|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > iexpcyc | Structured version Visualization version GIF version | ||
| Description: Taking i to the 𝐾-th power is the same as using the 𝐾 mod 4 -th power instead, by i4 14244. (Contributed by Mario Carneiro, 7-Jul-2014.) | 
| Ref | Expression | 
|---|---|
| iexpcyc | ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zre 12619 | . . . 4 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℝ) | |
| 2 | 4re 12351 | . . . . 5 ⊢ 4 ∈ ℝ | |
| 3 | 4pos 12374 | . . . . 5 ⊢ 0 < 4 | |
| 4 | 2, 3 | elrpii 13038 | . . . 4 ⊢ 4 ∈ ℝ+ | 
| 5 | modval 13912 | . . . 4 ⊢ ((𝐾 ∈ ℝ ∧ 4 ∈ ℝ+) → (𝐾 mod 4) = (𝐾 − (4 · (⌊‘(𝐾 / 4))))) | |
| 6 | 1, 4, 5 | sylancl 586 | . . 3 ⊢ (𝐾 ∈ ℤ → (𝐾 mod 4) = (𝐾 − (4 · (⌊‘(𝐾 / 4))))) | 
| 7 | 6 | oveq2d 7448 | . 2 ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4)))))) | 
| 8 | 4z 12653 | . . . . 5 ⊢ 4 ∈ ℤ | |
| 9 | 4nn 12350 | . . . . . . 7 ⊢ 4 ∈ ℕ | |
| 10 | nndivre 12308 | . . . . . . 7 ⊢ ((𝐾 ∈ ℝ ∧ 4 ∈ ℕ) → (𝐾 / 4) ∈ ℝ) | |
| 11 | 1, 9, 10 | sylancl 586 | . . . . . 6 ⊢ (𝐾 ∈ ℤ → (𝐾 / 4) ∈ ℝ) | 
| 12 | 11 | flcld 13839 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (⌊‘(𝐾 / 4)) ∈ ℤ) | 
| 13 | zmulcl 12668 | . . . . 5 ⊢ ((4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ) → (4 · (⌊‘(𝐾 / 4))) ∈ ℤ) | |
| 14 | 8, 12, 13 | sylancr 587 | . . . 4 ⊢ (𝐾 ∈ ℤ → (4 · (⌊‘(𝐾 / 4))) ∈ ℤ) | 
| 15 | ax-icn 11215 | . . . . 5 ⊢ i ∈ ℂ | |
| 16 | ine0 11699 | . . . . 5 ⊢ i ≠ 0 | |
| 17 | expsub 14152 | . . . . 5 ⊢ (((i ∈ ℂ ∧ i ≠ 0) ∧ (𝐾 ∈ ℤ ∧ (4 · (⌊‘(𝐾 / 4))) ∈ ℤ)) → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4)))))) | |
| 18 | 15, 16, 17 | mpanl12 702 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ (4 · (⌊‘(𝐾 / 4))) ∈ ℤ) → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4)))))) | 
| 19 | 14, 18 | mpdan 687 | . . 3 ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4)))))) | 
| 20 | expmulz 14150 | . . . . . . . 8 ⊢ (((i ∈ ℂ ∧ i ≠ 0) ∧ (4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ)) → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4)))) | |
| 21 | 15, 16, 20 | mpanl12 702 | . . . . . . 7 ⊢ ((4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ) → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4)))) | 
| 22 | 8, 12, 21 | sylancr 587 | . . . . . 6 ⊢ (𝐾 ∈ ℤ → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4)))) | 
| 23 | i4 14244 | . . . . . . . 8 ⊢ (i↑4) = 1 | |
| 24 | 23 | oveq1i 7442 | . . . . . . 7 ⊢ ((i↑4)↑(⌊‘(𝐾 / 4))) = (1↑(⌊‘(𝐾 / 4))) | 
| 25 | 1exp 14133 | . . . . . . . 8 ⊢ ((⌊‘(𝐾 / 4)) ∈ ℤ → (1↑(⌊‘(𝐾 / 4))) = 1) | |
| 26 | 12, 25 | syl 17 | . . . . . . 7 ⊢ (𝐾 ∈ ℤ → (1↑(⌊‘(𝐾 / 4))) = 1) | 
| 27 | 24, 26 | eqtrid 2788 | . . . . . 6 ⊢ (𝐾 ∈ ℤ → ((i↑4)↑(⌊‘(𝐾 / 4))) = 1) | 
| 28 | 22, 27 | eqtrd 2776 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (i↑(4 · (⌊‘(𝐾 / 4)))) = 1) | 
| 29 | 28 | oveq2d 7448 | . . . 4 ⊢ (𝐾 ∈ ℤ → ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / 1)) | 
| 30 | expclz 14126 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝐾 ∈ ℤ) → (i↑𝐾) ∈ ℂ) | |
| 31 | 15, 16, 30 | mp3an12 1452 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (i↑𝐾) ∈ ℂ) | 
| 32 | 31 | div1d 12036 | . . . 4 ⊢ (𝐾 ∈ ℤ → ((i↑𝐾) / 1) = (i↑𝐾)) | 
| 33 | 29, 32 | eqtrd 2776 | . . 3 ⊢ (𝐾 ∈ ℤ → ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))) = (i↑𝐾)) | 
| 34 | 19, 33 | eqtrd 2776 | . 2 ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = (i↑𝐾)) | 
| 35 | 7, 34 | eqtrd 2776 | 1 ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ‘cfv 6560 (class class class)co 7432 ℂcc 11154 ℝcr 11155 0cc0 11156 1c1 11157 ici 11158 · cmul 11161 − cmin 11493 / cdiv 11921 ℕcn 12267 4c4 12324 ℤcz 12615 ℝ+crp 13035 ⌊cfl 13831 mod cmo 13910 ↑cexp 14103 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-sup 9483 df-inf 9484 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-n0 12529 df-z 12616 df-uz 12880 df-rp 13036 df-fl 13833 df-mod 13911 df-seq 14044 df-exp 14104 | 
| This theorem is referenced by: iblitg 25804 | 
| Copyright terms: Public domain | W3C validator |