MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efif1olem2 Structured version   Visualization version   GIF version

Theorem efif1olem2 25124
Description: Lemma for efif1o 25127. (Contributed by Mario Carneiro, 13-May-2014.)
Hypothesis
Ref Expression
efif1olem1.1 𝐷 = (𝐴(,](𝐴 + (2 · π)))
Assertion
Ref Expression
efif1olem2 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ∃𝑦𝐷 ((𝑧𝑦) / (2 · π)) ∈ ℤ)
Distinct variable groups:   𝑦,𝑧   𝑦,𝐴   𝑦,𝐷
Allowed substitution hints:   𝐴(𝑧)   𝐷(𝑧)

Proof of Theorem efif1olem2
StepHypRef Expression
1 simpl 486 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℝ)
2 2re 11697 . . . . . . 7 2 ∈ ℝ
3 pire 25040 . . . . . . 7 π ∈ ℝ
42, 3remulcli 10642 . . . . . 6 (2 · π) ∈ ℝ
5 readdcl 10605 . . . . . 6 ((𝐴 ∈ ℝ ∧ (2 · π) ∈ ℝ) → (𝐴 + (2 · π)) ∈ ℝ)
61, 4, 5sylancl 589 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴 + (2 · π)) ∈ ℝ)
7 resubcl 10935 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴𝑧) ∈ ℝ)
8 2pos 11726 . . . . . . . 8 0 < 2
9 pipos 25042 . . . . . . . 8 0 < π
102, 3, 8, 9mulgt0ii 10758 . . . . . . 7 0 < (2 · π)
114, 10elrpii 12378 . . . . . 6 (2 · π) ∈ ℝ+
12 modcl 13234 . . . . . 6 (((𝐴𝑧) ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝐴𝑧) mod (2 · π)) ∈ ℝ)
137, 11, 12sylancl 589 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴𝑧) mod (2 · π)) ∈ ℝ)
146, 13resubcld 11053 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∈ ℝ)
154a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (2 · π) ∈ ℝ)
16 modlt 13241 . . . . . . 7 (((𝐴𝑧) ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝐴𝑧) mod (2 · π)) < (2 · π))
177, 11, 16sylancl 589 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴𝑧) mod (2 · π)) < (2 · π))
1813, 15, 1, 17ltadd2dd 10784 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴 + ((𝐴𝑧) mod (2 · π))) < (𝐴 + (2 · π)))
191, 13, 6ltaddsubd 11225 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + ((𝐴𝑧) mod (2 · π))) < (𝐴 + (2 · π)) ↔ 𝐴 < ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))))
2018, 19mpbid 235 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝐴 < ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))))
21 modge0 13240 . . . . . 6 (((𝐴𝑧) ∈ ℝ ∧ (2 · π) ∈ ℝ+) → 0 ≤ ((𝐴𝑧) mod (2 · π)))
227, 11, 21sylancl 589 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 0 ≤ ((𝐴𝑧) mod (2 · π)))
236, 13subge02d 11217 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (0 ≤ ((𝐴𝑧) mod (2 · π)) ↔ ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ≤ (𝐴 + (2 · π))))
2422, 23mpbid 235 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ≤ (𝐴 + (2 · π)))
25 rexr 10672 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
26 elioc2 12786 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐴 + (2 · π)) ∈ ℝ) → (((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∈ (𝐴(,](𝐴 + (2 · π))) ↔ (((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∈ ℝ ∧ 𝐴 < ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∧ ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ≤ (𝐴 + (2 · π)))))
2725, 6, 26syl2an2r 684 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∈ (𝐴(,](𝐴 + (2 · π))) ↔ (((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∈ ℝ ∧ 𝐴 < ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∧ ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ≤ (𝐴 + (2 · π)))))
2814, 20, 24, 27mpbir3and 1339 . . 3 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∈ (𝐴(,](𝐴 + (2 · π))))
29 efif1olem1.1 . . 3 𝐷 = (𝐴(,](𝐴 + (2 · π)))
3028, 29eleqtrrdi 2927 . 2 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∈ 𝐷)
31 modval 13232 . . . . . . . . . 10 (((𝐴𝑧) ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝐴𝑧) mod (2 · π)) = ((𝐴𝑧) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))))
327, 11, 31sylancl 589 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴𝑧) mod (2 · π)) = ((𝐴𝑧) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))))
3332oveq2d 7154 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) = ((𝐴 + (2 · π)) − ((𝐴𝑧) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π)))))))
346recnd 10654 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴 + (2 · π)) ∈ ℂ)
357recnd 10654 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴𝑧) ∈ ℂ)
364, 10gt0ne0ii 11161 . . . . . . . . . . . . . . 15 (2 · π) ≠ 0
