| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ellspsn4 | Structured version Visualization version GIF version | ||
| Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. (elspansn4 31593 analog.) (Contributed by NM, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| ellspsn4.v | ⊢ 𝑉 = (Base‘𝑊) |
| ellspsn4.o | ⊢ 0 = (0g‘𝑊) |
| ellspsn4.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| ellspsn4.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| ellspsn4.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| ellspsn4.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| ellspsn4.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| ellspsn4.y | ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋})) |
| ellspsn4.z | ⊢ (𝜑 → 𝑌 ≠ 0 ) |
| Ref | Expression |
|---|---|
| ellspsn4 | ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ 𝑌 ∈ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellspsn4.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 2 | ellspsn4.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 3 | ellspsn4.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 4 | lveclmod 21106 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑊 ∈ LMod) |
| 7 | ellspsn4.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑈 ∈ 𝑆) |
| 9 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑈) | |
| 10 | ellspsn4.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋})) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑌 ∈ (𝑁‘{𝑋})) |
| 12 | 1, 2, 6, 8, 9, 11 | ellspsn3 20990 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑌 ∈ 𝑈) |
| 13 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑈) → 𝑊 ∈ LMod) |
| 14 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑈) → 𝑈 ∈ 𝑆) |
| 15 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝑈) | |
| 16 | ellspsn4.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 17 | ellspsn4.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 18 | 17, 2 | lspsnid 20992 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
| 19 | 5, 16, 18 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑋})) |
| 20 | ellspsn4.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
| 21 | ellspsn4.z | . . . . . 6 ⊢ (𝜑 → 𝑌 ≠ 0 ) | |
| 22 | 17, 20, 2, 3, 16, 10, 21 | lspsneleq 21118 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑋})) |
| 23 | 19, 22 | eleqtrrd 2843 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌})) |
| 24 | 23 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ (𝑁‘{𝑌})) |
| 25 | 1, 2, 13, 14, 15, 24 | ellspsn3 20990 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ 𝑈) |
| 26 | 12, 25 | impbida 800 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ 𝑌 ∈ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 {csn 4625 ‘cfv 6560 Basecbs 17248 0gc0g 17485 LModclmod 20859 LSubSpclss 20930 LSpanclspn 20970 LVecclvec 21102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-tpos 8252 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-grp 18955 df-minusg 18956 df-sbg 18957 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-ring 20233 df-oppr 20335 df-dvdsr 20358 df-unit 20359 df-invr 20389 df-drng 20732 df-lmod 20861 df-lss 20931 df-lsp 20971 df-lvec 21103 |
| This theorem is referenced by: lshpdisj 38989 |
| Copyright terms: Public domain | W3C validator |