Step | Hyp | Ref
| Expression |
1 | | pntlem1.r |
. . . . . . 7
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦
((ψ‘𝑎) −
𝑎)) |
2 | | pntlem1.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
3 | | pntlem1.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈
ℝ+) |
4 | | pntlem1.l |
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
5 | | pntlem1.d |
. . . . . . 7
⊢ 𝐷 = (𝐴 + 1) |
6 | | pntlem1.f |
. . . . . . 7
⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
7 | | pntlem1.u |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈
ℝ+) |
8 | | pntlem1.u2 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ≤ 𝐴) |
9 | | pntlem1.e |
. . . . . . 7
⊢ 𝐸 = (𝑈 / 𝐷) |
10 | | pntlem1.k |
. . . . . . 7
⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | pntlemc 26648 |
. . . . . 6
⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+
∧ (𝐸 ∈ (0(,)1)
∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈
ℝ+))) |
12 | 11 | simp3d 1142 |
. . . . 5
⊢ (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈
ℝ+)) |
13 | 12 | simp3d 1142 |
. . . 4
⊢ (𝜑 → (𝑈 − 𝐸) ∈
ℝ+) |
14 | 1, 2, 3, 4, 5, 6 | pntlemd 26647 |
. . . . . . . 8
⊢ (𝜑 → (𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+
∧ 𝐹 ∈
ℝ+)) |
15 | 14 | simp1d 1140 |
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈
ℝ+) |
16 | 11 | simp1d 1140 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
17 | | 2z 12282 |
. . . . . . . 8
⊢ 2 ∈
ℤ |
18 | | rpexpcl 13729 |
. . . . . . . 8
⊢ ((𝐸 ∈ ℝ+
∧ 2 ∈ ℤ) → (𝐸↑2) ∈
ℝ+) |
19 | 16, 17, 18 | sylancl 585 |
. . . . . . 7
⊢ (𝜑 → (𝐸↑2) ∈
ℝ+) |
20 | 15, 19 | rpmulcld 12717 |
. . . . . 6
⊢ (𝜑 → (𝐿 · (𝐸↑2)) ∈
ℝ+) |
21 | | 3nn0 12181 |
. . . . . . . . 9
⊢ 3 ∈
ℕ0 |
22 | | 2nn 11976 |
. . . . . . . . 9
⊢ 2 ∈
ℕ |
23 | 21, 22 | decnncl 12386 |
. . . . . . . 8
⊢ ;32 ∈ ℕ |
24 | | nnrp 12670 |
. . . . . . . 8
⊢ (;32 ∈ ℕ → ;32 ∈
ℝ+) |
25 | 23, 24 | ax-mp 5 |
. . . . . . 7
⊢ ;32 ∈
ℝ+ |
26 | | rpmulcl 12682 |
. . . . . . 7
⊢ ((;32 ∈ ℝ+ ∧
𝐵 ∈
ℝ+) → (;32
· 𝐵) ∈
ℝ+) |
27 | 25, 3, 26 | sylancr 586 |
. . . . . 6
⊢ (𝜑 → (;32 · 𝐵) ∈
ℝ+) |
28 | 20, 27 | rpdivcld 12718 |
. . . . 5
⊢ (𝜑 → ((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) ∈
ℝ+) |
29 | | pntlem1.y |
. . . . . . . . . 10
⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤
𝑌)) |
30 | | pntlem1.x |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) |
31 | | pntlem1.c |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
32 | | pntlem1.w |
. . . . . . . . . 10
⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) |
33 | | pntlem1.z |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) |
34 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
29, 30, 31, 32, 33 | pntlemb 26650 |
. . . . . . . . 9
⊢ (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 <
𝑍 ∧ e ≤
(√‘𝑍) ∧
(√‘𝑍) ≤
(𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))))) |
35 | 34 | simp1d 1140 |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈
ℝ+) |
36 | 35 | rpred 12701 |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ ℝ) |
37 | 34 | simp2d 1141 |
. . . . . . . 8
⊢ (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌))) |
38 | 37 | simp1d 1140 |
. . . . . . 7
⊢ (𝜑 → 1 < 𝑍) |
39 | 36, 38 | rplogcld 25689 |
. . . . . 6
⊢ (𝜑 → (log‘𝑍) ∈
ℝ+) |
40 | | rpexpcl 13729 |
. . . . . 6
⊢
(((log‘𝑍)
∈ ℝ+ ∧ 2 ∈ ℤ) → ((log‘𝑍)↑2) ∈
ℝ+) |
41 | 39, 17, 40 | sylancl 585 |
. . . . 5
⊢ (𝜑 → ((log‘𝑍)↑2) ∈
ℝ+) |
42 | 28, 41 | rpmulcld 12717 |
. . . 4
⊢ (𝜑 → (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2)) ∈
ℝ+) |
43 | 13, 42 | rpmulcld 12717 |
. . 3
⊢ (𝜑 → ((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2))) ∈
ℝ+) |
44 | 43 | rpred 12701 |
. 2
⊢ (𝜑 → ((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2))) ∈ ℝ) |
45 | 15, 16 | rpmulcld 12717 |
. . . . . . 7
⊢ (𝜑 → (𝐿 · 𝐸) ∈
ℝ+) |
46 | | 8re 11999 |
. . . . . . . 8
⊢ 8 ∈
ℝ |
47 | | 8pos 12015 |
. . . . . . . 8
⊢ 0 <
8 |
48 | 46, 47 | elrpii 12662 |
. . . . . . 7
⊢ 8 ∈
ℝ+ |
49 | | rpdivcl 12684 |
. . . . . . 7
⊢ (((𝐿 · 𝐸) ∈ ℝ+ ∧ 8 ∈
ℝ+) → ((𝐿 · 𝐸) / 8) ∈
ℝ+) |
50 | 45, 48, 49 | sylancl 585 |
. . . . . 6
⊢ (𝜑 → ((𝐿 · 𝐸) / 8) ∈
ℝ+) |
51 | 50, 39 | rpmulcld 12717 |
. . . . 5
⊢ (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈
ℝ+) |
52 | 13, 51 | rpmulcld 12717 |
. . . 4
⊢ (𝜑 → ((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈
ℝ+) |
53 | 52 | rpred 12701 |
. . 3
⊢ (𝜑 → ((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ) |
54 | | pntlem1.m |
. . . . . . . 8
⊢ 𝑀 =
((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) |
55 | | pntlem1.n |
. . . . . . . 8
⊢ 𝑁 =
(⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) |
56 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
29, 30, 31, 32, 33, 54, 55 | pntlemg 26651 |
. . . . . . 7
⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁 − 𝑀))) |
57 | 56 | simp1d 1140 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℕ) |
58 | 56 | simp2d 1141 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
59 | | eluznn 12587 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈
(ℤ≥‘𝑀)) → 𝑁 ∈ ℕ) |
60 | 57, 58, 59 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℕ) |
61 | 60 | nnred 11918 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℝ) |
62 | 57 | nnred 11918 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℝ) |
63 | 61, 62 | resubcld 11333 |
. . 3
⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℝ) |
64 | 53, 63 | remulcld 10936 |
. 2
⊢ (𝜑 → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁 − 𝑀)) ∈ ℝ) |
65 | | fzfid 13621 |
. . 3
⊢ (𝜑 → (1...(⌊‘(𝑍 / 𝑌))) ∈ Fin) |
66 | 7 | rpred 12701 |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ ℝ) |
