Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrpii | Structured version Visualization version GIF version |
Description: Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.) |
Ref | Expression |
---|---|
elrpi.1 | ⊢ 𝐴 ∈ ℝ |
elrpi.2 | ⊢ 0 < 𝐴 |
Ref | Expression |
---|---|
elrpii | ⊢ 𝐴 ∈ ℝ+ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrpi.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | elrpi.2 | . 2 ⊢ 0 < 𝐴 | |
3 | elrp 12661 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
4 | 1, 2, 3 | mpbir2an 707 | 1 ⊢ 𝐴 ∈ ℝ+ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 class class class wbr 5070 ℝcr 10801 0cc0 10802 < clt 10940 ℝ+crp 12659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-rp 12660 |
This theorem is referenced by: 1rp 12663 2rp 12664 3rp 12665 iexpcyc 13851 discr 13883 epr 15845 aaliou3lem1 25407 aaliou3lem2 25408 aaliou3lem3 25409 pirp 25523 pigt3 25579 efif1olem2 25604 cxpsqrtlem 25762 log2cnv 25999 chtublem 26264 chtub 26265 bposlem6 26342 lgsdir2lem1 26378 lgsdir2lem4 26381 lgsdir2lem5 26382 2sqlem11 26482 chebbnd1lem3 26524 chebbnd1 26525 pntlemg 26651 pntlemr 26655 pntlemf 26658 minvecolem3 29139 dp2lt10 31060 ballotlem2 32355 cntotbnd 35881 heiborlem5 35900 heiborlem7 35902 isosctrlem1ALT 42443 sineq0ALT 42446 limclner 43082 stoweidlem5 43436 stoweidlem28 43459 stoweidlem59 43490 stoweid 43494 stirlinglem12 43516 fourierswlem 43661 fouriersw 43662 |
Copyright terms: Public domain | W3C validator |