![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > aaliou3lem1 | Structured version Visualization version GIF version |
Description: Lemma for aaliou3 24547. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
Ref | Expression |
---|---|
aaliou3lem.a | ⊢ 𝐺 = (𝑐 ∈ (ℤ≥‘𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴)))) |
Ref | Expression |
---|---|
aaliou3lem1 | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐺‘𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 6931 | . . . . . 6 ⊢ (𝑐 = 𝐵 → (𝑐 − 𝐴) = (𝐵 − 𝐴)) | |
2 | 1 | oveq2d 6940 | . . . . 5 ⊢ (𝑐 = 𝐵 → ((1 / 2)↑(𝑐 − 𝐴)) = ((1 / 2)↑(𝐵 − 𝐴))) |
3 | 2 | oveq2d 6940 | . . . 4 ⊢ (𝑐 = 𝐵 → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴))) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵 − 𝐴)))) |
4 | aaliou3lem.a | . . . 4 ⊢ 𝐺 = (𝑐 ∈ (ℤ≥‘𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴)))) | |
5 | ovex 6956 | . . . 4 ⊢ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵 − 𝐴))) ∈ V | |
6 | 3, 4, 5 | fvmpt 6544 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐺‘𝐵) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵 − 𝐴)))) |
7 | 6 | adantl 475 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐺‘𝐵) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵 − 𝐴)))) |
8 | 2rp 12146 | . . . . 5 ⊢ 2 ∈ ℝ+ | |
9 | simpl 476 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → 𝐴 ∈ ℕ) | |
10 | 9 | nnnn0d 11706 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → 𝐴 ∈ ℕ0) |
11 | faccl 13392 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) ∈ ℕ) | |
12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (!‘𝐴) ∈ ℕ) |
13 | 12 | nnzd 11837 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (!‘𝐴) ∈ ℤ) |
14 | 13 | znegcld 11840 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → -(!‘𝐴) ∈ ℤ) |
15 | rpexpcl 13201 | . . . . 5 ⊢ ((2 ∈ ℝ+ ∧ -(!‘𝐴) ∈ ℤ) → (2↑-(!‘𝐴)) ∈ ℝ+) | |
16 | 8, 14, 15 | sylancr 581 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (2↑-(!‘𝐴)) ∈ ℝ+) |
17 | halfre 11600 | . . . . . 6 ⊢ (1 / 2) ∈ ℝ | |
18 | halfgt0 11602 | . . . . . 6 ⊢ 0 < (1 / 2) | |
19 | 17, 18 | elrpii 12144 | . . . . 5 ⊢ (1 / 2) ∈ ℝ+ |
20 | eluzelz 12006 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
21 | nnz 11755 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
22 | zsubcl 11775 | . . . . . 6 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵 − 𝐴) ∈ ℤ) | |
23 | 20, 21, 22 | syl2anr 590 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐵 − 𝐴) ∈ ℤ) |
24 | rpexpcl 13201 | . . . . 5 ⊢ (((1 / 2) ∈ ℝ+ ∧ (𝐵 − 𝐴) ∈ ℤ) → ((1 / 2)↑(𝐵 − 𝐴)) ∈ ℝ+) | |
25 | 19, 23, 24 | sylancr 581 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → ((1 / 2)↑(𝐵 − 𝐴)) ∈ ℝ+) |
26 | 16, 25 | rpmulcld 12201 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵 − 𝐴))) ∈ ℝ+) |
27 | 26 | rpred 12185 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵 − 𝐴))) ∈ ℝ) |
28 | 7, 27 | eqeltrd 2859 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐺‘𝐵) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ↦ cmpt 4967 ‘cfv 6137 (class class class)co 6924 ℝcr 10273 1c1 10275 · cmul 10279 − cmin 10608 -cneg 10609 / cdiv 11034 ℕcn 11378 2c2 11434 ℕ0cn0 11646 ℤcz 11732 ℤ≥cuz 11996 ℝ+crp 12141 ↑cexp 13182 !cfa 13382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11035 df-nn 11379 df-2 11442 df-n0 11647 df-z 11733 df-uz 11997 df-rp 12142 df-seq 13124 df-exp 13183 df-fac 13383 |
This theorem is referenced by: aaliou3lem2 24539 aaliou3lem3 24540 |
Copyright terms: Public domain | W3C validator |