MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efif1olem2 Structured version   Visualization version   GIF version

Theorem efif1olem2 25287
Description: Lemma for efif1o 25290. (Contributed by Mario Carneiro, 13-May-2014.)
Hypothesis
Ref Expression
efif1olem1.1 𝐷 = (𝐴(,](𝐴 + (2 · π)))
Assertion
Ref Expression
efif1olem2 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ∃𝑦𝐷 ((𝑧𝑦) / (2 · π)) ∈ ℤ)
Distinct variable groups:   𝑦,𝑧   𝑦,𝐴   𝑦,𝐷
Allowed substitution hints:   𝐴(𝑧)   𝐷(𝑧)

Proof of Theorem efif1olem2
StepHypRef Expression
1 simpl 486 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℝ)
2 2re 11790 . . . . . . 7 2 ∈ ℝ
3 pire 25203 . . . . . . 7 π ∈ ℝ
42, 3remulcli 10735 . . . . . 6 (2 · π) ∈ ℝ
5 readdcl 10698 . . . . . 6 ((𝐴 ∈ ℝ ∧ (2 · π) ∈ ℝ) → (𝐴 + (2 · π)) ∈ ℝ)
61, 4, 5sylancl 589 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴 + (2 · π)) ∈ ℝ)
7 resubcl 11028 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴𝑧) ∈ ℝ)
8 2pos 11819 . . . . . . . 8 0 < 2
9 pipos 25205 . . . . . . . 8 0 < π
102, 3, 8, 9mulgt0ii 10851 . . . . . . 7 0 < (2 · π)
114, 10elrpii 12475 . . . . . 6 (2 · π) ∈ ℝ+
12 modcl 13332 . . . . . 6 (((𝐴𝑧) ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝐴𝑧) mod (2 · π)) ∈ ℝ)
137, 11, 12sylancl 589 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴𝑧) mod (2 · π)) ∈ ℝ)
146, 13resubcld 11146 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∈ ℝ)
154a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (2 · π) ∈ ℝ)
16 modlt 13339 . . . . . . 7 (((𝐴𝑧) ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝐴𝑧) mod (2 · π)) < (2 · π))
177, 11, 16sylancl 589 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴𝑧) mod (2 · π)) < (2 · π))
1813, 15, 1, 17ltadd2dd 10877 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴 + ((𝐴𝑧) mod (2 · π))) < (𝐴 + (2 · π)))
191, 13, 6ltaddsubd 11318 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + ((𝐴𝑧) mod (2 · π))) < (𝐴 + (2 · π)) ↔ 𝐴 < ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))))
2018, 19mpbid 235 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝐴 < ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))))
21 modge0 13338 . . . . . 6 (((𝐴𝑧) ∈ ℝ ∧ (2 · π) ∈ ℝ+) → 0 ≤ ((𝐴𝑧) mod (2 · π)))
227, 11, 21sylancl 589 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 0 ≤ ((𝐴𝑧) mod (2 · π)))
236, 13subge02d 11310 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (0 ≤ ((𝐴𝑧) mod (2 · π)) ↔ ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ≤ (𝐴 + (2 · π))))
2422, 23mpbid 235 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ≤ (𝐴 + (2 · π)))
25 rexr 10765 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
26 elioc2 12884 . . . . 5 ((𝐴 ∈ ℝ* ∧ (𝐴 + (2 · π)) ∈ ℝ) → (((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∈ (𝐴(,](𝐴 + (2 · π))) ↔ (((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∈ ℝ ∧ 𝐴 < ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∧ ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ≤ (𝐴 + (2 · π)))))
2725, 6, 26syl2an2r 685 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∈ (𝐴(,](𝐴 + (2 · π))) ↔ (((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∈ ℝ ∧ 𝐴 < ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∧ ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ≤ (𝐴 + (2 · π)))))
2814, 20, 24, 27mpbir3and 1343 . . 3 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∈ (𝐴(,](𝐴 + (2 · π))))
29 efif1olem1.1 . . 3 𝐷 = (𝐴(,](𝐴 + (2 · π)))
3028, 29eleqtrrdi 2844 . 2 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∈ 𝐷)
31 modval 13330 . . . . . . . . . 10 (((𝐴𝑧) ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝐴𝑧) mod (2 · π)) = ((𝐴𝑧) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))))
327, 11, 31sylancl 589 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴𝑧) mod (2 · π)) = ((𝐴𝑧) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))))
3332oveq2d 7186 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) = ((𝐴 + (2 · π)) − ((𝐴𝑧) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π)))))))
346recnd 10747 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴 + (2 · π)) ∈ ℂ)
357recnd 10747 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴𝑧) ∈ ℂ)
