MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellspsn3 Structured version   Visualization version   GIF version

Theorem ellspsn3 20873
Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. (elspansn3 31474 analog.) (Contributed by NM, 4-Jul-2014.)
Hypotheses
Ref Expression
lspsnss.s 𝑆 = (LSubSp‘𝑊)
lspsnss.n 𝑁 = (LSpan‘𝑊)
ellspsn3.w (𝜑𝑊 ∈ LMod)
ellspsn3.u (𝜑𝑈𝑆)
ellspsn3.x (𝜑𝑋𝑈)
ellspsn3.y (𝜑𝑌 ∈ (𝑁‘{𝑋}))
Assertion
Ref Expression
ellspsn3 (𝜑𝑌𝑈)

Proof of Theorem ellspsn3
StepHypRef Expression
1 ellspsn3.w . . 3 (𝜑𝑊 ∈ LMod)
2 ellspsn3.u . . 3 (𝜑𝑈𝑆)
3 ellspsn3.x . . 3 (𝜑𝑋𝑈)
4 lspsnss.s . . . 4 𝑆 = (LSubSp‘𝑊)
5 lspsnss.n . . . 4 𝑁 = (LSpan‘𝑊)
64, 5lspsnss 20872 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈)
71, 2, 3, 6syl3anc 1373 . 2 (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈)
8 ellspsn3.y . 2 (𝜑𝑌 ∈ (𝑁‘{𝑋}))
97, 8sseldd 3944 1 (𝜑𝑌𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3911  {csn 4585  cfv 6499  LModclmod 20742  LSubSpclss 20813  LSpanclspn 20853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-lmod 20744  df-lss 20814  df-lsp 20854
This theorem is referenced by:  ellspsn4  21010
  Copyright terms: Public domain W3C validator