![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrpii | Structured version Visualization version GIF version |
Description: Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.) |
Ref | Expression |
---|---|
elrpi.1 | ⊢ 𝐴 ∈ ℝ |
elrpi.2 | ⊢ 0 < 𝐴 |
Ref | Expression |
---|---|
elrpii | ⊢ 𝐴 ∈ ℝ+ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrpi.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | elrpi.2 | . 2 ⊢ 0 < 𝐴 | |
3 | elrp 12072 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
4 | 1, 2, 3 | mpbir2an 703 | 1 ⊢ 𝐴 ∈ ℝ+ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2157 class class class wbr 4841 ℝcr 10221 0cc0 10222 < clt 10361 ℝ+crp 12070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-rab 3096 df-v 3385 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-br 4842 df-rp 12071 |
This theorem is referenced by: 1rp 12074 2rp 12075 3rp 12076 iexpcyc 13219 discr 13251 caurcvgr 14742 epr 15269 aaliou3lem1 24435 aaliou3lem2 24436 aaliou3lem3 24437 pirp 24552 pige3 24608 cosordlem 24616 efif1olem2 24628 cxpsqrtlem 24786 log2cnv 25020 cht3 25248 chtublem 25285 chtub 25286 bposlem6 25363 lgsdir2lem1 25399 lgsdir2lem4 25402 lgsdir2lem5 25403 2sqlem11 25503 chebbnd1lem3 25509 chebbnd1 25510 chto1ub 25514 dchrvmasumiflem1 25539 pntlemg 25636 pntlemr 25640 pntlemf 25643 minvecolem3 28249 dp2lt10 30100 ballotlem2 31059 pigt3 33883 cntotbnd 34074 heiborlem5 34093 heiborlem7 34095 isosctrlem1ALT 39918 sineq0ALT 39921 limclner 40615 stoweidlem5 40953 stoweidlem28 40976 stoweidlem59 41007 stoweid 41011 stirlinglem12 41033 fourierswlem 41178 fouriersw 41179 |
Copyright terms: Public domain | W3C validator |