![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspprss | Structured version Visualization version GIF version |
Description: The span of a pair of vectors in a subspace belongs to the subspace. (Contributed by NM, 12-Jan-2015.) |
Ref | Expression |
---|---|
lspprss.s | β’ π = (LSubSpβπ) |
lspprss.n | β’ π = (LSpanβπ) |
lspprss.w | β’ (π β π β LMod) |
lspprss.u | β’ (π β π β π) |
lspprss.x | β’ (π β π β π) |
lspprss.y | β’ (π β π β π) |
Ref | Expression |
---|---|
lspprss | β’ (π β (πβ{π, π}) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspprss.w | . 2 β’ (π β π β LMod) | |
2 | lspprss.u | . 2 β’ (π β π β π) | |
3 | lspprss.x | . . 3 β’ (π β π β π) | |
4 | lspprss.y | . . 3 β’ (π β π β π) | |
5 | 3, 4 | prssd 4826 | . 2 β’ (π β {π, π} β π) |
6 | lspprss.s | . . 3 β’ π = (LSubSpβπ) | |
7 | lspprss.n | . . 3 β’ π = (LSpanβπ) | |
8 | 6, 7 | lspssp 20599 | . 2 β’ ((π β LMod β§ π β π β§ {π, π} β π) β (πβ{π, π}) β π) |
9 | 1, 2, 5, 8 | syl3anc 1372 | 1 β’ (π β (πβ{π, π}) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 β wss 3949 {cpr 4631 βcfv 6544 LModclmod 20471 LSubSpclss 20542 LSpanclspn 20582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-lmod 20473 df-lss 20543 df-lsp 20583 |
This theorem is referenced by: lsppratlem2 20761 dvh3dim2 40319 dvh3dim3N 40320 lclkrlem2n 40391 |
Copyright terms: Public domain | W3C validator |