MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iexpcyc Structured version   Visualization version   GIF version

Theorem iexpcyc 14243
Description: Taking i to the 𝐾-th power is the same as using the 𝐾 mod 4 -th power instead, by i4 14240. (Contributed by Mario Carneiro, 7-Jul-2014.)
Assertion
Ref Expression
iexpcyc (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾))

Proof of Theorem iexpcyc
StepHypRef Expression
1 zre 12615 . . . 4 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
2 4re 12348 . . . . 5 4 ∈ ℝ
3 4pos 12371 . . . . 5 0 < 4
42, 3elrpii 13035 . . . 4 4 ∈ ℝ+
5 modval 13908 . . . 4 ((𝐾 ∈ ℝ ∧ 4 ∈ ℝ+) → (𝐾 mod 4) = (𝐾 − (4 · (⌊‘(𝐾 / 4)))))
61, 4, 5sylancl 586 . . 3 (𝐾 ∈ ℤ → (𝐾 mod 4) = (𝐾 − (4 · (⌊‘(𝐾 / 4)))))
76oveq2d 7447 . 2 (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))))
8 4z 12649 . . . . 5 4 ∈ ℤ
9 4nn 12347 . . . . . . 7 4 ∈ ℕ
10 nndivre 12305 . . . . . . 7 ((𝐾 ∈ ℝ ∧ 4 ∈ ℕ) → (𝐾 / 4) ∈ ℝ)
111, 9, 10sylancl 586 . . . . . 6 (𝐾 ∈ ℤ → (𝐾 / 4) ∈ ℝ)
1211flcld 13835 . . . . 5 (𝐾 ∈ ℤ → (⌊‘(𝐾 / 4)) ∈ ℤ)
13 zmulcl 12664 . . . . 5 ((4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ) → (4 · (⌊‘(𝐾 / 4))) ∈ ℤ)
148, 12, 13sylancr 587 . . . 4 (𝐾 ∈ ℤ → (4 · (⌊‘(𝐾 / 4))) ∈ ℤ)
15 ax-icn 11212 . . . . 5 i ∈ ℂ
16 ine0 11696 . . . . 5 i ≠ 0
17 expsub 14148 . . . . 5 (((i ∈ ℂ ∧ i ≠ 0) ∧ (𝐾 ∈ ℤ ∧ (4 · (⌊‘(𝐾 / 4))) ∈ ℤ)) → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))))
1815, 16, 17mpanl12 702 . . . 4 ((𝐾 ∈ ℤ ∧ (4 · (⌊‘(𝐾 / 4))) ∈ ℤ) → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))))
1914, 18mpdan 687 . . 3 (𝐾 ∈ ℤ → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))))
20 expmulz 14146 . . . . . . . 8 (((i ∈ ℂ ∧ i ≠ 0) ∧ (4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ)) → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4))))
2115, 16, 20mpanl12 702 . . . . . . 7 ((4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ) → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4))))
228, 12, 21sylancr 587 . . . . . 6 (𝐾 ∈ ℤ → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4))))
23 i4 14240 . . . . . . . 8 (i↑4) = 1
2423oveq1i 7441 . . . . . . 7 ((i↑4)↑(⌊‘(𝐾 / 4))) = (1↑(⌊‘(𝐾 / 4)))
25 1exp 14129 . . . . . . . 8 ((⌊‘(𝐾 / 4)) ∈ ℤ → (1↑(⌊‘(𝐾 / 4))) = 1)
2612, 25syl 17 . . . . . . 7 (𝐾 ∈ ℤ → (1↑(⌊‘(𝐾 / 4))) = 1)
2724, 26eqtrid 2787 . . . . . 6 (𝐾 ∈ ℤ → ((i↑4)↑(⌊‘(𝐾 / 4))) = 1)
2822, 27eqtrd 2775 . . . . 5 (𝐾 ∈ ℤ → (i↑(4 · (⌊‘(𝐾 / 4)))) = 1)
2928oveq2d 7447 . . . 4 (𝐾 ∈ ℤ → ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / 1))
30 expclz 14122 . . . . . 6 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝐾 ∈ ℤ) → (i↑𝐾) ∈ ℂ)
3115, 16, 30mp3an12 1450 . . . . 5 (𝐾 ∈ ℤ → (i↑𝐾) ∈ ℂ)
3231div1d 12033 . . . 4 (𝐾 ∈ ℤ → ((i↑𝐾) / 1) = (i↑𝐾))
3329, 32eqtrd 2775 . . 3 (𝐾 ∈ ℤ → ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))) = (i↑𝐾))
3419, 33eqtrd 2775 . 2 (𝐾 ∈ ℤ → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = (i↑𝐾))
357, 34eqtrd 2775 1 (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154  ici 11155   · cmul 11158  cmin 11490   / cdiv 11918  cn 12264  4c4 12321  cz 12611  +crp 13032  cfl 13827   mod cmo 13906  cexp 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100
This theorem is referenced by:  iblitg  25818
  Copyright terms: Public domain W3C validator