67 | | elfznn 13214 |
. . . . . 6
⊢ (𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌))) → 𝑛 ∈
ℕ) |
68 | | nndivre 11944 |
. . . . . 6
⊢ ((𝑈 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑈 / 𝑛) ∈ ℝ) |
69 | 66, 67, 68 | syl2an 595 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑈 / 𝑛) ∈ ℝ) |
70 | 35 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑍 ∈
ℝ+) |
71 | 67 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℕ) |
72 | 71 | nnrpd 12699 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℝ+) |
73 | 70, 72 | rpdivcld 12718 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑍 / 𝑛) ∈
ℝ+) |
74 | 1 | pntrf 26616 |
. . . . . . . . . 10
⊢ 𝑅:ℝ+⟶ℝ |
75 | 74 | ffvelrni 6942 |
. . . . . . . . 9
⊢ ((𝑍 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ) |
76 | 73, 75 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ) |
77 | 76, 70 | rerpdivcld 12732 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℝ) |
78 | 77 | recnd 10934 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℂ) |
79 | 78 | abscld 15076 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ∈ ℝ) |
80 | 69, 79 | resubcld 11333 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) ∈ ℝ) |
81 | 72 | relogcld 25683 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℝ) |
82 | 80, 81 | remulcld 10936 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ) |
83 | 65, 82 | fsumrecl 15374 |
. 2
⊢ (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ) |
84 | 45 | rpcnd 12703 |
. . . . . . . . 9
⊢ (𝜑 → (𝐿 · 𝐸) ∈ ℂ) |
85 | 11 | simp2d 1141 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈
ℝ+) |
86 | 85 | rpred 12701 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ ℝ) |
87 | 12 | simp2d 1141 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 < 𝐾) |
88 | 86, 87 | rplogcld 25689 |
. . . . . . . . . . 11
⊢ (𝜑 → (log‘𝐾) ∈
ℝ+) |
89 | 39, 88 | rpdivcld 12718 |
. . . . . . . . . 10
⊢ (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈
ℝ+) |
90 | 89 | rpcnd 12703 |
. . . . . . . . 9
⊢ (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℂ) |
91 | | rpcnne0 12677 |
. . . . . . . . . 10
⊢ (8 ∈
ℝ+ → (8 ∈ ℂ ∧ 8 ≠ 0)) |
92 | 48, 91 | mp1i 13 |
. . . . . . . . 9
⊢ (𝜑 → (8 ∈ ℂ ∧ 8
≠ 0)) |
93 | | 4re 11987 |
. . . . . . . . . . 11
⊢ 4 ∈
ℝ |
94 | | 4pos 12010 |
. . . . . . . . . . 11
⊢ 0 <
4 |
95 | 93, 94 | elrpii 12662 |
. . . . . . . . . 10
⊢ 4 ∈
ℝ+ |
96 | | rpcnne0 12677 |
. . . . . . . . . 10
⊢ (4 ∈
ℝ+ → (4 ∈ ℂ ∧ 4 ≠ 0)) |
97 | 95, 96 | mp1i 13 |
. . . . . . . . 9
⊢ (𝜑 → (4 ∈ ℂ ∧ 4
≠ 0)) |
98 | | divmuldiv 11605 |
. . . . . . . . 9
⊢ ((((𝐿 · 𝐸) ∈ ℂ ∧ ((log‘𝑍) / (log‘𝐾)) ∈ ℂ) ∧ ((8 ∈ ℂ
∧ 8 ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0))) → (((𝐿 · 𝐸) / 8) · (((log‘𝑍) / (log‘𝐾)) / 4)) = (((𝐿 · 𝐸) · ((log‘𝑍) / (log‘𝐾))) / (8 · 4))) |
99 | 84, 90, 92, 97, 98 | syl22anc 835 |
. . . . . . . 8
⊢ (𝜑 → (((𝐿 · 𝐸) / 8) · (((log‘𝑍) / (log‘𝐾)) / 4)) = (((𝐿 · 𝐸) · ((log‘𝑍) / (log‘𝐾))) / (8 · 4))) |
100 | 10 | fveq2i 6759 |
. . . . . . . . . . . . . 14
⊢
(log‘𝐾) =
(log‘(exp‘(𝐵 /
𝐸))) |
101 | 3, 16 | rpdivcld 12718 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐵 / 𝐸) ∈
ℝ+) |
102 | 101 | rpred 12701 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐵 / 𝐸) ∈ ℝ) |
103 | 102 | relogefd 25688 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(log‘(exp‘(𝐵 /
𝐸))) = (𝐵 / 𝐸)) |
104 | 100, 103 | syl5eq 2791 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (log‘𝐾) = (𝐵 / 𝐸)) |
105 | 104 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((log‘𝑍) / (log‘𝐾)) = ((log‘𝑍) / (𝐵 / 𝐸))) |
106 | 39 | rpcnd 12703 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (log‘𝑍) ∈
ℂ) |
107 | 3 | rpcnne0d 12710 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
108 | 16 | rpcnne0d 12710 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0)) |
109 | | divdiv2 11617 |
. . . . . . . . . . . . 13
⊢
(((log‘𝑍)
∈ ℂ ∧ (𝐵
∈ ℂ ∧ 𝐵 ≠
0) ∧ (𝐸 ∈ ℂ
∧ 𝐸 ≠ 0)) →
((log‘𝑍) / (𝐵 / 𝐸)) = (((log‘𝑍) · 𝐸) / 𝐵)) |
110 | 106, 107,
108, 109 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((log‘𝑍) / (𝐵 / 𝐸)) = (((log‘𝑍) · 𝐸) / 𝐵)) |
111 | 105, 110 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (𝜑 → ((log‘𝑍) / (log‘𝐾)) = (((log‘𝑍) · 𝐸) / 𝐵)) |
112 | 111 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐿 · 𝐸) · ((log‘𝑍) / (log‘𝐾))) = ((𝐿 · 𝐸) · (((log‘𝑍) · 𝐸) / 𝐵))) |
113 | 16 | rpcnd 12703 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐸 ∈ ℂ) |
114 | 106, 113 | mulcld 10926 |
. . . . . . . . . . 11
⊢ (𝜑 → ((log‘𝑍) · 𝐸) ∈ ℂ) |
115 | | divass 11581 |
. . . . . . . . . . 11
⊢ (((𝐿 · 𝐸) ∈ ℂ ∧ ((log‘𝑍) · 𝐸) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝐿 · 𝐸) · ((log‘𝑍) · 𝐸)) / 𝐵) = ((𝐿 · 𝐸) · (((log‘𝑍) · 𝐸) / 𝐵))) |
116 | 84, 114, 107, 115 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝐿 · 𝐸) · ((log‘𝑍) · 𝐸)) / 𝐵) = ((𝐿 · 𝐸) · (((log‘𝑍) · 𝐸) / 𝐵))) |
117 | 15 | rpcnd 12703 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐿 ∈ ℂ) |
118 | 117, 113,
106, 113 | mul4d 11117 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐿 · 𝐸) · ((log‘𝑍) · 𝐸)) = ((𝐿 · (log‘𝑍)) · (𝐸 · 𝐸))) |
119 | 113 | sqvald 13789 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸↑2) = (𝐸 · 𝐸)) |
120 | 119 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐿 · (log‘𝑍)) · (𝐸↑2)) = ((𝐿 · (log‘𝑍)) · (𝐸 · 𝐸))) |
121 | 113 | sqcld 13790 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸↑2) ∈ ℂ) |
122 | 117, 106,
121 | mul32d 11115 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐿 · (log‘𝑍)) · (𝐸↑2)) = ((𝐿 · (𝐸↑2)) · (log‘𝑍))) |
123 | 118, 120,
122 | 3eqtr2d 2784 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐿 · 𝐸) · ((log‘𝑍) · 𝐸)) = ((𝐿 · (𝐸↑2)) · (log‘𝑍))) |
