MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem1 Structured version   Visualization version   GIF version

Theorem aaliou3lem1 25407
Description: Lemma for aaliou3 25416. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypothesis
Ref Expression
aaliou3lem.a 𝐺 = (𝑐 ∈ (ℤ𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))))
Assertion
Ref Expression
aaliou3lem1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (𝐺𝐵) ∈ ℝ)
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐
Allowed substitution hint:   𝐺(𝑐)

Proof of Theorem aaliou3lem1
StepHypRef Expression
1 oveq1 7262 . . . . . 6 (𝑐 = 𝐵 → (𝑐𝐴) = (𝐵𝐴))
21oveq2d 7271 . . . . 5 (𝑐 = 𝐵 → ((1 / 2)↑(𝑐𝐴)) = ((1 / 2)↑(𝐵𝐴)))
32oveq2d 7271 . . . 4 (𝑐 = 𝐵 → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵𝐴))))
4 aaliou3lem.a . . . 4 𝐺 = (𝑐 ∈ (ℤ𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))))
5 ovex 7288 . . . 4 ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵𝐴))) ∈ V
63, 4, 5fvmpt 6857 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐺𝐵) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵𝐴))))
76adantl 481 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (𝐺𝐵) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵𝐴))))
8 2rp 12664 . . . . 5 2 ∈ ℝ+
9 simpl 482 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → 𝐴 ∈ ℕ)
109nnnn0d 12223 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → 𝐴 ∈ ℕ0)
1110faccld 13926 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (!‘𝐴) ∈ ℕ)
1211nnzd 12354 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (!‘𝐴) ∈ ℤ)
1312znegcld 12357 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → -(!‘𝐴) ∈ ℤ)
14 rpexpcl 13729 . . . . 5 ((2 ∈ ℝ+ ∧ -(!‘𝐴) ∈ ℤ) → (2↑-(!‘𝐴)) ∈ ℝ+)
158, 13, 14sylancr 586 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (2↑-(!‘𝐴)) ∈ ℝ+)
16 halfre 12117 . . . . . 6 (1 / 2) ∈ ℝ
17 halfgt0 12119 . . . . . 6 0 < (1 / 2)
1816, 17elrpii 12662 . . . . 5 (1 / 2) ∈ ℝ+
19 eluzelz 12521 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
20 nnz 12272 . . . . . 6 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
21 zsubcl 12292 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵𝐴) ∈ ℤ)
2219, 20, 21syl2anr 596 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (𝐵𝐴) ∈ ℤ)
23 rpexpcl 13729 . . . . 5 (((1 / 2) ∈ ℝ+ ∧ (𝐵𝐴) ∈ ℤ) → ((1 / 2)↑(𝐵𝐴)) ∈ ℝ+)
2418, 22, 23sylancr 586 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → ((1 / 2)↑(𝐵𝐴)) ∈ ℝ+)
2515, 24rpmulcld 12717 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵𝐴))) ∈ ℝ+)
2625rpred 12701 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵𝐴))) ∈ ℝ)
277, 26eqeltrd 2839 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (𝐺𝐵) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cmpt 5153  cfv 6418  (class class class)co 7255  cr 10801  1c1 10803   · cmul 10807  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  2c2 11958  cz 12249  cuz 12511  +crp 12659  cexp 13710  !cfa 13915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-fac 13916
This theorem is referenced by:  aaliou3lem2  25408  aaliou3lem3  25409
  Copyright terms: Public domain W3C validator