![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrpii | Structured version Visualization version GIF version |
Description: Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.) |
Ref | Expression |
---|---|
elrpi.1 | ⊢ 𝐴 ∈ ℝ |
elrpi.2 | ⊢ 0 < 𝐴 |
Ref | Expression |
---|---|
elrpii | ⊢ 𝐴 ∈ ℝ+ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrpi.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | elrpi.2 | . 2 ⊢ 0 < 𝐴 | |
3 | elrp 13008 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
4 | 1, 2, 3 | mpbir2an 710 | 1 ⊢ 𝐴 ∈ ℝ+ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 class class class wbr 5148 ℝcr 11137 0cc0 11138 < clt 11278 ℝ+crp 13006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-rp 13007 |
This theorem is referenced by: 1rp 13010 2rp 13011 3rp 13012 iexpcyc 14202 discr 14234 epr 16184 aaliou3lem1 26276 aaliou3lem2 26277 aaliou3lem3 26278 pirp 26395 pigt3 26451 efif1olem2 26476 cxpsqrtlem 26635 log2cnv 26875 chtublem 27143 chtub 27144 bposlem6 27221 lgsdir2lem1 27257 lgsdir2lem4 27260 lgsdir2lem5 27261 2sqlem11 27361 chebbnd1lem3 27403 chebbnd1 27404 pntlemg 27530 pntlemr 27534 pntlemf 27537 minvecolem3 30685 dp2lt10 32607 ballotlem2 34108 cntotbnd 37269 heiborlem5 37288 heiborlem7 37290 isosctrlem1ALT 44373 sineq0ALT 44376 limclner 45039 stoweidlem5 45393 stoweidlem28 45416 stoweidlem59 45447 stoweid 45451 stirlinglem12 45473 fourierswlem 45618 fouriersw 45619 |
Copyright terms: Public domain | W3C validator |