| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspprss | Structured version Visualization version GIF version | ||
| Description: The span of a pair of vectors in a subspace belongs to the subspace. (Contributed by NM, 12-Jan-2015.) |
| Ref | Expression |
|---|---|
| lspprss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspprss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lspprss.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lspprss.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lspprss.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| lspprss.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| lspprss | ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspprss.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lspprss.u | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 3 | lspprss.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
| 4 | lspprss.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
| 5 | 3, 4 | prssd 4821 | . 2 ⊢ (𝜑 → {𝑋, 𝑌} ⊆ 𝑈) |
| 6 | lspprss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 7 | lspprss.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 8 | 6, 7 | lspssp 20987 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ {𝑋, 𝑌} ⊆ 𝑈) → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
| 9 | 1, 2, 5, 8 | syl3anc 1372 | 1 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ⊆ wss 3950 {cpr 4627 ‘cfv 6560 LModclmod 20859 LSubSpclss 20930 LSpanclspn 20970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-grp 18955 df-lmod 20861 df-lss 20931 df-lsp 20971 |
| This theorem is referenced by: lsppratlem2 21151 dvh3dim2 41451 dvh3dim3N 41452 lclkrlem2n 41523 |
| Copyright terms: Public domain | W3C validator |