| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspprss | Structured version Visualization version GIF version | ||
| Description: The span of a pair of vectors in a subspace belongs to the subspace. (Contributed by NM, 12-Jan-2015.) |
| Ref | Expression |
|---|---|
| lspprss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspprss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lspprss.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lspprss.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lspprss.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| lspprss.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| lspprss | ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspprss.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lspprss.u | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 3 | lspprss.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
| 4 | lspprss.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
| 5 | 3, 4 | prssd 4774 | . 2 ⊢ (𝜑 → {𝑋, 𝑌} ⊆ 𝑈) |
| 6 | lspprss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 7 | lspprss.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 8 | 6, 7 | lspssp 20919 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ {𝑋, 𝑌} ⊆ 𝑈) → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
| 9 | 1, 2, 5, 8 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 {cpr 4578 ‘cfv 6481 LModclmod 20791 LSubSpclss 20862 LSpanclspn 20902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-lmod 20793 df-lss 20863 df-lsp 20903 |
| This theorem is referenced by: lsppratlem2 21083 dvh3dim2 41486 dvh3dim3N 41487 lclkrlem2n 41558 |
| Copyright terms: Public domain | W3C validator |