MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellspsn3 Structured version   Visualization version   GIF version

Theorem ellspsn3 20913
Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. (elspansn3 31535 analog.) (Contributed by NM, 4-Jul-2014.)
Hypotheses
Ref Expression
lspsnss.s 𝑆 = (LSubSp‘𝑊)
lspsnss.n 𝑁 = (LSpan‘𝑊)
ellspsn3.w (𝜑𝑊 ∈ LMod)
ellspsn3.u (𝜑𝑈𝑆)
ellspsn3.x (𝜑𝑋𝑈)
ellspsn3.y (𝜑𝑌 ∈ (𝑁‘{𝑋}))
Assertion
Ref Expression
ellspsn3 (𝜑𝑌𝑈)

Proof of Theorem ellspsn3
StepHypRef Expression
1 ellspsn3.w . . 3 (𝜑𝑊 ∈ LMod)
2 ellspsn3.u . . 3 (𝜑𝑈𝑆)
3 ellspsn3.x . . 3 (𝜑𝑋𝑈)
4 lspsnss.s . . . 4 𝑆 = (LSubSp‘𝑊)
5 lspsnss.n . . . 4 𝑁 = (LSpan‘𝑊)
64, 5lspsnss 20912 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈)
71, 2, 3, 6syl3anc 1373 . 2 (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈)
8 ellspsn3.y . 2 (𝜑𝑌 ∈ (𝑁‘{𝑋}))
97, 8sseldd 3938 1 (𝜑𝑌𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3905  {csn 4579  cfv 6486  LModclmod 20782  LSubSpclss 20853  LSpanclspn 20893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-0g 17364  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-grp 18834  df-lmod 20784  df-lss 20854  df-lsp 20894
This theorem is referenced by:  ellspsn4  21050
  Copyright terms: Public domain W3C validator