37 redivcl 11344 . . . . . . . . . . . . . . 15 (((𝐴𝑧) ∈ ℝ ∧ (2 · π) ∈ ℝ ∧ (2 · π) ≠ 0) → ((𝐴𝑧) / (2 · π)) ∈ ℝ)
384, 36, 37mp3an23 1450 . . . . . . . . . . . . . 14 ((𝐴𝑧) ∈ ℝ → ((𝐴𝑧) / (2 · π)) ∈ ℝ)
397, 38syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴𝑧) / (2 · π)) ∈ ℝ)
4039flcld 13161 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (⌊‘((𝐴𝑧) / (2 · π))) ∈ ℤ)
4140zred 12073 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (⌊‘((𝐴𝑧) / (2 · π))) ∈ ℝ)
42 remulcl 10607 . . . . . . . . . . 11 (((2 · π) ∈ ℝ ∧ (⌊‘((𝐴𝑧) / (2 · π))) ∈ ℝ) → ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π)))) ∈ ℝ)
434, 41, 42sylancr 590 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π)))) ∈ ℝ)
4443recnd 10654 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π)))) ∈ ℂ)
4534, 35, 44subsubd 11010 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + (2 · π)) − ((𝐴𝑧) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π)))))) = (((𝐴 + (2 · π)) − (𝐴𝑧)) + ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))))
461recnd 10654 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℂ)
474recni 10640 . . . . . . . . . . 11 (2 · π) ∈ ℂ
4847a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (2 · π) ∈ ℂ)
49 simpr 488 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
5049recnd 10654 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
5146, 48, 50pnncand 11021 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + (2 · π)) − (𝐴𝑧)) = ((2 · π) + 𝑧))
5251oveq1d 7153 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((𝐴 + (2 · π)) − (𝐴𝑧)) + ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))) = (((2 · π) + 𝑧) + ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))))
5333, 45, 523eqtrd 2863 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) = (((2 · π) + 𝑧) + ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))))
5453oveq2d 7154 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))) = (𝑧 − (((2 · π) + 𝑧) + ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π)))))))
55 addcl 10604 . . . . . . . 8 (((2 · π) ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((2 · π) + 𝑧) ∈ ℂ)
5647, 50, 55sylancr 590 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((2 · π) + 𝑧) ∈ ℂ)
5750, 56, 44subsub4d 11013 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑧 − ((2 · π) + 𝑧)) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))) = (𝑧 − (((2 · π) + 𝑧) + ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π)))))))
5856, 50negsubdi2d 10998 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -(((2 · π) + 𝑧) − 𝑧) = (𝑧 − ((2 · π) + 𝑧)))
5948, 50pncand 10983 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((2 · π) + 𝑧) − 𝑧) = (2 · π))
6059negeqd 10865 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -(((2 · π) + 𝑧) − 𝑧) = -(2 · π))
6158, 60eqtr3d 2861 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 − ((2 · π) + 𝑧)) = -(2 · π))
62 neg1cn 11737 . . . . . . . . . 10 -1 ∈ ℂ
6347mulm1i 11070 . . . . . . . . . 10 (-1 · (2 · π)) = -(2 · π)
6462, 47, 63mulcomli 10635 . . . . . . . . 9 ((2 · π) · -1) = -(2 · π)
6561, 64syl6eqr 2877 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 − ((2 · π) + 𝑧)) = ((2 · π) · -1))
6665oveq1d 7153 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑧 − ((2 · π) + 𝑧)) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))) = (((2 · π) · -1) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))))
6762a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -1 ∈ ℂ)
6840zcnd 12074 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (⌊‘((𝐴𝑧) / (2 · π))) ∈ ℂ)
6948, 67, 68subdid 11081 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((2 · π) · (-1 − (⌊‘((𝐴𝑧) / (2 · π))))) = (((2 · π) · -1) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))))
7066, 69eqtr4d 2862 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑧 − ((2 · π) + 𝑧)) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))) = ((2 · π) · (-1 − (⌊‘((𝐴𝑧) / (2 · π))))))
7154, 57, 703eqtr2d 2865 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))) = ((2 · π) · (-1 − (⌊‘((𝐴𝑧) / (2 · π))))))
7271oveq1d 7153 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))) / (2 · π)) = (((2 · π) · (-1 − (⌊‘((𝐴𝑧) / (2 · π))))) / (2 · π)))
73 neg1z 12004 . . . . . . 7 -1 ∈ ℤ
74 zsubcl 12010 . . . . . . 7 ((-1 ∈ ℤ ∧ (⌊‘((𝐴𝑧) / (2 · π))) ∈ ℤ) → (-1 − (⌊‘((𝐴𝑧) / (2 · π)))) ∈ ℤ)
