![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspprss | Structured version Visualization version GIF version |
Description: The span of a pair of vectors in a subspace belongs to the subspace. (Contributed by NM, 12-Jan-2015.) |
Ref | Expression |
---|---|
lspprss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspprss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspprss.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lspprss.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspprss.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
lspprss.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
Ref | Expression |
---|---|
lspprss | ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspprss.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lspprss.u | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
3 | lspprss.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
4 | lspprss.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
5 | 3, 4 | prssd 4827 | . 2 ⊢ (𝜑 → {𝑋, 𝑌} ⊆ 𝑈) |
6 | lspprss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
7 | lspprss.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
8 | 6, 7 | lspssp 21004 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ {𝑋, 𝑌} ⊆ 𝑈) → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
9 | 1, 2, 5, 8 | syl3anc 1370 | 1 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 {cpr 4633 ‘cfv 6563 LModclmod 20875 LSubSpclss 20947 LSpanclspn 20987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-lmod 20877 df-lss 20948 df-lsp 20988 |
This theorem is referenced by: lsppratlem2 21168 dvh3dim2 41431 dvh3dim3N 41432 lclkrlem2n 41503 |
Copyright terms: Public domain | W3C validator |