124 | 123 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝐿 · 𝐸) · ((log‘𝑍) · 𝐸)) / 𝐵) = (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵)) |
125 | 112, 116,
124 | 3eqtr2d 2784 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐿 · 𝐸) · ((log‘𝑍) / (log‘𝐾))) = (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵)) |
126 | | 8t4e32 12483 |
. . . . . . . . . 10
⊢ (8
· 4) = ;32 |
127 | 126 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (8 · 4) = ;32) |
128 | 125, 127 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝜑 → (((𝐿 · 𝐸) · ((log‘𝑍) / (log‘𝐾))) / (8 · 4)) = ((((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵) / ;32)) |
129 | 20 | rpcnd 12703 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐿 · (𝐸↑2)) ∈ ℂ) |
130 | 129, 106 | mulcld 10926 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐿 · (𝐸↑2)) · (log‘𝑍)) ∈
ℂ) |
131 | | rpcnne0 12677 |
. . . . . . . . . . 11
⊢ (;32 ∈ ℝ+ →
(;32 ∈ ℂ ∧ ;32 ≠ 0)) |
132 | 25, 131 | mp1i 13 |
. . . . . . . . . 10
⊢ (𝜑 → (;32 ∈ ℂ ∧ ;32 ≠ 0)) |
133 | | divdiv1 11616 |
. . . . . . . . . 10
⊢ ((((𝐿 · (𝐸↑2)) · (log‘𝑍)) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (;32 ∈ ℂ ∧ ;32 ≠ 0)) → ((((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵) / ;32) = (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (𝐵 · ;32))) |
134 | 130, 107,
132, 133 | syl3anc 1369 |
. . . . . . . . 9
⊢ (𝜑 → ((((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵) / ;32) = (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (𝐵 · ;32))) |
135 | 23 | nncni 11913 |
. . . . . . . . . . 11
⊢ ;32 ∈ ℂ |
136 | 3 | rpcnd 12703 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℂ) |
137 | | mulcom 10888 |
. . . . . . . . . . 11
⊢ ((;32 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (;32 · 𝐵) = (𝐵 · ;32)) |
138 | 135, 136,
137 | sylancr 586 |
. . . . . . . . . 10
⊢ (𝜑 → (;32 · 𝐵) = (𝐵 · ;32)) |
139 | 138 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (;32 · 𝐵)) = (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (𝐵 · ;32))) |
140 | 27 | rpcnne0d 12710 |
. . . . . . . . . 10
⊢ (𝜑 → ((;32 · 𝐵) ∈ ℂ ∧ (;32 · 𝐵) ≠ 0)) |
141 | | div23 11582 |
. . . . . . . . . 10
⊢ (((𝐿 · (𝐸↑2)) ∈ ℂ ∧
(log‘𝑍) ∈
ℂ ∧ ((;32 · 𝐵) ∈ ℂ ∧ (;32 · 𝐵) ≠ 0)) → (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (;32 · 𝐵)) = (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · (log‘𝑍))) |
142 | 129, 106,
140, 141 | syl3anc 1369 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (;32 · 𝐵)) = (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · (log‘𝑍))) |
143 | 134, 139,
142 | 3eqtr2d 2784 |
. . . . . . . 8
⊢ (𝜑 → ((((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵) / ;32) = (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · (log‘𝑍))) |
144 | 99, 128, 143 | 3eqtrd 2782 |
. . . . . . 7
⊢ (𝜑 → (((𝐿 · 𝐸) / 8) · (((log‘𝑍) / (log‘𝐾)) / 4)) = (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · (log‘𝑍))) |
145 | 144 | oveq1d 7270 |
. . . . . 6
⊢ (𝜑 → ((((𝐿 · 𝐸) / 8) · (((log‘𝑍) / (log‘𝐾)) / 4)) · (log‘𝑍)) = ((((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · (log‘𝑍)) · (log‘𝑍))) |
146 | 50 | rpcnd 12703 |
. . . . . . 7
⊢ (𝜑 → ((𝐿 · 𝐸) / 8) ∈ ℂ) |
147 | 89 | rpred 12701 |
. . . . . . . . 9
⊢ (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ) |
148 | | 4nn 11986 |
. . . . . . . . 9
⊢ 4 ∈
ℕ |
149 | | nndivre 11944 |
. . . . . . . . 9
⊢
((((log‘𝑍) /
(log‘𝐾)) ∈
ℝ ∧ 4 ∈ ℕ) → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ) |
150 | 147, 148,
149 | sylancl 585 |
. . . . . . . 8
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ) |
151 | 150 | recnd 10934 |
. . . . . . 7
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℂ) |
152 | 146, 106,
151 | mul32d 11115 |
. . . . . 6
⊢ (𝜑 → ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (((log‘𝑍) / (log‘𝐾)) / 4)) = ((((𝐿 · 𝐸) / 8) · (((log‘𝑍) / (log‘𝐾)) / 4)) · (log‘𝑍))) |
153 | 106 | sqvald 13789 |
. . . . . . . 8
⊢ (𝜑 → ((log‘𝑍)↑2) = ((log‘𝑍) · (log‘𝑍))) |
154 | 153 | oveq2d 7271 |
. . . . . . 7
⊢ (𝜑 → (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2)) = (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍) · (log‘𝑍)))) |
155 | 28 | rpcnd 12703 |
. . . . . . . 8
⊢ (𝜑 → ((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) ∈ ℂ) |
156 | 155, 106,
106 | mulassd 10929 |
. . . . . . 7
⊢ (𝜑 → ((((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · (log‘𝑍)) · (log‘𝑍)) = (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍) · (log‘𝑍)))) |
157 | 154, 156 | eqtr4d 2781 |
. . . . . 6
⊢ (𝜑 → (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2)) = ((((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · (log‘𝑍)) · (log‘𝑍))) |
158 | 145, 152,
157 | 3eqtr4d 2788 |
. . . . 5
⊢ (𝜑 → ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (((log‘𝑍) / (log‘𝐾)) / 4)) = (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2))) |
159 | 56 | simp3d 1142 |
. . . . . 6
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁 − 𝑀)) |
160 | 150, 63, 51 | lemul2d 12745 |
. . . . . 6
⊢ (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁 − 𝑀) ↔ ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (((log‘𝑍) / (log‘𝐾)) / 4)) ≤ ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁 − 𝑀)))) |
161 | 159, 160 | mpbid 231 |
. . . . 5
⊢ (𝜑 → ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (((log‘𝑍) / (log‘𝐾)) / 4)) ≤ ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁 − 𝑀))) |
162 | 158, 161 | eqbrtrrd 5094 |
. . . 4
⊢ (𝜑 → (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2)) ≤ ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁 − 𝑀))) |
