![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ellspsn3 | Structured version Visualization version GIF version |
Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. (elspansn3 31604 analog.) (Contributed by NM, 4-Jul-2014.) |
Ref | Expression |
---|---|
lspsnss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspsnss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
ellspsn3.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
ellspsn3.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
ellspsn3.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
ellspsn3.y | ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋})) |
Ref | Expression |
---|---|
ellspsn3 | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellspsn3.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | ellspsn3.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
3 | ellspsn3.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
4 | lspsnss.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
5 | lspsnss.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
6 | 4, 5 | lspsnss 21011 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |
7 | 1, 2, 3, 6 | syl3anc 1371 | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
8 | ellspsn3.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋})) | |
9 | 7, 8 | sseldd 4009 | 1 ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 {csn 4648 ‘cfv 6573 LModclmod 20880 LSubSpclss 20952 LSpanclspn 20992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-lmod 20882 df-lss 20953 df-lsp 20993 |
This theorem is referenced by: ellspsn4 21149 |
Copyright terms: Public domain | W3C validator |