 ∈ ℋ ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih 𝑧) = (𝑡 ·ih (𝐹𝑧)))
3736adantll 714 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → ((𝑇𝑡) ·ih 𝑧) = (𝑡 ·ih (𝐹𝑧)))
3835, 37oveq12d 7449 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (((𝑇𝑡) ·ih (𝑥 · 𝑓)) + ((𝑇𝑡) ·ih 𝑧)) = ((𝑡 ·ih (𝑥 · (𝐹𝑓))) + (𝑡 ·ih (𝐹𝑧))))
39 simpr 484 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → 𝑡 ∈ ℋ)
40 hvmulcl 31032 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝐹𝑓) ∈ ℋ) → (𝑥 · (𝐹𝑓)) ∈ ℋ)
4126, 40sylan2 593 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) → (𝑥 · (𝐹𝑓)) ∈ ℋ)
4241ad2antrr 726 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑥 · (𝐹𝑓)) ∈ ℋ)
432, 3, 4, 5, 1cnlnadjlem4 32089 . . . . . . . . . 10 (𝑧 ∈ ℋ → (𝐹𝑧) ∈ ℋ)
4443ad2antlr 727 . . . . . . . . 9 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝐹𝑧) ∈ ℋ)
45 his7 31109 . . . . . . . . 9 ((𝑡 ∈ ℋ ∧ (𝑥 · (𝐹𝑓)) ∈ ℋ ∧ (𝐹𝑧) ∈ ℋ) → (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))) = ((𝑡 ·ih (𝑥 · (𝐹𝑓))) + (𝑡 ·ih (𝐹𝑧))))
4639, 42, 44, 45syl3anc 1373 . . . . . . . 8 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))) = ((𝑡 ·ih (𝑥 · (𝐹𝑓))) + (𝑡 ·ih (𝐹𝑧))))
4738, 46eqtr4d 2780 . . . . . . 7 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (((𝑇𝑡) ·ih (𝑥 · 𝑓)) + ((𝑇𝑡) ·ih 𝑧)) = (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
4815, 19, 473eqtr3d 2785 . . . . . 6 ((((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) ∧ 𝑡 ∈ ℋ) → (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))) = (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
4948ralrimiva 3146 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ∀𝑡 ∈ ℋ (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))) = (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
502, 3, 4, 5, 1cnlnadjlem4 32089 . . . . . . 7 (((𝑥 · 𝑓) + 𝑧) ∈ ℋ → (𝐹‘((𝑥 · 𝑓) + 𝑧)) ∈ ℋ)
5117, 50syl 17 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝐹‘((𝑥 · 𝑓) + 𝑧)) ∈ ℋ)
52 hvaddcl 31031 . . . . . . 7 (((𝑥 · (𝐹𝑓)) ∈ ℋ ∧ (𝐹𝑧) ∈ ℋ) → ((𝑥 · (𝐹𝑓)) + (𝐹𝑧)) ∈ ℋ)
5341, 43, 52syl2an 596 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · (𝐹𝑓)) + (𝐹𝑧)) ∈ ℋ)
54 hial2eq2 31126 . . . . . 6 (((𝐹‘((𝑥 · 𝑓) + 𝑧)) ∈ ℋ ∧ ((𝑥 · (𝐹𝑓)) + (𝐹𝑧)) ∈ ℋ) → (∀𝑡 ∈ ℋ (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))) = (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))) ↔ (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
5551, 53, 54syl2anc 584 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (∀𝑡 ∈ ℋ (𝑡 ·ih (𝐹‘((𝑥 · 𝑓) + 𝑧))) = (𝑡 ·ih ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))) ↔ (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
5649, 55mpbid 232 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧)))
5756ralrimiva 3146 . . 3 ((𝑥 ∈ ℂ ∧ 𝑓 ∈ ℋ) → ∀𝑧 ∈ ℋ (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧)))
5857rgen2 3199 . 2 𝑥 ∈ ℂ ∀𝑓 ∈ ℋ ∀𝑧 ∈ ℋ (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))
59 ellnop 31877 . 2 (𝐹 ∈ LinOp ↔ (𝐹: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑓 ∈ ℋ ∀𝑧 ∈ ℋ (𝐹‘((𝑥 · 𝑓) + 𝑧)) = ((𝑥 · (𝐹𝑓)) + (𝐹𝑧))))
607, 58, 59mpbir2an 711 1 𝐹 ∈ LinOp
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  cmpt 5225  wf 6557  cfv 6561  crio 7387  (class class class)co 7431  cc 11153   + caddc 11158   · cmul 11160  ccj 15135  chba 30938   + cva 30939   · csm 30940   ·ih csp 30941  ContOpccop 30965  LinOpclo 30966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235  ax-hilex 31018  ax-hfvadd 31019  ax-hvcom 31020  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvmulass 31026  ax-hvdistr1 31027  ax-hvdistr2 31028  ax-hvmul0 31029  ax-hfi 31098  ax-his1 31101  ax-his2 31102  ax-his3 31103  ax-his4 31104  ax-hcompl 31221
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-cn 23235  df-cnp 23236  df-lm 23237  df-t1 23322  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cfil 25289  df-cau 25290  df-cmet 25291  df-grpo 30512  df-gid 30513  df-ginv 30514  df-gdiv 30515  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-vs 30618  df-nmcv 30619  df-ims 30620  df-dip 30720  df-ssp 30741  df-ph 30832  df-cbn 30882  df-hnorm 30987  df-hba 30988  df-hvsub 30990  df-hlim 30991  df-hcau 30992  df-sh 31226  df-ch 31240  df-oc 31271  df-ch0 31272  df-nmop 31858  df-cnop 31859  df-lnop 31860  df-nmfn 31864  df-nlfn 31865  df-cnfn 31866  df-lnfn 31867
This theorem is referenced by:  cnlnadjlem8  32093  cnlnadjlem9  32094
  Copyright terms: Public domain W3C validator