MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iexpcyc Structured version   Visualization version   GIF version

Theorem iexpcyc 13176
Description: Taking i to the 𝐾-th power is the same as using the 𝐾 mod 4 -th power instead, by i4 13174. (Contributed by Mario Carneiro, 7-Jul-2014.)
Assertion
Ref Expression
iexpcyc (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾))

Proof of Theorem iexpcyc
StepHypRef Expression
1 zre 11588 . . . 4 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
2 4re 11303 . . . . 5 4 ∈ ℝ
3 4pos 11322 . . . . 5 0 < 4
42, 3elrpii 12038 . . . 4 4 ∈ ℝ+
5 modval 12878 . . . 4 ((𝐾 ∈ ℝ ∧ 4 ∈ ℝ+) → (𝐾 mod 4) = (𝐾 − (4 · (⌊‘(𝐾 / 4)))))
61, 4, 5sylancl 574 . . 3 (𝐾 ∈ ℤ → (𝐾 mod 4) = (𝐾 − (4 · (⌊‘(𝐾 / 4)))))
76oveq2d 6812 . 2 (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))))
8 4z 11618 . . . . 5 4 ∈ ℤ
9 4nn 11394 . . . . . . 7 4 ∈ ℕ
10 nndivre 11262 . . . . . . 7 ((𝐾 ∈ ℝ ∧ 4 ∈ ℕ) → (𝐾 / 4) ∈ ℝ)
111, 9, 10sylancl 574 . . . . . 6 (𝐾 ∈ ℤ → (𝐾 / 4) ∈ ℝ)
1211flcld 12807 . . . . 5 (𝐾 ∈ ℤ → (⌊‘(𝐾 / 4)) ∈ ℤ)
13 zmulcl 11633 . . . . 5 ((4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ) → (4 · (⌊‘(𝐾 / 4))) ∈ ℤ)
148, 12, 13sylancr 575 . . . 4 (𝐾 ∈ ℤ → (4 · (⌊‘(𝐾 / 4))) ∈ ℤ)
15 ax-icn 10201 . . . . 5 i ∈ ℂ
16 ine0 10671 . . . . 5 i ≠ 0
17 expsub 13115 . . . . 5 (((i ∈ ℂ ∧ i ≠ 0) ∧ (𝐾 ∈ ℤ ∧ (4 · (⌊‘(𝐾 / 4))) ∈ ℤ)) → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))))
1815, 16, 17mpanl12 682 . . . 4 ((𝐾 ∈ ℤ ∧ (4 · (⌊‘(𝐾 / 4))) ∈ ℤ) → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))))
1914, 18mpdan 667 . . 3 (𝐾 ∈ ℤ → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))))
20 expmulz 13113 . . . . . . . 8 (((i ∈ ℂ ∧ i ≠ 0) ∧ (4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ)) → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4))))
2115, 16, 20mpanl12 682 . . . . . . 7 ((4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ) → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4))))
228, 12, 21sylancr 575 . . . . . 6 (𝐾 ∈ ℤ → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4))))
23 i4 13174 . . . . . . . 8 (i↑4) = 1
2423oveq1i 6806 . . . . . . 7 ((i↑4)↑(⌊‘(𝐾 / 4))) = (1↑(⌊‘(𝐾 / 4)))
25 1exp 13096 . . . . . . . 8 ((⌊‘(𝐾 / 4)) ∈ ℤ → (1↑(⌊‘(𝐾 / 4))) = 1)
2612, 25syl 17 . . . . . . 7 (𝐾 ∈ ℤ → (1↑(⌊‘(𝐾 / 4))) = 1)
2724, 26syl5eq 2817 . . . . . 6 (𝐾 ∈ ℤ → ((i↑4)↑(⌊‘(𝐾 / 4))) = 1)
2822, 27eqtrd 2805 . . . . 5 (𝐾 ∈ ℤ → (i↑(4 · (⌊‘(𝐾 / 4)))) = 1)
2928oveq2d 6812 . . . 4 (𝐾 ∈ ℤ → ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / 1))
30 expclz 13092 . . . . . 6 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝐾 ∈ ℤ) → (i↑𝐾) ∈ ℂ)
3115, 16, 30mp3an12 1562 . . . . 5 (𝐾 ∈ ℤ → (i↑𝐾) ∈ ℂ)
3231div1d 10999 . . . 4 (𝐾 ∈ ℤ → ((i↑𝐾) / 1) = (i↑𝐾))
3329, 32eqtrd 2805 . . 3 (𝐾 ∈ ℤ → ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))) = (i↑𝐾))
3419, 33eqtrd 2805 . 2 (𝐾 ∈ ℤ → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = (i↑𝐾))
357, 34eqtrd 2805 1 (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  cfv 6030  (class class class)co 6796  cc 10140  cr 10141  0cc0 10142  1c1 10143  ici 10144   · cmul 10147  cmin 10472   / cdiv 10890  cn 11226  4c4 11278  cz 11584  +crp 12035  cfl 12799   mod cmo 12876  cexp 13067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8508  df-inf 8509  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-n0 11500  df-z 11585  df-uz 11894  df-rp 12036  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068
This theorem is referenced by:  iblitg  23755
  Copyright terms: Public domain W3C validator