MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem1 Structured version   Visualization version   GIF version

Theorem aaliou3lem1 24538
Description: Lemma for aaliou3 24547. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypothesis
Ref Expression
aaliou3lem.a 𝐺 = (𝑐 ∈ (ℤ𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))))
Assertion
Ref Expression
aaliou3lem1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (𝐺𝐵) ∈ ℝ)
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐
Allowed substitution hint:   𝐺(𝑐)

Proof of Theorem aaliou3lem1
StepHypRef Expression
1 oveq1 6931 . . . . . 6 (𝑐 = 𝐵 → (𝑐𝐴) = (𝐵𝐴))
21oveq2d 6940 . . . . 5 (𝑐 = 𝐵 → ((1 / 2)↑(𝑐𝐴)) = ((1 / 2)↑(𝐵𝐴)))
32oveq2d 6940 . . . 4 (𝑐 = 𝐵 → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵𝐴))))
4 aaliou3lem.a . . . 4 𝐺 = (𝑐 ∈ (ℤ𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))))
5 ovex 6956 . . . 4 ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵𝐴))) ∈ V
63, 4, 5fvmpt 6544 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐺𝐵) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵𝐴))))
76adantl 475 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (𝐺𝐵) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵𝐴))))
8 2rp 12146 . . . . 5 2 ∈ ℝ+
9 simpl 476 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → 𝐴 ∈ ℕ)
109nnnn0d 11706 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → 𝐴 ∈ ℕ0)
11 faccl 13392 . . . . . . . 8 (𝐴 ∈ ℕ0 → (!‘𝐴) ∈ ℕ)
1210, 11syl 17 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (!‘𝐴) ∈ ℕ)
1312nnzd 11837 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (!‘𝐴) ∈ ℤ)
1413znegcld 11840 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → -(!‘𝐴) ∈ ℤ)
15 rpexpcl 13201 . . . . 5 ((2 ∈ ℝ+ ∧ -(!‘𝐴) ∈ ℤ) → (2↑-(!‘𝐴)) ∈ ℝ+)
168, 14, 15sylancr 581 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (2↑-(!‘𝐴)) ∈ ℝ+)
17 halfre 11600 . . . . . 6 (1 / 2) ∈ ℝ
18 halfgt0 11602 . . . . . 6 0 < (1 / 2)
1917, 18elrpii 12144 . . . . 5 (1 / 2) ∈ ℝ+
20 eluzelz 12006 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
21 nnz 11755 . . . . . 6 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
22 zsubcl 11775 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵𝐴) ∈ ℤ)
2320, 21, 22syl2anr 590 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (𝐵𝐴) ∈ ℤ)
24 rpexpcl 13201 . . . . 5 (((1 / 2) ∈ ℝ+ ∧ (𝐵𝐴) ∈ ℤ) → ((1 / 2)↑(𝐵𝐴)) ∈ ℝ+)
2519, 23, 24sylancr 581 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → ((1 / 2)↑(𝐵𝐴)) ∈ ℝ+)
2616, 25rpmulcld 12201 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵𝐴))) ∈ ℝ+)
2726rpred 12185 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵𝐴))) ∈ ℝ)
287, 27eqeltrd 2859 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (𝐺𝐵) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  cmpt 4967  cfv 6137  (class class class)co 6924  cr 10273  1c1 10275   · cmul 10279  cmin 10608  -cneg 10609   / cdiv 11034  cn 11378  2c2 11434  0cn0 11646  cz 11732  cuz 11996  +crp 12141  cexp 13182  !cfa 13382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-n0 11647  df-z 11733  df-uz 11997  df-rp 12142  df-seq 13124  df-exp 13183  df-fac 13383
This theorem is referenced by:  aaliou3lem2  24539  aaliou3lem3  24540
  Copyright terms: Public domain W3C validator