| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ellspsn3 | Structured version Visualization version GIF version | ||
| Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. (elspansn3 31474 analog.) (Contributed by NM, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| lspsnss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspsnss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| ellspsn3.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| ellspsn3.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| ellspsn3.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| ellspsn3.y | ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋})) |
| Ref | Expression |
|---|---|
| ellspsn3 | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellspsn3.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | ellspsn3.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 3 | ellspsn3.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
| 4 | lspsnss.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 5 | lspsnss.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 6 | 4, 5 | lspsnss 20872 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |
| 7 | 1, 2, 3, 6 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
| 8 | ellspsn3.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋})) | |
| 9 | 7, 8 | sseldd 3944 | 1 ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 {csn 4585 ‘cfv 6499 LModclmod 20742 LSubSpclss 20813 LSpanclspn 20853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-lmod 20744 df-lss 20814 df-lsp 20854 |
| This theorem is referenced by: ellspsn4 21010 |
| Copyright terms: Public domain | W3C validator |