![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrpii | Structured version Visualization version GIF version |
Description: Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.) |
Ref | Expression |
---|---|
elrpi.1 | ⊢ 𝐴 ∈ ℝ |
elrpi.2 | ⊢ 0 < 𝐴 |
Ref | Expression |
---|---|
elrpii | ⊢ 𝐴 ∈ ℝ+ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrpi.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | elrpi.2 | . 2 ⊢ 0 < 𝐴 | |
3 | elrp 13059 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
4 | 1, 2, 3 | mpbir2an 710 | 1 ⊢ 𝐴 ∈ ℝ+ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 class class class wbr 5166 ℝcr 11183 0cc0 11184 < clt 11324 ℝ+crp 13057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-rp 13058 |
This theorem is referenced by: 1rp 13061 2rp 13062 3rp 13063 iexpcyc 14256 discr 14289 epr 16256 aaliou3lem1 26402 aaliou3lem2 26403 aaliou3lem3 26404 pirp 26521 pigt3 26578 efif1olem2 26603 cxpsqrtlem 26762 log2cnv 27005 chtublem 27273 chtub 27274 bposlem6 27351 lgsdir2lem1 27387 lgsdir2lem4 27390 lgsdir2lem5 27391 2sqlem11 27491 chebbnd1lem3 27533 chebbnd1 27534 pntlemg 27660 pntlemr 27664 pntlemf 27667 minvecolem3 30908 dp2lt10 32848 ballotlem2 34453 cntotbnd 37756 heiborlem5 37775 heiborlem7 37777 4rp 42287 5rp 42288 6rp 42289 7rp 42290 8rp 42291 9rp 42292 isosctrlem1ALT 44905 sineq0ALT 44908 limclner 45572 stoweidlem5 45926 stoweidlem28 45949 stoweidlem59 45980 stoweid 45984 stirlinglem12 46006 fourierswlem 46151 fouriersw 46152 |
Copyright terms: Public domain | W3C validator |