| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrpii | Structured version Visualization version GIF version | ||
| Description: Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.) |
| Ref | Expression |
|---|---|
| elrpi.1 | ⊢ 𝐴 ∈ ℝ |
| elrpi.2 | ⊢ 0 < 𝐴 |
| Ref | Expression |
|---|---|
| elrpii | ⊢ 𝐴 ∈ ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrpi.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | elrpi.2 | . 2 ⊢ 0 < 𝐴 | |
| 3 | elrp 12960 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 𝐴 ∈ ℝ+ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 class class class wbr 5110 ℝcr 11074 0cc0 11075 < clt 11215 ℝ+crp 12958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-rp 12959 |
| This theorem is referenced by: 1rp 12962 2rp 12963 3rp 12964 5rp 12965 iexpcyc 14179 discr 14212 epr 16183 aaliou3lem1 26257 aaliou3lem2 26258 aaliou3lem3 26259 pirp 26377 pigt3 26434 efif1olem2 26459 cxpsqrtlem 26618 log2cnv 26861 chtublem 27129 chtub 27130 bposlem6 27207 lgsdir2lem1 27243 lgsdir2lem4 27246 lgsdir2lem5 27247 2sqlem11 27347 chebbnd1lem3 27389 chebbnd1 27390 pntlemg 27516 pntlemr 27520 pntlemf 27523 minvecolem3 30812 dp2lt10 32811 ballotlem2 34487 cntotbnd 37797 heiborlem5 37816 heiborlem7 37818 4rp 42295 6rp 42296 7rp 42297 8rp 42298 9rp 42299 isosctrlem1ALT 44930 sineq0ALT 44933 limclner 45656 stoweidlem5 46010 stoweidlem28 46033 stoweidlem59 46064 stoweid 46068 stirlinglem12 46090 fourierswlem 46235 fouriersw 46236 |
| Copyright terms: Public domain | W3C validator |