| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrpii | Structured version Visualization version GIF version | ||
| Description: Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.) |
| Ref | Expression |
|---|---|
| elrpi.1 | ⊢ 𝐴 ∈ ℝ |
| elrpi.2 | ⊢ 0 < 𝐴 |
| Ref | Expression |
|---|---|
| elrpii | ⊢ 𝐴 ∈ ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrpi.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | elrpi.2 | . 2 ⊢ 0 < 𝐴 | |
| 3 | elrp 12953 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 𝐴 ∈ ℝ+ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 class class class wbr 5107 ℝcr 11067 0cc0 11068 < clt 11208 ℝ+crp 12951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-rp 12952 |
| This theorem is referenced by: 1rp 12955 2rp 12956 3rp 12957 5rp 12958 iexpcyc 14172 discr 14205 epr 16176 aaliou3lem1 26250 aaliou3lem2 26251 aaliou3lem3 26252 pirp 26370 pigt3 26427 efif1olem2 26452 cxpsqrtlem 26611 log2cnv 26854 chtublem 27122 chtub 27123 bposlem6 27200 lgsdir2lem1 27236 lgsdir2lem4 27239 lgsdir2lem5 27240 2sqlem11 27340 chebbnd1lem3 27382 chebbnd1 27383 pntlemg 27509 pntlemr 27513 pntlemf 27516 minvecolem3 30805 dp2lt10 32804 ballotlem2 34480 cntotbnd 37790 heiborlem5 37809 heiborlem7 37811 4rp 42288 6rp 42289 7rp 42290 8rp 42291 9rp 42292 isosctrlem1ALT 44923 sineq0ALT 44926 limclner 45649 stoweidlem5 46003 stoweidlem28 46026 stoweidlem59 46057 stoweid 46061 stirlinglem12 46083 fourierswlem 46228 fouriersw 46229 |
| Copyright terms: Public domain | W3C validator |