163 | 42 | rpred 12701 |
. . . . 5
⊢ (𝜑 → (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2)) ∈ ℝ) |
164 | 51 | rpred 12701 |
. . . . . 6
⊢ (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℝ) |
165 | 164, 63 | remulcld 10936 |
. . . . 5
⊢ (𝜑 → ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁 − 𝑀)) ∈ ℝ) |
166 | 163, 165,
13 | lemul2d 12745 |
. . . 4
⊢ (𝜑 → ((((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2)) ≤ ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁 − 𝑀)) ↔ ((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ ((𝑈 − 𝐸) · ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁 − 𝑀))))) |
167 | 162, 166 | mpbid 231 |
. . 3
⊢ (𝜑 → ((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ ((𝑈 − 𝐸) · ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁 − 𝑀)))) |
168 | 13 | rpcnd 12703 |
. . . 4
⊢ (𝜑 → (𝑈 − 𝐸) ∈ ℂ) |
169 | 51 | rpcnd 12703 |
. . . 4
⊢ (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℂ) |
170 | 63 | recnd 10934 |
. . . 4
⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℂ) |
171 | 168, 169,
170 | mulassd 10929 |
. . 3
⊢ (𝜑 → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁 − 𝑀)) = ((𝑈 − 𝐸) · ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁 − 𝑀)))) |
172 | 167, 171 | breqtrrd 5098 |
. 2
⊢ (𝜑 → ((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁 − 𝑀))) |
173 | | fzfid 13621 |
. . . 4
⊢ (𝜑 → (((⌊‘(𝑍 / (𝐾↑𝑁))) + 1)...(⌊‘(𝑍 / 𝑌))) ∈ Fin) |
174 | 60 | nnzd 12354 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℤ) |
175 | 85, 174 | rpexpcld 13890 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐾↑𝑁) ∈
ℝ+) |
176 | 35, 175 | rpdivcld 12718 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑍 / (𝐾↑𝑁)) ∈
ℝ+) |
177 | 176 | rprege0d 12708 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑍 / (𝐾↑𝑁)) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾↑𝑁)))) |
178 | | flge0nn0 13468 |
. . . . . . . . 9
⊢ (((𝑍 / (𝐾↑𝑁)) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾↑𝑁))) → (⌊‘(𝑍 / (𝐾↑𝑁))) ∈
ℕ0) |
179 | | nn0p1nn 12202 |
. . . . . . . . 9
⊢
((⌊‘(𝑍 /
(𝐾↑𝑁))) ∈ ℕ0 →
((⌊‘(𝑍 / (𝐾↑𝑁))) + 1) ∈ ℕ) |
180 | 177, 178,
179 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → ((⌊‘(𝑍 / (𝐾↑𝑁))) + 1) ∈ ℕ) |
181 | | nnuz 12550 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
182 | 180, 181 | eleqtrdi 2849 |
. . . . . . 7
⊢ (𝜑 → ((⌊‘(𝑍 / (𝐾↑𝑁))) + 1) ∈
(ℤ≥‘1)) |
183 | | fzss1 13224 |
. . . . . . 7
⊢
(((⌊‘(𝑍
/ (𝐾↑𝑁))) + 1) ∈
(ℤ≥‘1) → (((⌊‘(𝑍 / (𝐾↑𝑁))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌)))) |
184 | 182, 183 | syl 17 |
. . . . . 6
⊢ (𝜑 → (((⌊‘(𝑍 / (𝐾↑𝑁))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌)))) |
185 | 184 | sselda 3917 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) |
186 | 185, 82 | syldan 590 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ) |
187 | 173, 186 | fsumrecl 15374 |
. . 3
⊢ (𝜑 → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ) |
188 | | eluzfz2 13193 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
189 | 58, 188 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
190 | | oveq1 7262 |
. . . . . . . 8
⊢ (𝑚 = 𝑀 → (𝑚 − 𝑀) = (𝑀 − 𝑀)) |
191 | 190 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑚 = 𝑀 → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚 − 𝑀)) = (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀 − 𝑀))) |
192 | | oveq2 7263 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑀 → (𝐾↑𝑚) = (𝐾↑𝑀)) |
193 | 192 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑀 → (𝑍 / (𝐾↑𝑚)) = (𝑍 / (𝐾↑𝑀))) |
194 | 193 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑀 → (⌊‘(𝑍 / (𝐾↑𝑚))) = (⌊‘(𝑍 / (𝐾↑𝑀)))) |
195 | 194 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝑚 = 𝑀 → ((⌊‘(𝑍 / (𝐾↑𝑚))) + 1) = ((⌊‘(𝑍 / (𝐾↑𝑀))) + 1)) |
196 | 195 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑚 = 𝑀 → (((⌊‘(𝑍 / (𝐾↑𝑚))) + 1)...(⌊‘(𝑍 / 𝑌))) = (((⌊‘(𝑍 / (𝐾↑𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))) |
197 | 196 | sumeq1d 15341 |
. . . . . . 7
⊢ (𝑚 = 𝑀 → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) |
198 | 191, 197 | breq12d 5083 |
. . . . . 6
⊢ (𝑚 = 𝑀 → ((((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚 − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀 − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))) |
199 | 198 | imbi2d 340 |
. . . . 5
⊢ (𝑚 = 𝑀 → ((𝜑 → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚 − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ↔ (𝜑 → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀 − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))) |
200 | | oveq1 7262 |
. . . . . . . 8
⊢ (𝑚 = 𝑗 → (𝑚 − 𝑀) = (𝑗 − 𝑀)) |
201 | 200 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑚 = 𝑗 → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚 − 𝑀)) = (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗 − 𝑀))) |
202 | | oveq2 7263 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑗 → (𝐾↑𝑚) = (𝐾↑𝑗)) |
203 | 202 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑗 → (𝑍 / (𝐾↑𝑚)) = (𝑍 / (𝐾↑𝑗))) |
204 | 203 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑗 → (⌊‘(𝑍 / (𝐾↑𝑚))) = (⌊‘(𝑍 / (𝐾↑𝑗)))) |
205 | 204 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝑚 = 𝑗 → ((⌊‘(𝑍 / (𝐾↑𝑚))) + 1) = ((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)) |
206 | 205 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑚 = 𝑗 → (((⌊‘(𝑍 / (𝐾↑𝑚))) + 1)...(⌊‘(𝑍 / 𝑌))) = (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))) |
207 | 206 | sumeq1d 15341 |
. . . . . . 7
⊢ (𝑚 = 𝑗 → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) |
208 | 201, 207 | breq12d 5083 |
