MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspprss Structured version   Visualization version   GIF version

Theorem lspprss 20468
Description: The span of a pair of vectors in a subspace belongs to the subspace. (Contributed by NM, 12-Jan-2015.)
Hypotheses
Ref Expression
lspprss.s 𝑆 = (LSubSpβ€˜π‘Š)
lspprss.n 𝑁 = (LSpanβ€˜π‘Š)
lspprss.w (πœ‘ β†’ π‘Š ∈ LMod)
lspprss.u (πœ‘ β†’ π‘ˆ ∈ 𝑆)
lspprss.x (πœ‘ β†’ 𝑋 ∈ π‘ˆ)
lspprss.y (πœ‘ β†’ π‘Œ ∈ π‘ˆ)
Assertion
Ref Expression
lspprss (πœ‘ β†’ (π‘β€˜{𝑋, π‘Œ}) βŠ† π‘ˆ)

Proof of Theorem lspprss
StepHypRef Expression
1 lspprss.w . 2 (πœ‘ β†’ π‘Š ∈ LMod)
2 lspprss.u . 2 (πœ‘ β†’ π‘ˆ ∈ 𝑆)
3 lspprss.x . . 3 (πœ‘ β†’ 𝑋 ∈ π‘ˆ)
4 lspprss.y . . 3 (πœ‘ β†’ π‘Œ ∈ π‘ˆ)
53, 4prssd 4783 . 2 (πœ‘ β†’ {𝑋, π‘Œ} βŠ† π‘ˆ)
6 lspprss.s . . 3 𝑆 = (LSubSpβ€˜π‘Š)
7 lspprss.n . . 3 𝑁 = (LSpanβ€˜π‘Š)
86, 7lspssp 20464 . 2 ((π‘Š ∈ LMod ∧ π‘ˆ ∈ 𝑆 ∧ {𝑋, π‘Œ} βŠ† π‘ˆ) β†’ (π‘β€˜{𝑋, π‘Œ}) βŠ† π‘ˆ)
91, 2, 5, 8syl3anc 1372 1 (πœ‘ β†’ (π‘β€˜{𝑋, π‘Œ}) βŠ† π‘ˆ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107   βŠ† wss 3911  {cpr 4589  β€˜cfv 6497  LModclmod 20336  LSubSpclss 20407  LSpanclspn 20447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-0g 17328  df-mgm 18502  df-sgrp 18551  df-mnd 18562  df-grp 18756  df-lmod 20338  df-lss 20408  df-lsp 20448
This theorem is referenced by:  lsppratlem2  20625  dvh3dim2  39957  dvh3dim3N  39958  lclkrlem2n  40029
  Copyright terms: Public domain W3C validator