364, 10gt0ne0ii 11254 . . . . . . . . . . . . . . 15 (2 · π) ≠ 0
37 redivcl 11437 . . . . . . . . . . . . . . 15 (((𝐴𝑧) ∈ ℝ ∧ (2 · π) ∈ ℝ ∧ (2 · π) ≠ 0) → ((𝐴𝑧) / (2 · π)) ∈ ℝ)
384, 36, 37mp3an23 1454 . . . . . . . . . . . . . 14 ((𝐴𝑧) ∈ ℝ → ((𝐴𝑧) / (2 · π)) ∈ ℝ)
397, 38syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴𝑧) / (2 · π)) ∈ ℝ)
4039flcld 13259 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (⌊‘((𝐴𝑧) / (2 · π))) ∈ ℤ)
4140zred 12168 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (⌊‘((𝐴𝑧) / (2 · π))) ∈ ℝ)
42 remulcl 10700 . . . . . . . . . . 11 (((2 · π) ∈ ℝ ∧ (⌊‘((𝐴𝑧) / (2 · π))) ∈ ℝ) → ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π)))) ∈ ℝ)
434, 41, 42sylancr 590 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π)))) ∈ ℝ)
4443recnd 10747 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π)))) ∈ ℂ)
4534, 35, 44subsubd 11103 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + (2 · π)) − ((𝐴𝑧) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π)))))) = (((𝐴 + (2 · π)) − (𝐴𝑧)) + ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))))
461recnd 10747 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℂ)
474recni 10733 . . . . . . . . . . 11 (2 · π) ∈ ℂ
4847a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (2 · π) ∈ ℂ)
49 simpr 488 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
5049recnd 10747 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
5146, 48, 50pnncand 11114 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + (2 · π)) − (𝐴𝑧)) = ((2 · π) + 𝑧))
5251oveq1d 7185 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((𝐴 + (2 · π)) − (𝐴𝑧)) + ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))) = (((2 · π) + 𝑧) + ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))))
5333, 45, 523eqtrd 2777 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) = (((2 · π) + 𝑧) + ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))))
5453oveq2d 7186 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))) = (𝑧 − (((2 · π) + 𝑧) + ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π)))))))
55 addcl 10697 . . . . . . . 8 (((2 · π) ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((2 · π) + 𝑧) ∈ ℂ)
5647, 50, 55sylancr 590 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((2 · π) + 𝑧) ∈ ℂ)
5750, 56, 44subsub4d 11106 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑧 − ((2 · π) + 𝑧)) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))) = (𝑧 − (((2 · π) + 𝑧) + ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π)))))))
5856, 50negsubdi2d 11091 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -(((2 · π) + 𝑧) − 𝑧) = (𝑧 − ((2 · π) + 𝑧)))
5948, 50pncand 11076 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((2 · π) + 𝑧) − 𝑧) = (2 · π))
6059negeqd 10958 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -(((2 · π) + 𝑧) − 𝑧) = -(2 · π))
6158, 60eqtr3d 2775 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 − ((2 · π) + 𝑧)) = -(2 · π))
62 neg1cn 11830 . . . . . . . . . 10 -1 ∈ ℂ
6347mulm1i 11163 . . . . . . . . . 10 (-1 · (2 · π)) = -(2 · π)
6462, 47, 63mulcomli 10728 . . . . . . . . 9 ((2 · π) · -1) = -(2 · π)
6561, 64eqtr4di 2791 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 − ((2 · π) + 𝑧)) = ((2 · π) · -1))
6665oveq1d 7185 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑧 − ((2 · π) + 𝑧)) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))) = (((2 · π) · -1) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))))
6762a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -1 ∈ ℂ)
6840zcnd 12169 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (⌊‘((𝐴𝑧) / (2 · π))) ∈ ℂ)
6948, 67, 68subdid 11174 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((2 · π) · (-1 − (⌊‘((𝐴𝑧) / (2 · π))))) = (((2 · π) · -1) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))))
7066, 69eqtr4d 2776 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑧 − ((2 · π) + 𝑧)) − ((2 · π) · (⌊‘((𝐴𝑧) / (2 · π))))) = ((2 · π) · (-1 − (⌊‘((𝐴𝑧) / (2 · π))))))
7154, 57, 703eqtr2d 2779 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))) = ((2 · π) · (-1 − (⌊‘((𝐴𝑧) / (2 · π))))))
7271oveq1d 7185 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))) / (2 · π)) = (((2 · π) · (-1 − (⌊‘((𝐴𝑧) / (2 · π))))) / (2 · π)))