. . . . . 6
⊢ (𝑚 = 𝑗 → ((((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚 − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗 − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))) |
209 | 208 | imbi2d 340 |
. . . . 5
⊢ (𝑚 = 𝑗 → ((𝜑 → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚 − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ↔ (𝜑 → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗 − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))) |
210 | | oveq1 7262 |
. . . . . . . 8
⊢ (𝑚 = (𝑗 + 1) → (𝑚 − 𝑀) = ((𝑗 + 1) − 𝑀)) |
211 | 210 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑚 = (𝑗 + 1) → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚 − 𝑀)) = (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀))) |
212 | | oveq2 7263 |
. . . . . . . . . . . 12
⊢ (𝑚 = (𝑗 + 1) → (𝐾↑𝑚) = (𝐾↑(𝑗 + 1))) |
213 | 212 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (𝑚 = (𝑗 + 1) → (𝑍 / (𝐾↑𝑚)) = (𝑍 / (𝐾↑(𝑗 + 1)))) |
214 | 213 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑚 = (𝑗 + 1) → (⌊‘(𝑍 / (𝐾↑𝑚))) = (⌊‘(𝑍 / (𝐾↑(𝑗 + 1))))) |
215 | 214 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝑚 = (𝑗 + 1) → ((⌊‘(𝑍 / (𝐾↑𝑚))) + 1) = ((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)) |
216 | 215 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑚 = (𝑗 + 1) → (((⌊‘(𝑍 / (𝐾↑𝑚))) + 1)...(⌊‘(𝑍 / 𝑌))) = (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))) |
217 | 216 | sumeq1d 15341 |
. . . . . . 7
⊢ (𝑚 = (𝑗 + 1) → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) |
218 | 211, 217 | breq12d 5083 |
. . . . . 6
⊢ (𝑚 = (𝑗 + 1) → ((((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚 − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))) |
219 | 218 | imbi2d 340 |
. . . . 5
⊢ (𝑚 = (𝑗 + 1) → ((𝜑 → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚 − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ↔ (𝜑 → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))) |
220 | | oveq1 7262 |
. . . . . . . 8
⊢ (𝑚 = 𝑁 → (𝑚 − 𝑀) = (𝑁 − 𝑀)) |
221 | 220 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑚 = 𝑁 → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚 − 𝑀)) = (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁 − 𝑀))) |
222 | | oveq2 7263 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑁 → (𝐾↑𝑚) = (𝐾↑𝑁)) |
223 | 222 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑁 → (𝑍 / (𝐾↑𝑚)) = (𝑍 / (𝐾↑𝑁))) |
224 | 223 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑁 → (⌊‘(𝑍 / (𝐾↑𝑚))) = (⌊‘(𝑍 / (𝐾↑𝑁)))) |
225 | 224 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝑚 = 𝑁 → ((⌊‘(𝑍 / (𝐾↑𝑚))) + 1) = ((⌊‘(𝑍 / (𝐾↑𝑁))) + 1)) |
226 | 225 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑚 = 𝑁 → (((⌊‘(𝑍 / (𝐾↑𝑚))) + 1)...(⌊‘(𝑍 / 𝑌))) = (((⌊‘(𝑍 / (𝐾↑𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))) |
227 | 226 | sumeq1d 15341 |
. . . . . . 7
⊢ (𝑚 = 𝑁 → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) |
228 | 221, 227 | breq12d 5083 |
. . . . . 6
⊢ (𝑚 = 𝑁 → ((((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚 − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁 − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))) |
229 | 228 | imbi2d 340 |
. . . . 5
⊢ (𝑚 = 𝑁 → ((𝜑 → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚 − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ↔ (𝜑 → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁 − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))) |
230 | 57 | nncnd 11919 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℂ) |
231 | 230 | subidd 11250 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 − 𝑀) = 0) |
232 | 231 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝜑 → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀 − 𝑀)) = (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · 0)) |
233 | 52 | rpcnd 12703 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℂ) |
234 | 233 | mul01d 11104 |
. . . . . . . 8
⊢ (𝜑 → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · 0) = 0) |
235 | 232, 234 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀 − 𝑀)) = 0) |
236 | | fzfid 13621 |
. . . . . . . 8
⊢ (𝜑 → (((⌊‘(𝑍 / (𝐾↑𝑀))) + 1)...(⌊‘(𝑍 / 𝑌))) ∈ Fin) |
237 | 57 | nnzd 12354 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑀 ∈ ℤ) |
238 | 85, 237 | rpexpcld 13890 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐾↑𝑀) ∈
ℝ+) |
239 | 35, 238 | rpdivcld 12718 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑍 / (𝐾↑𝑀)) ∈
ℝ+) |
240 | 239 | rprege0d 12708 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑍 / (𝐾↑𝑀)) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾↑𝑀)))) |
241 | | flge0nn0 13468 |
. . . . . . . . . . . . 13
⊢ (((𝑍 / (𝐾↑𝑀)) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾↑𝑀))) → (⌊‘(𝑍 / (𝐾↑𝑀))) ∈
ℕ0) |
242 | | nn0p1nn 12202 |
. . . . . . . . . . . . 13
⊢
((⌊‘(𝑍 /
(𝐾↑𝑀))) ∈ ℕ0 →
((⌊‘(𝑍 / (𝐾↑𝑀))) + 1) ∈ ℕ) |
243 | 240, 241,
242 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((⌊‘(𝑍 / (𝐾↑𝑀))) + 1) ∈ ℕ) |
244 | 243, 181 | eleqtrdi 2849 |
. . . . . . . . . . 11
⊢ (𝜑 → ((⌊‘(𝑍 / (𝐾↑𝑀))) + 1) ∈
(ℤ≥‘1)) |
245 | | fzss1 13224 |
. . . . . . . . . . 11
⊢
(((⌊‘(𝑍
/ (𝐾↑𝑀))) + 1) ∈
(ℤ≥‘1) → (((⌊‘(𝑍 / (𝐾↑𝑀))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌)))) |
246 | 244, 245 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (((⌊‘(𝑍 / (𝐾↑𝑀))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌)))) |
247 | 246 | sselda 3917 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) |
248 | 247, 82 | syldan 590 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ) |
249 | | elfzle2 13189 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌))) → 𝑛 ≤ (⌊‘(𝑍 / 𝑌))) |
