| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ellspsn3 | Structured version Visualization version GIF version | ||
| Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. (elspansn3 31535 analog.) (Contributed by NM, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| lspsnss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspsnss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| ellspsn3.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| ellspsn3.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| ellspsn3.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| ellspsn3.y | ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋})) |
| Ref | Expression |
|---|---|
| ellspsn3 | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellspsn3.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | ellspsn3.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 3 | ellspsn3.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
| 4 | lspsnss.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 5 | lspsnss.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 6 | 4, 5 | lspsnss 20912 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |
| 7 | 1, 2, 3, 6 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
| 8 | ellspsn3.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋})) | |
| 9 | 7, 8 | sseldd 3938 | 1 ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 {csn 4579 ‘cfv 6486 LModclmod 20782 LSubSpclss 20853 LSpanclspn 20893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-0g 17364 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-grp 18834 df-lmod 20784 df-lss 20854 df-lsp 20894 |
| This theorem is referenced by: ellspsn4 21050 |
| Copyright terms: Public domain | W3C validator |