Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > aaliou3lem1 | Structured version Visualization version GIF version |
Description: Lemma for aaliou3 25511. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
Ref | Expression |
---|---|
aaliou3lem.a | ⊢ 𝐺 = (𝑐 ∈ (ℤ≥‘𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴)))) |
Ref | Expression |
---|---|
aaliou3lem1 | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐺‘𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7282 | . . . . . 6 ⊢ (𝑐 = 𝐵 → (𝑐 − 𝐴) = (𝐵 − 𝐴)) | |
2 | 1 | oveq2d 7291 | . . . . 5 ⊢ (𝑐 = 𝐵 → ((1 / 2)↑(𝑐 − 𝐴)) = ((1 / 2)↑(𝐵 − 𝐴))) |
3 | 2 | oveq2d 7291 | . . . 4 ⊢ (𝑐 = 𝐵 → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴))) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵 − 𝐴)))) |
4 | aaliou3lem.a | . . . 4 ⊢ 𝐺 = (𝑐 ∈ (ℤ≥‘𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴)))) | |
5 | ovex 7308 | . . . 4 ⊢ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵 − 𝐴))) ∈ V | |
6 | 3, 4, 5 | fvmpt 6875 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐺‘𝐵) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵 − 𝐴)))) |
7 | 6 | adantl 482 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐺‘𝐵) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵 − 𝐴)))) |
8 | 2rp 12735 | . . . . 5 ⊢ 2 ∈ ℝ+ | |
9 | simpl 483 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → 𝐴 ∈ ℕ) | |
10 | 9 | nnnn0d 12293 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → 𝐴 ∈ ℕ0) |
11 | 10 | faccld 13998 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (!‘𝐴) ∈ ℕ) |
12 | 11 | nnzd 12425 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (!‘𝐴) ∈ ℤ) |
13 | 12 | znegcld 12428 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → -(!‘𝐴) ∈ ℤ) |
14 | rpexpcl 13801 | . . . . 5 ⊢ ((2 ∈ ℝ+ ∧ -(!‘𝐴) ∈ ℤ) → (2↑-(!‘𝐴)) ∈ ℝ+) | |
15 | 8, 13, 14 | sylancr 587 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (2↑-(!‘𝐴)) ∈ ℝ+) |
16 | halfre 12187 | . . . . . 6 ⊢ (1 / 2) ∈ ℝ | |
17 | halfgt0 12189 | . . . . . 6 ⊢ 0 < (1 / 2) | |
18 | 16, 17 | elrpii 12733 | . . . . 5 ⊢ (1 / 2) ∈ ℝ+ |
19 | eluzelz 12592 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
20 | nnz 12342 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
21 | zsubcl 12362 | . . . . . 6 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵 − 𝐴) ∈ ℤ) | |
22 | 19, 20, 21 | syl2anr 597 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐵 − 𝐴) ∈ ℤ) |
23 | rpexpcl 13801 | . . . . 5 ⊢ (((1 / 2) ∈ ℝ+ ∧ (𝐵 − 𝐴) ∈ ℤ) → ((1 / 2)↑(𝐵 − 𝐴)) ∈ ℝ+) | |
24 | 18, 22, 23 | sylancr 587 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → ((1 / 2)↑(𝐵 − 𝐴)) ∈ ℝ+) |
25 | 15, 24 | rpmulcld 12788 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵 − 𝐴))) ∈ ℝ+) |
26 | 25 | rpred 12772 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵 − 𝐴))) ∈ ℝ) |
27 | 7, 26 | eqeltrd 2839 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐺‘𝐵) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 1c1 10872 · cmul 10876 − cmin 11205 -cneg 11206 / cdiv 11632 ℕcn 11973 2c2 12028 ℤcz 12319 ℤ≥cuz 12582 ℝ+crp 12730 ↑cexp 13782 !cfa 13987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 df-fac 13988 |
This theorem is referenced by: aaliou3lem2 25503 aaliou3lem3 25504 |
Copyright terms: Public domain | W3C validator |