250 | 249 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ≤ (⌊‘(𝑍 / 𝑌))) |
251 | 29 | simpld 494 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑌 ∈
ℝ+) |
252 | 35, 251 | rpdivcld 12718 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑍 / 𝑌) ∈
ℝ+) |
253 | 252 | rpred 12701 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑍 / 𝑌) ∈ ℝ) |
254 | | elfzelz 13185 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈
(1...(⌊‘(𝑍 /
𝑌))) → 𝑛 ∈
ℤ) |
255 | | flge 13453 |
. . . . . . . . . . . . 13
⊢ (((𝑍 / 𝑌) ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ (𝑍 / 𝑌) ↔ 𝑛 ≤ (⌊‘(𝑍 / 𝑌)))) |
256 | 253, 254,
255 | syl2an 595 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑛 ≤ (𝑍 / 𝑌) ↔ 𝑛 ≤ (⌊‘(𝑍 / 𝑌)))) |
257 | 250, 256 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ≤ (𝑍 / 𝑌)) |
258 | 71, 257 | jca 511 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝑍 / 𝑌))) |
259 | | pntlem1.U |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑈) |
260 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
29, 30, 31, 32, 33, 54, 55, 259 | pntlemn 26653 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝑍 / 𝑌))) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) |
261 | 258, 260 | syldan 590 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) |
262 | 247, 261 | syldan 590 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) |
263 | 236, 248,
262 | fsumge0 15435 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) |
264 | 235, 263 | eqbrtrd 5092 |
. . . . . 6
⊢ (𝜑 → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀 − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) |
265 | 264 | a1i 11 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀 − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))) |
266 | | pntlem1.K |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅‘𝑢) / 𝑢)) ≤ 𝐸)) |
267 | | eqid 2738 |
. . . . . . . . . 10
⊢
(((⌊‘(𝑍
/ (𝐾↑(𝑗 + 1)))) +
1)...(⌊‘(𝑍 /
(𝐾↑𝑗)))) = (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝑗)))) |
268 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
29, 30, 31, 32, 33, 54, 55, 259, 266, 267 | pntlemi 26657 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) |
269 | 52 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈
ℝ+) |
270 | 269 | rpred 12701 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ) |
271 | | elfzoelz 13316 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ ℤ) |
272 | 271 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℤ) |
273 | 272 | zred 12355 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℝ) |
274 | 57 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℕ) |
275 | 274 | nnred 11918 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ) |
276 | 273, 275 | resubcld 11333 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑗 − 𝑀) ∈ ℝ) |
277 | 270, 276 | remulcld 10936 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗 − 𝑀)) ∈ ℝ) |
278 | | fzfid 13621 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝑗)))) ∈ Fin) |
279 | | ssun1 4102 |
. . . . . . . . . . . . . . 15
⊢
(((⌊‘(𝑍
/ (𝐾↑(𝑗 + 1)))) +
1)...(⌊‘(𝑍 /
(𝐾↑𝑗)))) ⊆ ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝑗)))) ∪ (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))) |
280 | 36 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑍 ∈ ℝ) |
281 | 85 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝐾 ∈
ℝ+) |
282 | 272 | peano2zd 12358 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ ℤ) |
283 | 281, 282 | rpexpcld 13890 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝐾↑(𝑗 + 1)) ∈
ℝ+) |
284 | 280, 283 | rerpdivcld 12732 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / (𝐾↑(𝑗 + 1))) ∈ ℝ) |
285 | 281, 272 | rpexpcld 13890 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝐾↑𝑗) ∈
ℝ+) |
286 | 280, 285 | rerpdivcld 12732 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / (𝐾↑𝑗)) ∈ ℝ) |
287 | 86 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝐾 ∈ ℝ) |
288 | | 1re 10906 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 ∈
ℝ |
289 | | ltle 10994 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((1
∈ ℝ ∧ 𝐾
∈ ℝ) → (1 < 𝐾 → 1 ≤ 𝐾)) |
290 | 288, 86, 289 | sylancr 586 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (1 < 𝐾 → 1 ≤ 𝐾)) |
291 | 87, 290 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 1 ≤ 𝐾) |
292 | 291 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 1 ≤ 𝐾) |
293 | | uzid 12526 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
(ℤ≥‘𝑗)) |
294 | | peano2uz 12570 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈
(ℤ≥‘𝑗) → (𝑗 + 1) ∈
(ℤ≥‘𝑗)) |
295 | 272, 293,
294 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈
(ℤ≥‘𝑗)) |
296 | 287, 292,
295 | leexp2ad 13899 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝐾↑𝑗) ≤ (𝐾↑(𝑗 + 1))) |
297 | 35 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑍 ∈
ℝ+) |
298 | 285, 283,
297 | lediv2d 12725 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((𝐾↑𝑗) ≤ (𝐾↑(𝑗 + 1)) ↔ (𝑍 / (𝐾↑(𝑗 + 1))) ≤ (𝑍 / (𝐾↑𝑗)))) |
299 | 296, 298 | mpbid 231 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / (𝐾↑(𝑗 + 1))) ≤ (𝑍 / (𝐾↑𝑗))) |
300 | | flword2 13461 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑍 / (𝐾↑(𝑗 + 1))) ∈ ℝ ∧ (𝑍 / (𝐾↑𝑗)) ∈ ℝ ∧ (𝑍 / (𝐾↑(𝑗 + 1))) ≤ (𝑍 / (𝐾↑𝑗))) → (⌊‘(𝑍 / (𝐾↑𝑗))) ∈
(ℤ≥‘(⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))))) |
301 | 284, 286,
299, 300 | syl3anc 1369 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / (𝐾↑𝑗))) ∈
(ℤ≥‘(⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))))) |
302 | | eluzp1p1 12539 |
