| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrpii | Structured version Visualization version GIF version | ||
| Description: Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.) |
| Ref | Expression |
|---|---|
| elrpi.1 | ⊢ 𝐴 ∈ ℝ |
| elrpi.2 | ⊢ 0 < 𝐴 |
| Ref | Expression |
|---|---|
| elrpii | ⊢ 𝐴 ∈ ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrpi.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | elrpi.2 | . 2 ⊢ 0 < 𝐴 | |
| 3 | elrp 12929 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 𝐴 ∈ ℝ+ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 class class class wbr 5102 ℝcr 11043 0cc0 11044 < clt 11184 ℝ+crp 12927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-rp 12928 |
| This theorem is referenced by: 1rp 12931 2rp 12932 3rp 12933 5rp 12934 iexpcyc 14148 discr 14181 epr 16152 aaliou3lem1 26283 aaliou3lem2 26284 aaliou3lem3 26285 pirp 26403 pigt3 26460 efif1olem2 26485 cxpsqrtlem 26644 log2cnv 26887 chtublem 27155 chtub 27156 bposlem6 27233 lgsdir2lem1 27269 lgsdir2lem4 27272 lgsdir2lem5 27273 2sqlem11 27373 chebbnd1lem3 27415 chebbnd1 27416 pntlemg 27542 pntlemr 27546 pntlemf 27549 minvecolem3 30855 dp2lt10 32854 ballotlem2 34473 cntotbnd 37783 heiborlem5 37802 heiborlem7 37804 4rp 42281 6rp 42282 7rp 42283 8rp 42284 9rp 42285 isosctrlem1ALT 44916 sineq0ALT 44919 limclner 45642 stoweidlem5 45996 stoweidlem28 46019 stoweidlem59 46050 stoweid 46054 stirlinglem12 46076 fourierswlem 46221 fouriersw 46222 |
| Copyright terms: Public domain | W3C validator |