MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem1 Structured version   Visualization version   GIF version

Theorem aaliou3lem1 26277
Description: Lemma for aaliou3 26286. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypothesis
Ref Expression
aaliou3lem.a 𝐺 = (𝑐 ∈ (ℤ𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))))
Assertion
Ref Expression
aaliou3lem1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (𝐺𝐵) ∈ ℝ)
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐
Allowed substitution hint:   𝐺(𝑐)

Proof of Theorem aaliou3lem1
StepHypRef Expression
1 oveq1 7353 . . . . . 6 (𝑐 = 𝐵 → (𝑐𝐴) = (𝐵𝐴))
21oveq2d 7362 . . . . 5 (𝑐 = 𝐵 → ((1 / 2)↑(𝑐𝐴)) = ((1 / 2)↑(𝐵𝐴)))
32oveq2d 7362 . . . 4 (𝑐 = 𝐵 → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵𝐴))))
4 aaliou3lem.a . . . 4 𝐺 = (𝑐 ∈ (ℤ𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))))
5 ovex 7379 . . . 4 ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵𝐴))) ∈ V
63, 4, 5fvmpt 6929 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐺𝐵) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵𝐴))))
76adantl 481 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (𝐺𝐵) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵𝐴))))
8 2rp 12895 . . . . 5 2 ∈ ℝ+
9 simpl 482 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → 𝐴 ∈ ℕ)
109nnnn0d 12442 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → 𝐴 ∈ ℕ0)
1110faccld 14191 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (!‘𝐴) ∈ ℕ)
1211nnzd 12495 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (!‘𝐴) ∈ ℤ)
1312znegcld 12579 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → -(!‘𝐴) ∈ ℤ)
14 rpexpcl 13987 . . . . 5 ((2 ∈ ℝ+ ∧ -(!‘𝐴) ∈ ℤ) → (2↑-(!‘𝐴)) ∈ ℝ+)
158, 13, 14sylancr 587 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (2↑-(!‘𝐴)) ∈ ℝ+)
16 halfre 12334 . . . . . 6 (1 / 2) ∈ ℝ
17 halfgt0 12336 . . . . . 6 0 < (1 / 2)
1816, 17elrpii 12893 . . . . 5 (1 / 2) ∈ ℝ+
19 eluzelz 12742 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
20 nnz 12489 . . . . . 6 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
21 zsubcl 12514 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵𝐴) ∈ ℤ)
2219, 20, 21syl2anr 597 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (𝐵𝐴) ∈ ℤ)
23 rpexpcl 13987 . . . . 5 (((1 / 2) ∈ ℝ+ ∧ (𝐵𝐴) ∈ ℤ) → ((1 / 2)↑(𝐵𝐴)) ∈ ℝ+)
2418, 22, 23sylancr 587 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → ((1 / 2)↑(𝐵𝐴)) ∈ ℝ+)
2515, 24rpmulcld 12950 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵𝐴))) ∈ ℝ+)
2625rpred 12934 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵𝐴))) ∈ ℝ)
277, 26eqeltrd 2831 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (𝐺𝐵) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cmpt 5170  cfv 6481  (class class class)co 7346  cr 11005  1c1 11007   · cmul 11011  cmin 11344  -cneg 11345   / cdiv 11774  cn 12125  2c2 12180  cz 12468  cuz 12732  +crp 12890  cexp 13968  !cfa 14180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-fac 14181
This theorem is referenced by:  aaliou3lem2  26278  aaliou3lem3  26279
  Copyright terms: Public domain W3C validator