. . . . . . . . . . . . . . . . 17
⊢
((⌊‘(𝑍 /
(𝐾↑𝑗))) ∈
(ℤ≥‘(⌊‘(𝑍 / (𝐾↑(𝑗 + 1))))) → ((⌊‘(𝑍 / (𝐾↑𝑗))) + 1) ∈
(ℤ≥‘((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1))) |
303 | 301, 302 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((⌊‘(𝑍 / (𝐾↑𝑗))) + 1) ∈
(ℤ≥‘((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1))) |
304 | 286 | flcld 13446 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / (𝐾↑𝑗))) ∈ ℤ) |
305 | 252 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / 𝑌) ∈
ℝ+) |
306 | 305 | rpred 12701 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / 𝑌) ∈ ℝ) |
307 | 306 | flcld 13446 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / 𝑌)) ∈ ℤ) |
308 | 251 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑌 ∈
ℝ+) |
309 | 308 | rpred 12701 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑌 ∈ ℝ) |
310 | 285 | rpred 12701 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝐾↑𝑗) ∈ ℝ) |
311 | 30 | simpld 494 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑋 ∈
ℝ+) |
312 | 311 | rpred 12701 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑋 ∈ ℝ) |
313 | 312 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℝ) |
314 | 30 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑌 < 𝑋) |
315 | 314 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑌 < 𝑋) |
316 | | elfzofz 13331 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (𝑀...𝑁)) |
317 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
29, 30, 31, 32, 33, 54, 55 | pntlemh 26652 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾↑𝑗) ∧ (𝐾↑𝑗) ≤ (√‘𝑍))) |
318 | 316, 317 | sylan2 592 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑋 < (𝐾↑𝑗) ∧ (𝐾↑𝑗) ≤ (√‘𝑍))) |
319 | 318 | simpld 494 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑋 < (𝐾↑𝑗)) |
320 | 309, 313,
310, 315, 319 | lttrd 11066 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑌 < (𝐾↑𝑗)) |
321 | 309, 310,
320 | ltled 11053 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑌 ≤ (𝐾↑𝑗)) |
322 | 308, 285,
297 | lediv2d 12725 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑌 ≤ (𝐾↑𝑗) ↔ (𝑍 / (𝐾↑𝑗)) ≤ (𝑍 / 𝑌))) |
323 | 321, 322 | mpbid 231 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / (𝐾↑𝑗)) ≤ (𝑍 / 𝑌)) |
324 | | flwordi 13460 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑍 / (𝐾↑𝑗)) ∈ ℝ ∧ (𝑍 / 𝑌) ∈ ℝ ∧ (𝑍 / (𝐾↑𝑗)) ≤ (𝑍 / 𝑌)) → (⌊‘(𝑍 / (𝐾↑𝑗))) ≤ (⌊‘(𝑍 / 𝑌))) |
325 | 286, 306,
323, 324 | syl3anc 1369 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / (𝐾↑𝑗))) ≤ (⌊‘(𝑍 / 𝑌))) |
326 | | eluz2 12517 |
. . . . . . . . . . . . . . . . 17
⊢
((⌊‘(𝑍 /
𝑌)) ∈
(ℤ≥‘(⌊‘(𝑍 / (𝐾↑𝑗)))) ↔ ((⌊‘(𝑍 / (𝐾↑𝑗))) ∈ ℤ ∧
(⌊‘(𝑍 / 𝑌)) ∈ ℤ ∧
(⌊‘(𝑍 / (𝐾↑𝑗))) ≤ (⌊‘(𝑍 / 𝑌)))) |
327 | 304, 307,
325, 326 | syl3anbrc 1341 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / 𝑌)) ∈
(ℤ≥‘(⌊‘(𝑍 / (𝐾↑𝑗))))) |
328 | | fzsplit2 13210 |
. . . . . . . . . . . . . . . 16
⊢
((((⌊‘(𝑍
/ (𝐾↑𝑗))) + 1) ∈
(ℤ≥‘((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)) ∧ (⌊‘(𝑍 / 𝑌)) ∈
(ℤ≥‘(⌊‘(𝑍 / (𝐾↑𝑗))))) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))) = ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝑗)))) ∪ (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))))) |
329 | 303, 327,
328 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))) = ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝑗)))) ∪ (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))))) |
330 | 279, 329 | sseqtrrid 3970 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝑗)))) ⊆ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))) |
331 | 297, 283 | rpdivcld 12718 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / (𝐾↑(𝑗 + 1))) ∈
ℝ+) |
332 | 331 | rprege0d 12708 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((𝑍 / (𝐾↑(𝑗 + 1))) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾↑(𝑗 + 1))))) |
333 | | flge0nn0 13468 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑍 / (𝐾↑(𝑗 + 1))) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾↑(𝑗 + 1)))) → (⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) ∈
ℕ0) |
334 | | nn0p1nn 12202 |
. . . . . . . . . . . . . . . . 17
⊢
((⌊‘(𝑍 /
(𝐾↑(𝑗 + 1)))) ∈ ℕ0 →
((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1) ∈
ℕ) |
335 | 332, 333,
334 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1) ∈
ℕ) |
336 | 335, 181 | eleqtrdi 2849 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1) ∈
(ℤ≥‘1)) |
337 | | fzss1 13224 |
. . . . . . . . . . . . . . 15
⊢
(((⌊‘(𝑍
/ (𝐾↑(𝑗 + 1)))) + 1) ∈
(ℤ≥‘1) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌)))) |
338 | 336, 337 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌)))) |
339 | 330, 338 | sstrd 3927 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝑗)))) ⊆ (1...(⌊‘(𝑍 / 𝑌)))) |
340 | 339 | sselda 3917 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝑗))))) → 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) |
341 | 82 | adantlr 711 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ) |
342 | 340, 341 | syldan 590 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝑗))))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ) |
343 | 278, 342 | fsumrecl 15374 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ) |
344 | | fzfid 13621 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))) ∈ Fin) |
345 | | ssun2 4103 |
. . . . . . . . . . . . . . 15
⊢
(((⌊‘(𝑍
/ (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝑗)))) ∪ (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))) |
346 | 345, 329 | sseqtrrid 3970 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))) |
347 | 346, 338 | sstrd 3927 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌)))) |
