MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iexpcyc Structured version   Visualization version   GIF version

Theorem iexpcyc 14256
Description: Taking i to the 𝐾-th power is the same as using the 𝐾 mod 4 -th power instead, by i4 14253. (Contributed by Mario Carneiro, 7-Jul-2014.)
Assertion
Ref Expression
iexpcyc (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾))

Proof of Theorem iexpcyc
StepHypRef Expression
1 zre 12643 . . . 4 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
2 4re 12377 . . . . 5 4 ∈ ℝ
3 4pos 12400 . . . . 5 0 < 4
42, 3elrpii 13060 . . . 4 4 ∈ ℝ+
5 modval 13922 . . . 4 ((𝐾 ∈ ℝ ∧ 4 ∈ ℝ+) → (𝐾 mod 4) = (𝐾 − (4 · (⌊‘(𝐾 / 4)))))
61, 4, 5sylancl 585 . . 3 (𝐾 ∈ ℤ → (𝐾 mod 4) = (𝐾 − (4 · (⌊‘(𝐾 / 4)))))
76oveq2d 7464 . 2 (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))))
8 4z 12677 . . . . 5 4 ∈ ℤ
9 4nn 12376 . . . . . . 7 4 ∈ ℕ
10 nndivre 12334 . . . . . . 7 ((𝐾 ∈ ℝ ∧ 4 ∈ ℕ) → (𝐾 / 4) ∈ ℝ)
111, 9, 10sylancl 585 . . . . . 6 (𝐾 ∈ ℤ → (𝐾 / 4) ∈ ℝ)
1211flcld 13849 . . . . 5 (𝐾 ∈ ℤ → (⌊‘(𝐾 / 4)) ∈ ℤ)
13 zmulcl 12692 . . . . 5 ((4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ) → (4 · (⌊‘(𝐾 / 4))) ∈ ℤ)
148, 12, 13sylancr 586 . . . 4 (𝐾 ∈ ℤ → (4 · (⌊‘(𝐾 / 4))) ∈ ℤ)
15 ax-icn 11243 . . . . 5 i ∈ ℂ
16 ine0 11725 . . . . 5 i ≠ 0
17 expsub 14161 . . . . 5 (((i ∈ ℂ ∧ i ≠ 0) ∧ (𝐾 ∈ ℤ ∧ (4 · (⌊‘(𝐾 / 4))) ∈ ℤ)) → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))))
1815, 16, 17mpanl12 701 . . . 4 ((𝐾 ∈ ℤ ∧ (4 · (⌊‘(𝐾 / 4))) ∈ ℤ) → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))))
1914, 18mpdan 686 . . 3 (𝐾 ∈ ℤ → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))))
20 expmulz 14159 . . . . . . . 8 (((i ∈ ℂ ∧ i ≠ 0) ∧ (4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ)) → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4))))
2115, 16, 20mpanl12 701 . . . . . . 7 ((4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ) → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4))))
228, 12, 21sylancr 586 . . . . . 6 (𝐾 ∈ ℤ → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4))))
23 i4 14253 . . . . . . . 8 (i↑4) = 1
2423oveq1i 7458 . . . . . . 7 ((i↑4)↑(⌊‘(𝐾 / 4))) = (1↑(⌊‘(𝐾 / 4)))
25 1exp 14142 . . . . . . . 8 ((⌊‘(𝐾 / 4)) ∈ ℤ → (1↑(⌊‘(𝐾 / 4))) = 1)
2612, 25syl 17 . . . . . . 7 (𝐾 ∈ ℤ → (1↑(⌊‘(𝐾 / 4))) = 1)
2724, 26eqtrid 2792 . . . . . 6 (𝐾 ∈ ℤ → ((i↑4)↑(⌊‘(𝐾 / 4))) = 1)
2822, 27eqtrd 2780 . . . . 5 (𝐾 ∈ ℤ → (i↑(4 · (⌊‘(𝐾 / 4)))) = 1)
2928oveq2d 7464 . . . 4 (𝐾 ∈ ℤ → ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / 1))
30 expclz 14135 . . . . . 6 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝐾 ∈ ℤ) → (i↑𝐾) ∈ ℂ)
3115, 16, 30mp3an12 1451 . . . . 5 (𝐾 ∈ ℤ → (i↑𝐾) ∈ ℂ)
3231div1d 12062 . . . 4 (𝐾 ∈ ℤ → ((i↑𝐾) / 1) = (i↑𝐾))
3329, 32eqtrd 2780 . . 3 (𝐾 ∈ ℤ → ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))) = (i↑𝐾))
3419, 33eqtrd 2780 . 2 (𝐾 ∈ ℤ → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = (i↑𝐾))
357, 34eqtrd 2780 1 (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185  ici 11186   · cmul 11189  cmin 11520   / cdiv 11947  cn 12293  4c4 12350  cz 12639  +crp 13057  cfl 13841   mod cmo 13920  cexp 14112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113
This theorem is referenced by:  iblitg  25823
  Copyright terms: Public domain W3C validator