| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrpii | Structured version Visualization version GIF version | ||
| Description: Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.) |
| Ref | Expression |
|---|---|
| elrpi.1 | ⊢ 𝐴 ∈ ℝ |
| elrpi.2 | ⊢ 0 < 𝐴 |
| Ref | Expression |
|---|---|
| elrpii | ⊢ 𝐴 ∈ ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrpi.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | elrpi.2 | . 2 ⊢ 0 < 𝐴 | |
| 3 | elrp 12931 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 𝐴 ∈ ℝ+ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 class class class wbr 5102 ℝcr 11045 0cc0 11046 < clt 11186 ℝ+crp 12929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-rp 12930 |
| This theorem is referenced by: 1rp 12933 2rp 12934 3rp 12935 5rp 12936 iexpcyc 14150 discr 14183 epr 16153 aaliou3lem1 26284 aaliou3lem2 26285 aaliou3lem3 26286 pirp 26404 pigt3 26461 efif1olem2 26486 cxpsqrtlem 26645 log2cnv 26888 chtublem 27156 chtub 27157 bposlem6 27234 lgsdir2lem1 27270 lgsdir2lem4 27273 lgsdir2lem5 27274 2sqlem11 27374 chebbnd1lem3 27416 chebbnd1 27417 pntlemg 27543 pntlemr 27547 pntlemf 27550 minvecolem3 30856 dp2lt10 32855 ballotlem2 34474 cntotbnd 37784 heiborlem5 37803 heiborlem7 37805 4rp 42282 6rp 42283 7rp 42284 8rp 42285 9rp 42286 isosctrlem1ALT 44917 sineq0ALT 44920 limclner 45643 stoweidlem5 45997 stoweidlem28 46020 stoweidlem59 46051 stoweid 46055 stirlinglem12 46077 fourierswlem 46222 fouriersw 46223 |
| Copyright terms: Public domain | W3C validator |