| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspsnss | Structured version Visualization version GIF version | ||
| Description: The span of the singleton of a subspace member is included in the subspace. (spansnss 31553 analog.) (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 4-Sep-2014.) |
| Ref | Expression |
|---|---|
| lspsnss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspsnss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspsnss | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4759 | . 2 ⊢ (𝑋 ∈ 𝑈 → {𝑋} ⊆ 𝑈) | |
| 2 | lspsnss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | lspsnss.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 4 | 2, 3 | lspssp 20923 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ {𝑋} ⊆ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |
| 5 | 1, 4 | syl3an3 1165 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 {csn 4575 ‘cfv 6486 LModclmod 20795 LSubSpclss 20866 LSpanclspn 20906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-lmod 20797 df-lss 20867 df-lsp 20907 |
| This theorem is referenced by: ellspsn3 20926 ellspsn6 20929 |
| Copyright terms: Public domain | W3C validator |