Colors of
variables: wff
setvar class |
Syntax hints:
∈ wcel 2107 2c2 12267
ℝ+crp 12974 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-2 12275
df-rp 12975 |
This theorem is referenced by: rphalfcl
13001 2tnp1ge0ge0
13794 flhalf
13795 fldiv4lem1div2uz2
13801 discr
14203 2swrd2eqwrdeq
14904 01sqrexlem7
15195 abstri
15277 amgm2
15316 iseralt
15631 climcndslem2
15796 climcnds
15797 efcllem
16021 oexpneg
16288 mod2eq1n2dvds
16290 oddge22np1
16292 evennn02n
16293 nn0ehalf
16321 nno
16325 nn0oddm1d2
16328 flodddiv4t2lthalf
16359 bitsfzolem
16375 bitsfzo
16376 bitsmod
16377 bitsinv1
16383 sadasslem
16411 sadeq
16413 oddprm
16743 iserodd
16768 prmreclem6
16854 prmgaplem7
16990 2expltfac
17026 psgnunilem4
19365 efgsfo
19607 efgredlemd
19612 efgredlem
19615 chfacfscmul0
22360 chfacfpmmul0
22364 psmetge0
23818 xmetge0
23850 metnrmlem3
24377 pcoass
24540 aaliou3lem1
25855 aaliou3lem2
25856 aaliou3lem3
25857 aaliou3lem8
25858 aaliou3lem5
25860 aaliou3lem6
25861 aaliou3lem7
25862 aaliou3lem9
25863 cos02pilt1
26035 cosordlem
26039 2irrexpq
26239 loglesqrt
26266 sqrt2cxp2logb9e3
26304 log2cnv
26449 log2ub
26454 log2le1
26455 birthday
26459 cxp2limlem
26480 divsqrtsumlem
26484 emcllem7
26506 emre
26510 emgt0
26511 harmonicbnd3
26512 zetacvg
26519 lgamgulmlem2
26534 lgamgulmlem3
26535 lgamucov
26542 cht2
26676 cht3
26677 chtub
26715 bclbnd
26783 bposlem6
26792 bposlem7
26793 bposlem8
26794 bposlem9
26795 gausslemma2dlem1a
26868 2lgslem3b
26900 2lgslem3c
26901 2lgslem3d
26902 2lgslem3a1
26903 2lgslem3d1
26906 chebbnd1lem2
26973 chebbnd1lem3
26974 chebbnd1
26975 chto1ub
26979 chpo1ubb
26984 rplogsumlem1
26987 selbergb
27052 selberg2b
27055 chpdifbndlem2
27057 pntrsumbnd2
27070 pntrlog2bndlem4
27083 pntrlog2bndlem5
27084 pntrlog2bndlem6
27086 pntrlog2bnd
27087 pntpbnd1a
27088 pntpbnd1
27089 pntpbnd2
27090 pntpbnd
27091 pntibndlem2
27094 pntibndlem3
27095 pntibnd
27096 pntlemr
27105 nrt2irr
29726 nvge0
29926 nmcexi
31279 cshw1s2
32124 sqsscirc1
32888 dya2ub
33269 dya2iocress
33273 dya2iocbrsiga
33274 dya2icobrsiga
33275 dya2icoseg
33276 sxbrsigalem2
33285 omssubadd
33299 fiblem
33397 fibp1
33400 coinflipprob
33478 signstfveq0
33588 hgt750lemd
33660 logdivsqrle
33662 hgt750lem
33663 logi
34704 unbdqndv2
35387 knoppndvlem12
35399 knoppndvlem14
35401 knoppndvlem17
35404 knoppndvlem18
35405 taupilem1
36202 taupilem2
36203 taupi
36204 poimirlem29
36517 itg2addnclem
36539 ftc1anclem7
36567 ftc1anc
36569 isbnd2
36651 lcmineqlem21
40914 lcmineqlem23
40916 3lexlogpow2ineq1
40923 dvrelog2b
40931 dvrelogpow2b
40933 aks4d1p1p2
40935 aks4d1p1p4
40936 aks4d1p1p6
40938 aks4d1p1p7
40939 aks4d1p1p5
40940 aks4d1p1
40941 aks4d1p6
40946 2np3bcnp1
40960 2ap1caineq
40961 fltne
41386 flt4lem7
41401 proot1ex
41943 sqrtcvallem2
42388 sqrtcvallem4
42390 sqrtcval
42392 oddfl
43987 sumnnodd
44346 wallispilem3
44783 wallispilem4
44784 wallispi
44786 wallispi2lem1
44787 stirlinglem2
44791 stirlinglem3
44792 stirlinglem4
44793 stirlinglem5
44794 stirlinglem6
44795 stirlinglem7
44796 stirlinglem10
44799 stirlinglem11
44800 stirlinglem13
44802 stirlinglem14
44803 stirlinglem15
44804 stirlingr
44806 dirker2re
44808 dirkerdenne0
44809 dirkerper
44812 dirkertrigeqlem1
44814 dirkertrigeqlem3
44816 dirkertrigeq
44817 dirkercncflem1
44819 dirkercncflem2
44820 dirkercncflem4
44822 fourierdlem10
44833 fourierdlem24
44847 fourierdlem62
44884 fourierdlem79
44901 fourierdlem87
44909 sqwvfoura
44944 sqwvfourb
44945 sge0ad2en
45147 ovnsubaddlem1
45286 hoiqssbllem1
45338 hoiqssbllem2
45339 hoiqssbllem3
45340 lighneallem3
46275 dfeven3
46326 dfodd4
46327 oexpnegALTV
46345 flnn0div2ge
47219 logbpw2m1
47253 fllog2
47254 blennnelnn
47262 nnpw2blen
47266 blen1b
47274 blennnt2
47275 nnolog2flm1
47276 blennngt2o2
47278 blennn0e2
47280 0dig2nn0e
47298 dignn0flhalflem1
47301 dignn0flhalflem2
47302 |