| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspsnss | Structured version Visualization version GIF version | ||
| Description: The span of the singleton of a subspace member is included in the subspace. (spansnss 31546 analog.) (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 4-Sep-2014.) |
| Ref | Expression |
|---|---|
| lspsnss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspsnss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspsnss | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4760 | . 2 ⊢ (𝑋 ∈ 𝑈 → {𝑋} ⊆ 𝑈) | |
| 2 | lspsnss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | lspsnss.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 4 | 2, 3 | lspssp 20919 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ {𝑋} ⊆ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |
| 5 | 1, 4 | syl3an3 1165 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 {csn 4576 ‘cfv 6481 LModclmod 20791 LSubSpclss 20862 LSpanclspn 20902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-lmod 20793 df-lss 20863 df-lsp 20903 |
| This theorem is referenced by: ellspsn3 20922 ellspsn6 20925 |
| Copyright terms: Public domain | W3C validator |