7573, 40, 74sylancr 590 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-1 − (⌊‘((𝐴𝑧) / (2 · π)))) ∈ ℤ)
7675zcnd 12074 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-1 − (⌊‘((𝐴𝑧) / (2 · π)))) ∈ ℂ)
77 divcan3 11309 . . . . . 6 (((-1 − (⌊‘((𝐴𝑧) / (2 · π)))) ∈ ℂ ∧ (2 · π) ∈ ℂ ∧ (2 · π) ≠ 0) → (((2 · π) · (-1 − (⌊‘((𝐴𝑧) / (2 · π))))) / (2 · π)) = (-1 − (⌊‘((𝐴𝑧) / (2 · π)))))
7847, 36, 77mp3an23 1450 . . . . 5 ((-1 − (⌊‘((𝐴𝑧) / (2 · π)))) ∈ ℂ → (((2 · π) · (-1 − (⌊‘((𝐴𝑧) / (2 · π))))) / (2 · π)) = (-1 − (⌊‘((𝐴𝑧) / (2 · π)))))
7976, 78syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((2 · π) · (-1 − (⌊‘((𝐴𝑧) / (2 · π))))) / (2 · π)) = (-1 − (⌊‘((𝐴𝑧) / (2 · π)))))
8072, 79eqtrd 2859 . . 3 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))) / (2 · π)) = (-1 − (⌊‘((𝐴𝑧) / (2 · π)))))
8180, 75eqeltrd 2916 . 2 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))) / (2 · π)) ∈ ℤ)
82 oveq2 7146 . . . . 5 (𝑦 = ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) → (𝑧𝑦) = (𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))))
8382oveq1d 7153 . . . 4 (𝑦 = ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) → ((𝑧𝑦) / (2 · π)) = ((𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))) / (2 · π)))
8483eleq1d 2900 . . 3 (𝑦 = ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) → (((𝑧𝑦) / (2 · π)) ∈ ℤ ↔ ((𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))) / (2 · π)) ∈ ℤ))
8584rspcev 3608 . 2 ((((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∈ 𝐷 ∧ ((𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))) / (2 · π)) ∈ ℤ) → ∃𝑦𝐷 ((𝑧𝑦) / (2 · π)) ∈ ℤ)
8630, 81, 85syl2anc 587 1 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ∃𝑦𝐷 ((𝑧𝑦) / (2 · π)) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3013  wrex 3133   class class class wbr 5047  cfv 6336  (class class class)co 7138  cc 10520  cr 10521  0cc0 10522  1c1 10523   + caddc 10525   · cmul 10527  *cxr 10659   < clt 10660  cle 10661  cmin 10855  -cneg 10856   / cdiv 11282  2c2 11678  cz 11967  +crp 12375  (,]cioc 12725  cfl 13153   mod cmo 13230  πcpi 15409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-inf2 9088  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599  ax-pre-sup 10600  ax-addf 10601  ax-mulf 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-iin 4903  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-se 5496  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-of 7392  df-om 7564  df-1st 7672  df-2nd 7673  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-div 11283  df-nn 11624  df-2 11686  df-3 11687  df-4 11688  df-5 11689  df-6 11690  df-7 11691  df-8 11692  df-9 11693  df-n0 11884  df-z 11968  df-dec 12085  df-uz 12230  df-q 12335  df-rp 12376  df-xneg 12493  df-xadd 12494  df-xmul 12495  df-ioo 12728  df-ioc 12729  df-ico 12730  df-icc 12731  df-fz 12884  df-fzo 13027  df-fl 13155  df-mod 13231  df-seq 13363  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-shft 14415  df-cj 14447  df-re 14448  df-im 14449  df-sqrt 14583  df-abs 14584  df-limsup 14817  df-clim 14834  df-rlim 14835  df-sum 15032  df-ef 15410  df-sin 15412  df-cos 15413  df-pi 15415  df-struct 16474  df-ndx 16475  df-slot 16476  df-base 16478  df-sets 16479  df-ress 16480  df-plusg 16567  df-mulr 16568  df-starv 16569  df-sca 16570  df-vsca 16571  df-ip 16572  df-tset 16573  df-ple 16574  df-ds 16576  df-unif 16577  df-hom 16578  df-cco 16579  df-rest 16685  df-topn 16686  df-0g 16704  df-gsum 16705  df-topgen 16706  df-pt 16707  df-prds 16710  df-xrs 16764  df-qtop 16769  df-imas 16770  df-xps 16772  df-mre 16846  df-mrc 16847  df-acs 16849  df-mgm 17841  df-sgrp 17890  df-mnd 17901  df-submnd 17946  df-mulg 18214  df-cntz 18436  df-cmn 18897  df-psmet 20523  df-xmet 20524  df-met 20525  df-bl 20526  df-mopn 20527  df-fbas 20528  df-fg 20529  df-cnfld 20532  df-top 21488  df-topon 21505  df-topsp 21527  df-bases 21540  df-cld 21613  df-ntr 21614  df-cls 21615  df-nei 21692  df-lp 21730  df-perf 21731  df-cn 21821  df-cnp 21822  df-haus 21909  df-tx 22156  df-hmeo 22349  df-fil 22440  df-fm 22532  df-flim 22533  df-flf 22534  df-xms 22916  df-ms 22917  df-tms 22918  df-cncf 23472  df-limc 24458  df-dv 24459
This theorem is referenced by:  efif1o  25127  eff1o  25130
  Copyright terms: Public domain W3C validator