![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > aaliou3lem1 | Structured version Visualization version GIF version |
Description: Lemma for aaliou3 26379. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
Ref | Expression |
---|---|
aaliou3lem.a | ⊢ 𝐺 = (𝑐 ∈ (ℤ≥‘𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴)))) |
Ref | Expression |
---|---|
aaliou3lem1 | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐺‘𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7431 | . . . . . 6 ⊢ (𝑐 = 𝐵 → (𝑐 − 𝐴) = (𝐵 − 𝐴)) | |
2 | 1 | oveq2d 7440 | . . . . 5 ⊢ (𝑐 = 𝐵 → ((1 / 2)↑(𝑐 − 𝐴)) = ((1 / 2)↑(𝐵 − 𝐴))) |
3 | 2 | oveq2d 7440 | . . . 4 ⊢ (𝑐 = 𝐵 → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴))) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵 − 𝐴)))) |
4 | aaliou3lem.a | . . . 4 ⊢ 𝐺 = (𝑐 ∈ (ℤ≥‘𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴)))) | |
5 | ovex 7457 | . . . 4 ⊢ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵 − 𝐴))) ∈ V | |
6 | 3, 4, 5 | fvmpt 7009 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐺‘𝐵) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵 − 𝐴)))) |
7 | 6 | adantl 480 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐺‘𝐵) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵 − 𝐴)))) |
8 | 2rp 13033 | . . . . 5 ⊢ 2 ∈ ℝ+ | |
9 | simpl 481 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → 𝐴 ∈ ℕ) | |
10 | 9 | nnnn0d 12584 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → 𝐴 ∈ ℕ0) |
11 | 10 | faccld 14301 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (!‘𝐴) ∈ ℕ) |
12 | 11 | nnzd 12637 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (!‘𝐴) ∈ ℤ) |
13 | 12 | znegcld 12720 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → -(!‘𝐴) ∈ ℤ) |
14 | rpexpcl 14100 | . . . . 5 ⊢ ((2 ∈ ℝ+ ∧ -(!‘𝐴) ∈ ℤ) → (2↑-(!‘𝐴)) ∈ ℝ+) | |
15 | 8, 13, 14 | sylancr 585 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (2↑-(!‘𝐴)) ∈ ℝ+) |
16 | halfre 12478 | . . . . . 6 ⊢ (1 / 2) ∈ ℝ | |
17 | halfgt0 12480 | . . . . . 6 ⊢ 0 < (1 / 2) | |
18 | 16, 17 | elrpii 13031 | . . . . 5 ⊢ (1 / 2) ∈ ℝ+ |
19 | eluzelz 12884 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
20 | nnz 12631 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
21 | zsubcl 12656 | . . . . . 6 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵 − 𝐴) ∈ ℤ) | |
22 | 19, 20, 21 | syl2anr 595 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐵 − 𝐴) ∈ ℤ) |
23 | rpexpcl 14100 | . . . . 5 ⊢ (((1 / 2) ∈ ℝ+ ∧ (𝐵 − 𝐴) ∈ ℤ) → ((1 / 2)↑(𝐵 − 𝐴)) ∈ ℝ+) | |
24 | 18, 22, 23 | sylancr 585 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → ((1 / 2)↑(𝐵 − 𝐴)) ∈ ℝ+) |
25 | 15, 24 | rpmulcld 13086 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵 − 𝐴))) ∈ ℝ+) |
26 | 25 | rpred 13070 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵 − 𝐴))) ∈ ℝ) |
27 | 7, 26 | eqeltrd 2826 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐺‘𝐵) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ↦ cmpt 5236 ‘cfv 6554 (class class class)co 7424 ℝcr 11157 1c1 11159 · cmul 11163 − cmin 11494 -cneg 11495 / cdiv 11921 ℕcn 12264 2c2 12319 ℤcz 12610 ℤ≥cuz 12874 ℝ+crp 13028 ↑cexp 14081 !cfa 14290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-n0 12525 df-z 12611 df-uz 12875 df-rp 13029 df-seq 14022 df-exp 14082 df-fac 14291 |
This theorem is referenced by: aaliou3lem2 26371 aaliou3lem3 26372 |
Copyright terms: Public domain | W3C validator |