Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > epr | Structured version Visualization version GIF version |
Description: Euler's constant e is a positive real. (Contributed by Jeff Hankins, 22-Nov-2008.) |
Ref | Expression |
---|---|
epr | ⊢ e ∈ ℝ+ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ere 15683 | . 2 ⊢ e ∈ ℝ | |
2 | epos 15801 | . 2 ⊢ 0 < e | |
3 | 1, 2 | elrpii 12619 | 1 ⊢ e ∈ ℝ+ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2112 ℝ+crp 12616 eceu 15657 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5196 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 ax-inf2 9286 ax-cnex 10815 ax-resscn 10816 ax-1cn 10817 ax-icn 10818 ax-addcl 10819 ax-addrcl 10820 ax-mulcl 10821 ax-mulrcl 10822 ax-mulcom 10823 ax-addass 10824 ax-mulass 10825 ax-distr 10826 ax-i2m1 10827 ax-1ne0 10828 ax-1rid 10829 ax-rnegex 10830 ax-rrecex 10831 ax-cnre 10832 ax-pre-lttri 10833 ax-pre-lttrn 10834 ax-pre-ltadd 10835 ax-pre-mulgt0 10836 ax-pre-sup 10837 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5179 df-id 5472 df-eprel 5478 df-po 5486 df-so 5487 df-fr 5527 df-se 5528 df-we 5529 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-pred 6179 df-ord 6237 df-on 6238 df-lim 6239 df-suc 6240 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-isom 6410 df-riota 7192 df-ov 7238 df-oprab 7239 df-mpo 7240 df-om 7667 df-1st 7783 df-2nd 7784 df-wrecs 8071 df-recs 8132 df-rdg 8170 df-1o 8226 df-er 8415 df-pm 8535 df-en 8651 df-dom 8652 df-sdom 8653 df-fin 8654 df-sup 9088 df-inf 9089 df-oi 9156 df-card 9585 df-pnf 10899 df-mnf 10900 df-xr 10901 df-ltxr 10902 df-le 10903 df-sub 11094 df-neg 11095 df-div 11520 df-nn 11861 df-2 11923 df-3 11924 df-4 11925 df-n0 12121 df-z 12207 df-uz 12469 df-q 12575 df-rp 12617 df-ico 12971 df-fz 13126 df-fzo 13269 df-fl 13397 df-seq 13607 df-exp 13668 df-fac 13873 df-bc 13902 df-hash 13930 df-shft 14663 df-cj 14695 df-re 14696 df-im 14697 df-sqrt 14831 df-abs 14832 df-limsup 15065 df-clim 15082 df-rlim 15083 df-sum 15283 df-ef 15662 df-e 15663 |
This theorem is referenced by: loge 25507 logle1b 25553 loglt1b 25554 cxploglim2 25893 harmonicbnd3 25922 chebbnd1lem3 26384 chebbnd1 26385 mulog2sumlem1 26447 mulog2sumlem2 26448 selberg3lem1 26470 pntpbnd1a 26498 pntpbnd2 26500 pntlemk 26519 hgt750lem 32375 subfacval3 32895 stirlinglem2 43337 stirlinglem4 43339 stirlinglem13 43348 stirlinglem14 43349 stirlinglem15 43350 stirlingr 43352 etransclem18 43514 etransclem46 43542 |
Copyright terms: Public domain | W3C validator |