| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ellspsn4 | Structured version Visualization version GIF version | ||
| Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. (elspansn4 31509 analog.) (Contributed by NM, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| ellspsn4.v | ⊢ 𝑉 = (Base‘𝑊) |
| ellspsn4.o | ⊢ 0 = (0g‘𝑊) |
| ellspsn4.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| ellspsn4.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| ellspsn4.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| ellspsn4.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| ellspsn4.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| ellspsn4.y | ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋})) |
| ellspsn4.z | ⊢ (𝜑 → 𝑌 ≠ 0 ) |
| Ref | Expression |
|---|---|
| ellspsn4 | ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ 𝑌 ∈ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellspsn4.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 2 | ellspsn4.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 3 | ellspsn4.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 4 | lveclmod 21020 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑊 ∈ LMod) |
| 7 | ellspsn4.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑈 ∈ 𝑆) |
| 9 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑈) | |
| 10 | ellspsn4.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋})) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑌 ∈ (𝑁‘{𝑋})) |
| 12 | 1, 2, 6, 8, 9, 11 | ellspsn3 20904 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑌 ∈ 𝑈) |
| 13 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑈) → 𝑊 ∈ LMod) |
| 14 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑈) → 𝑈 ∈ 𝑆) |
| 15 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝑈) | |
| 16 | ellspsn4.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 17 | ellspsn4.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 18 | 17, 2 | lspsnid 20906 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
| 19 | 5, 16, 18 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑋})) |
| 20 | ellspsn4.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
| 21 | ellspsn4.z | . . . . . 6 ⊢ (𝜑 → 𝑌 ≠ 0 ) | |
| 22 | 17, 20, 2, 3, 16, 10, 21 | lspsneleq 21032 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑋})) |
| 23 | 19, 22 | eleqtrrd 2832 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌})) |
| 24 | 23 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ (𝑁‘{𝑌})) |
| 25 | 1, 2, 13, 14, 15, 24 | ellspsn3 20904 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ 𝑈) |
| 26 | 12, 25 | impbida 800 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ 𝑌 ∈ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 {csn 4592 ‘cfv 6514 Basecbs 17186 0gc0g 17409 LModclmod 20773 LSubSpclss 20844 LSpanclspn 20884 LVecclvec 21016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-drng 20647 df-lmod 20775 df-lss 20845 df-lsp 20885 df-lvec 21017 |
| This theorem is referenced by: lshpdisj 38987 |
| Copyright terms: Public domain | W3C validator |