| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrpii | Structured version Visualization version GIF version | ||
| Description: Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.) |
| Ref | Expression |
|---|---|
| elrpi.1 | ⊢ 𝐴 ∈ ℝ |
| elrpi.2 | ⊢ 0 < 𝐴 |
| Ref | Expression |
|---|---|
| elrpii | ⊢ 𝐴 ∈ ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrpi.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | elrpi.2 | . 2 ⊢ 0 < 𝐴 | |
| 3 | elrp 13010 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 𝐴 ∈ ℝ+ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 class class class wbr 5119 ℝcr 11128 0cc0 11129 < clt 11269 ℝ+crp 13008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-rp 13009 |
| This theorem is referenced by: 1rp 13012 2rp 13013 3rp 13014 5rp 13015 iexpcyc 14225 discr 14258 epr 16226 aaliou3lem1 26302 aaliou3lem2 26303 aaliou3lem3 26304 pirp 26422 pigt3 26479 efif1olem2 26504 cxpsqrtlem 26663 log2cnv 26906 chtublem 27174 chtub 27175 bposlem6 27252 lgsdir2lem1 27288 lgsdir2lem4 27291 lgsdir2lem5 27292 2sqlem11 27392 chebbnd1lem3 27434 chebbnd1 27435 pntlemg 27561 pntlemr 27565 pntlemf 27568 minvecolem3 30857 dp2lt10 32858 ballotlem2 34521 cntotbnd 37820 heiborlem5 37839 heiborlem7 37841 4rp 42349 6rp 42350 7rp 42351 8rp 42352 9rp 42353 isosctrlem1ALT 44958 sineq0ALT 44961 limclner 45680 stoweidlem5 46034 stoweidlem28 46057 stoweidlem59 46088 stoweid 46092 stirlinglem12 46114 fourierswlem 46259 fouriersw 46260 |
| Copyright terms: Public domain | W3C validator |