348 | 347 | sselda 3917 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) |
349 | 348, 341 | syldan 590 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ) |
350 | 344, 349 | fsumrecl 15374 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ) |
351 | | le2add 11387 |
. . . . . . . . . 10
⊢
(((((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ ∧ (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗 − 𝑀)) ∈ ℝ) ∧ (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ ∧ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)) → ((((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∧ (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗 − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗 − 𝑀))) ≤ (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))) |
352 | 270, 277,
343, 350, 351 | syl22anc 835 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∧ (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗 − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗 − 𝑀))) ≤ (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))) |
353 | 268, 352 | mpand 691 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗 − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗 − 𝑀))) ≤ (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))) |
354 | 233 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℂ) |
355 | | 1cnd 10901 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 1 ∈ ℂ) |
356 | 272 | zcnd 12356 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℂ) |
357 | 230 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℂ) |
358 | 356, 357 | subcld 11262 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑗 − 𝑀) ∈ ℂ) |
359 | 354, 355,
358 | adddid 10930 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (1 + (𝑗 − 𝑀))) = ((((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · 1) + (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗 − 𝑀)))) |
360 | 355, 358 | addcomd 11107 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (1 + (𝑗 − 𝑀)) = ((𝑗 − 𝑀) + 1)) |
361 | 356, 355,
357 | addsubd 11283 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((𝑗 + 1) − 𝑀) = ((𝑗 − 𝑀) + 1)) |
362 | 360, 361 | eqtr4d 2781 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (1 + (𝑗 − 𝑀)) = ((𝑗 + 1) − 𝑀)) |
363 | 362 | oveq2d 7271 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (1 + (𝑗 − 𝑀))) = (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀))) |
364 | 354 | mulid1d 10923 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · 1) = ((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍)))) |
365 | 364 | oveq1d 7270 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · 1) + (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗 − 𝑀))) = (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗 − 𝑀)))) |
366 | 359, 363,
365 | 3eqtr3d 2786 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) = (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗 − 𝑀)))) |
367 | | reflcl 13444 |
. . . . . . . . . . . . 13
⊢ ((𝑍 / (𝐾↑𝑗)) ∈ ℝ →
(⌊‘(𝑍 / (𝐾↑𝑗))) ∈ ℝ) |
368 | 286, 367 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / (𝐾↑𝑗))) ∈ ℝ) |
369 | 368 | ltp1d 11835 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / (𝐾↑𝑗))) < ((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)) |
370 | | fzdisj 13212 |
. . . . . . . . . . 11
⊢
((⌊‘(𝑍 /
(𝐾↑𝑗))) < ((⌊‘(𝑍 / (𝐾↑𝑗))) + 1) → ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝑗)))) ∩ (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))) = ∅) |
371 | 369, 370 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝑗)))) ∩ (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))) = ∅) |
372 | | fzfid 13621 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))) ∈ Fin) |
373 | 338 | sselda 3917 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) |
374 | 373, 341 | syldan 590 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ) |
375 | 374 | recnd 10934 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℂ) |
376 | 371, 329,
372, 375 | fsumsplit 15381 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))) |
377 | 366, 376 | breq12d 5083 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗 − 𝑀))) ≤ (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾↑𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))) |
378 | 353, 377 | sylibrd 258 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗 − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))) |
379 | 378 | expcom 413 |
. . . . . 6
⊢ (𝑗 ∈ (𝑀..^𝑁) → (𝜑 → ((((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗 − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))) |
380 | 379 | a2d 29 |
. . . . 5
⊢ (𝑗 ∈ (𝑀..^𝑁) → ((𝜑 → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗 − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) → (𝜑 → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))) |
381 | 199, 209,
219, 229, 265, 380 | fzind2 13433 |
. . . 4
⊢ (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁 − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))) |
382 | 189, 381 | mpcom 38 |
. . 3
⊢ (𝜑 → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁 − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) |
383 | 65, 82, 261, 184 | fsumless 15436 |
. . 3
⊢ (𝜑 → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) |
384 | 64, 187, 83, 382, 383 | letrd 11062 |
. 2
⊢ (𝜑 → (((𝑈 − 𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁 − 𝑀)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) |
385 | 44, 64, 83, 172, 384 | letrd 11062 |
1
⊢ (𝜑 → ((𝑈 − 𝐸) · (((𝐿 · (𝐸↑2)) / (;32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) |