MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellspsn3 Structured version   Visualization version   GIF version

Theorem ellspsn3 21007
Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. (elspansn3 31601 analog.) (Contributed by NM, 4-Jul-2014.)
Hypotheses
Ref Expression
lspsnss.s 𝑆 = (LSubSp‘𝑊)
lspsnss.n 𝑁 = (LSpan‘𝑊)
ellspsn3.w (𝜑𝑊 ∈ LMod)
ellspsn3.u (𝜑𝑈𝑆)
ellspsn3.x (𝜑𝑋𝑈)
ellspsn3.y (𝜑𝑌 ∈ (𝑁‘{𝑋}))
Assertion
Ref Expression
ellspsn3 (𝜑𝑌𝑈)

Proof of Theorem ellspsn3
StepHypRef Expression
1 ellspsn3.w . . 3 (𝜑𝑊 ∈ LMod)
2 ellspsn3.u . . 3 (𝜑𝑈𝑆)
3 ellspsn3.x . . 3 (𝜑𝑋𝑈)
4 lspsnss.s . . . 4 𝑆 = (LSubSp‘𝑊)
5 lspsnss.n . . . 4 𝑁 = (LSpan‘𝑊)
64, 5lspsnss 21006 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈)
71, 2, 3, 6syl3anc 1370 . 2 (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈)
8 ellspsn3.y . 2 (𝜑𝑌 ∈ (𝑁‘{𝑋}))
97, 8sseldd 3996 1 (𝜑𝑌𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wss 3963  {csn 4631  cfv 6563  LModclmod 20875  LSubSpclss 20947  LSpanclspn 20987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-lmod 20877  df-lss 20948  df-lsp 20988
This theorem is referenced by:  ellspsn4  21144
  Copyright terms: Public domain W3C validator