73 neg1z 12099 . . . . . . 7 -1 ∈ ℤ
74 zsubcl 12105 . . . . . . 7 ((-1 ∈ ℤ ∧ (⌊‘((𝐴𝑧) / (2 · π))) ∈ ℤ) → (-1 − (⌊‘((𝐴𝑧) / (2 · π)))) ∈ ℤ)
7573, 40, 74sylancr 590 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-1 − (⌊‘((𝐴𝑧) / (2 · π)))) ∈ ℤ)
7675zcnd 12169 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-1 − (⌊‘((𝐴𝑧) / (2 · π)))) ∈ ℂ)
77 divcan3 11402 . . . . . 6 (((-1 − (⌊‘((𝐴𝑧) / (2 · π)))) ∈ ℂ ∧ (2 · π) ∈ ℂ ∧ (2 · π) ≠ 0) → (((2 · π) · (-1 − (⌊‘((𝐴𝑧) / (2 · π))))) / (2 · π)) = (-1 − (⌊‘((𝐴𝑧) / (2 · π)))))
7847, 36, 77mp3an23 1454 . . . . 5 ((-1 − (⌊‘((𝐴𝑧) / (2 · π)))) ∈ ℂ → (((2 · π) · (-1 − (⌊‘((𝐴𝑧) / (2 · π))))) / (2 · π)) = (-1 − (⌊‘((𝐴𝑧) / (2 · π)))))
7976, 78syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((2 · π) · (-1 − (⌊‘((𝐴𝑧) / (2 · π))))) / (2 · π)) = (-1 − (⌊‘((𝐴𝑧) / (2 · π)))))
8072, 79eqtrd 2773 . . 3 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))) / (2 · π)) = (-1 − (⌊‘((𝐴𝑧) / (2 · π)))))
8180, 75eqeltrd 2833 . 2 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))) / (2 · π)) ∈ ℤ)
82 oveq2 7178 . . . . 5 (𝑦 = ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) → (𝑧𝑦) = (𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))))
8382oveq1d 7185 . . . 4 (𝑦 = ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) → ((𝑧𝑦) / (2 · π)) = ((𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))) / (2 · π)))
8483eleq1d 2817 . . 3 (𝑦 = ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) → (((𝑧𝑦) / (2 · π)) ∈ ℤ ↔ ((𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))) / (2 · π)) ∈ ℤ))
8584rspcev 3526 . 2 ((((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π))) ∈ 𝐷 ∧ ((𝑧 − ((𝐴 + (2 · π)) − ((𝐴𝑧) mod (2 · π)))) / (2 · π)) ∈ ℤ) → ∃𝑦𝐷 ((𝑧𝑦) / (2 · π)) ∈ ℤ)
8630, 81, 85syl2anc 587 1 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ∃𝑦𝐷 ((𝑧𝑦) / (2 · π)) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2934  wrex 3054   class class class wbr 5030  cfv 6339  (class class class)co 7170  cc 10613  cr 10614  0cc0 10615  1c1 10616   + caddc 10618   · cmul 10620  *cxr 10752   < clt 10753  cle 10754  cmin 10948  -cneg 10949   / cdiv 11375  2c2 11771  cz 12062  +crp 12472  (,]cioc 12822  cfl 13251   mod cmo 13328  πcpi 15512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693  ax-addf 10694  ax-mulf 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-supp 7857  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-2o 8132  df-er 8320  df-map 8439  df-pm 8440  df-ixp 8508  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-fsupp 8907  df-fi 8948  df-sup 8979  df-inf 8980  df-oi 9047  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-z 12063  df-dec 12180  df-uz 12325  df-q 12431  df-rp 12473  df-xneg 12590  df-xadd 12591  df-xmul 12592  df-ioo 12825  df-ioc 12826  df-ico 12827  df-icc 12828  df-fz 12982  df-fzo 13125  df-fl 13253  df-mod 13329  df-seq 13461  df-exp 13522  df-fac 13726  df-bc 13755  df-hash 13783  df-shft 14516  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-limsup 14918  df-clim 14935  df-rlim 14936  df-sum 15136  df-ef 15513  df-sin 15515  df-cos 15516  df-pi 15518  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-starv 16683  df-sca 16684  df-vsca 16685  df-ip 16686  df-tset 16687  df-ple 16688  df-ds 16690  df-unif 16691  df-hom 16692  df-cco 16693  df-rest 16799  df-topn 16800  df-0g 16818  df-gsum 16819  df-topgen 16820  df-pt 16821  df-prds 16824  df-xrs 16878  df-qtop 16883  df-imas 16884  df-xps 16886  df-mre 16960  df-mrc 16961  df-acs 16963  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-submnd 18073  df-mulg 18343  df-cntz 18565  df-cmn 19026  df-psmet 20209  df-xmet 20210  df-met 20211  df-bl 20212  df-mopn 20213  df-fbas 20214  df-fg 20215  df-cnfld 20218  df-top 21645  df-topon 21662  df-topsp 21684  df-bases 21697  df-cld 21770  df-ntr 21771  df-cls 21772  df-nei 21849  df-lp 21887  df-perf 21888  df-cn 21978  df-cnp 21979  df-haus 22066  df-tx 22313  df-hmeo 22506  df-fil 22597  df-fm 22689  df-flim 22690  df-flf 22691  df-xms 23073  df-ms 23074  df-tms 23075  df-cncf 23630  df-limc 24618  df-dv 24619
This theorem is referenced by:  efif1o  25290  eff1o  25293
  Copyright terms: Public domain W3C validator