MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellspsn3 Structured version   Visualization version   GIF version

Theorem ellspsn3 20924
Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. (elspansn3 31552 analog.) (Contributed by NM, 4-Jul-2014.)
Hypotheses
Ref Expression
lspsnss.s 𝑆 = (LSubSp‘𝑊)
lspsnss.n 𝑁 = (LSpan‘𝑊)
ellspsn3.w (𝜑𝑊 ∈ LMod)
ellspsn3.u (𝜑𝑈𝑆)
ellspsn3.x (𝜑𝑋𝑈)
ellspsn3.y (𝜑𝑌 ∈ (𝑁‘{𝑋}))
Assertion
Ref Expression
ellspsn3 (𝜑𝑌𝑈)

Proof of Theorem ellspsn3
StepHypRef Expression
1 ellspsn3.w . . 3 (𝜑𝑊 ∈ LMod)
2 ellspsn3.u . . 3 (𝜑𝑈𝑆)
3 ellspsn3.x . . 3 (𝜑𝑋𝑈)
4 lspsnss.s . . . 4 𝑆 = (LSubSp‘𝑊)
5 lspsnss.n . . . 4 𝑁 = (LSpan‘𝑊)
64, 5lspsnss 20923 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈)
71, 2, 3, 6syl3anc 1373 . 2 (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈)
8 ellspsn3.y . 2 (𝜑𝑌 ∈ (𝑁‘{𝑋}))
97, 8sseldd 3930 1 (𝜑𝑌𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wss 3897  {csn 4573  cfv 6481  LModclmod 20793  LSubSpclss 20864  LSpanclspn 20904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-lmod 20795  df-lss 20865  df-lsp 20905
This theorem is referenced by:  ellspsn4  21061
  Copyright terms: Public domain W3C validator