MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrpii Structured version   Visualization version   GIF version

Theorem elrpii 12662
Description: Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.)
Hypotheses
Ref Expression
elrpi.1 𝐴 ∈ ℝ
elrpi.2 0 < 𝐴
Assertion
Ref Expression
elrpii 𝐴 ∈ ℝ+

Proof of Theorem elrpii
StepHypRef Expression
1 elrpi.1 . 2 𝐴 ∈ ℝ
2 elrpi.2 . 2 0 < 𝐴
3 elrp 12661 . 2 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
41, 2, 3mpbir2an 707 1 𝐴 ∈ ℝ+
Colors of variables: wff setvar class
Syntax hints:  wcel 2108   class class class wbr 5070  cr 10801  0cc0 10802   < clt 10940  +crp 12659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-rp 12660
This theorem is referenced by:  1rp  12663  2rp  12664  3rp  12665  iexpcyc  13851  discr  13883  epr  15845  aaliou3lem1  25407  aaliou3lem2  25408  aaliou3lem3  25409  pirp  25523  pigt3  25579  efif1olem2  25604  cxpsqrtlem  25762  log2cnv  25999  chtublem  26264  chtub  26265  bposlem6  26342  lgsdir2lem1  26378  lgsdir2lem4  26381  lgsdir2lem5  26382  2sqlem11  26482  chebbnd1lem3  26524  chebbnd1  26525  pntlemg  26651  pntlemr  26655  pntlemf  26658  minvecolem3  29139  dp2lt10  31060  ballotlem2  32355  cntotbnd  35881  heiborlem5  35900  heiborlem7  35902  isosctrlem1ALT  42443  sineq0ALT  42446  limclner  43082  stoweidlem5  43436  stoweidlem28  43459  stoweidlem59  43490  stoweid  43494  stirlinglem12  43516  fourierswlem  43661  fouriersw  43662
  Copyright terms: Public domain W3C validator