| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrpii | Structured version Visualization version GIF version | ||
| Description: Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.) |
| Ref | Expression |
|---|---|
| elrpi.1 | ⊢ 𝐴 ∈ ℝ |
| elrpi.2 | ⊢ 0 < 𝐴 |
| Ref | Expression |
|---|---|
| elrpii | ⊢ 𝐴 ∈ ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrpi.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | elrpi.2 | . 2 ⊢ 0 < 𝐴 | |
| 3 | elrp 12892 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 𝐴 ∈ ℝ+ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 class class class wbr 5089 ℝcr 11005 0cc0 11006 < clt 11146 ℝ+crp 12890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-rp 12891 |
| This theorem is referenced by: 1rp 12894 2rp 12895 3rp 12896 5rp 12897 iexpcyc 14114 discr 14147 epr 16117 aaliou3lem1 26277 aaliou3lem2 26278 aaliou3lem3 26279 pirp 26397 pigt3 26454 efif1olem2 26479 cxpsqrtlem 26638 log2cnv 26881 chtublem 27149 chtub 27150 bposlem6 27227 lgsdir2lem1 27263 lgsdir2lem4 27266 lgsdir2lem5 27267 2sqlem11 27367 chebbnd1lem3 27409 chebbnd1 27410 pntlemg 27536 pntlemr 27540 pntlemf 27543 minvecolem3 30856 dp2lt10 32864 ballotlem2 34502 cntotbnd 37835 heiborlem5 37854 heiborlem7 37856 4rp 42392 6rp 42393 7rp 42394 8rp 42395 9rp 42396 isosctrlem1ALT 45025 sineq0ALT 45028 limclner 45748 stoweidlem5 46102 stoweidlem28 46125 stoweidlem59 46156 stoweid 46160 stirlinglem12 46182 fourierswlem 46327 fouriersw 46328 |
| Copyright terms: Public domain | W3C validator |