MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem1 Structured version   Visualization version   GIF version

Theorem aaliou3lem1 26370
Description: Lemma for aaliou3 26379. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypothesis
Ref Expression
aaliou3lem.a 𝐺 = (𝑐 ∈ (ℤ𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))))
Assertion
Ref Expression
aaliou3lem1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (𝐺𝐵) ∈ ℝ)
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐
Allowed substitution hint:   𝐺(𝑐)

Proof of Theorem aaliou3lem1
StepHypRef Expression
1 oveq1 7431 . . . . . 6 (𝑐 = 𝐵 → (𝑐𝐴) = (𝐵𝐴))
21oveq2d 7440 . . . . 5 (𝑐 = 𝐵 → ((1 / 2)↑(𝑐𝐴)) = ((1 / 2)↑(𝐵𝐴)))
32oveq2d 7440 . . . 4 (𝑐 = 𝐵 → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵𝐴))))
4 aaliou3lem.a . . . 4 𝐺 = (𝑐 ∈ (ℤ𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))))
5 ovex 7457 . . . 4 ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵𝐴))) ∈ V
63, 4, 5fvmpt 7009 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐺𝐵) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵𝐴))))
76adantl 480 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (𝐺𝐵) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵𝐴))))
8 2rp 13033 . . . . 5 2 ∈ ℝ+
9 simpl 481 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → 𝐴 ∈ ℕ)
109nnnn0d 12584 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → 𝐴 ∈ ℕ0)
1110faccld 14301 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (!‘𝐴) ∈ ℕ)
1211nnzd 12637 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (!‘𝐴) ∈ ℤ)
1312znegcld 12720 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → -(!‘𝐴) ∈ ℤ)
14 rpexpcl 14100 . . . . 5 ((2 ∈ ℝ+ ∧ -(!‘𝐴) ∈ ℤ) → (2↑-(!‘𝐴)) ∈ ℝ+)
158, 13, 14sylancr 585 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (2↑-(!‘𝐴)) ∈ ℝ+)
16 halfre 12478 . . . . . 6 (1 / 2) ∈ ℝ
17 halfgt0 12480 . . . . . 6 0 < (1 / 2)
1816, 17elrpii 13031 . . . . 5 (1 / 2) ∈ ℝ+
19 eluzelz 12884 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
20 nnz 12631 . . . . . 6 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
21 zsubcl 12656 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵𝐴) ∈ ℤ)
2219, 20, 21syl2anr 595 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (𝐵𝐴) ∈ ℤ)
23 rpexpcl 14100 . . . . 5 (((1 / 2) ∈ ℝ+ ∧ (𝐵𝐴) ∈ ℤ) → ((1 / 2)↑(𝐵𝐴)) ∈ ℝ+)
2418, 22, 23sylancr 585 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → ((1 / 2)↑(𝐵𝐴)) ∈ ℝ+)
2515, 24rpmulcld 13086 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵𝐴))) ∈ ℝ+)
2625rpred 13070 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵𝐴))) ∈ ℝ)
277, 26eqeltrd 2826 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (𝐺𝐵) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  cmpt 5236  cfv 6554  (class class class)co 7424  cr 11157  1c1 11159   · cmul 11163  cmin 11494  -cneg 11495   / cdiv 11921  cn 12264  2c2 12319  cz 12610  cuz 12874  +crp 13028  cexp 14081  !cfa 14290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-seq 14022  df-exp 14082  df-fac 14291
This theorem is referenced by:  aaliou3lem2  26371  aaliou3lem3  26372
  Copyright terms: Public domain W3C validator