| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrpii | Structured version Visualization version GIF version | ||
| Description: Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.) |
| Ref | Expression |
|---|---|
| elrpi.1 | ⊢ 𝐴 ∈ ℝ |
| elrpi.2 | ⊢ 0 < 𝐴 |
| Ref | Expression |
|---|---|
| elrpii | ⊢ 𝐴 ∈ ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrpi.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | elrpi.2 | . 2 ⊢ 0 < 𝐴 | |
| 3 | elrp 12895 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 𝐴 ∈ ℝ+ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 class class class wbr 5092 ℝcr 11008 0cc0 11009 < clt 11149 ℝ+crp 12893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-rp 12894 |
| This theorem is referenced by: 1rp 12897 2rp 12898 3rp 12899 5rp 12900 iexpcyc 14114 discr 14147 epr 16117 aaliou3lem1 26248 aaliou3lem2 26249 aaliou3lem3 26250 pirp 26368 pigt3 26425 efif1olem2 26450 cxpsqrtlem 26609 log2cnv 26852 chtublem 27120 chtub 27121 bposlem6 27198 lgsdir2lem1 27234 lgsdir2lem4 27237 lgsdir2lem5 27238 2sqlem11 27338 chebbnd1lem3 27380 chebbnd1 27381 pntlemg 27507 pntlemr 27511 pntlemf 27514 minvecolem3 30824 dp2lt10 32833 ballotlem2 34473 cntotbnd 37796 heiborlem5 37815 heiborlem7 37817 4rp 42293 6rp 42294 7rp 42295 8rp 42296 9rp 42297 isosctrlem1ALT 44927 sineq0ALT 44930 limclner 45652 stoweidlem5 46006 stoweidlem28 46029 stoweidlem59 46060 stoweid 46064 stirlinglem12 46086 fourierswlem 46231 fouriersw 46232 |
| Copyright terms: Public domain | W3C validator |