MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemf Structured version   Visualization version   GIF version

Theorem pntlemf 26189
Description: Lemma for pnt 26198. Add up the pieces in pntlemi 26188 to get an estimate slightly better than the naive lower bound 0. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
Assertion
Ref Expression
pntlemf (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
Distinct variable groups:   𝑧,𝐶   𝑦,𝑛,𝑧,𝑢,𝐿   𝑛,𝐾,𝑦,𝑧   𝑛,𝑀,𝑧   𝜑,𝑛   𝑛,𝑁,𝑧   𝑅,𝑛,𝑢,𝑦,𝑧   𝑈,𝑛,𝑧   𝑛,𝑊,𝑧   𝑛,𝑋,𝑦,𝑧   𝑛,𝑌,𝑧   𝑛,𝑎,𝑢,𝑦,𝑧,𝐸   𝑛,𝑍,𝑢,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐶(𝑦,𝑢,𝑛,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑛,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑎)   𝐹(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑀(𝑦,𝑢,𝑎)   𝑁(𝑦,𝑢,𝑎)   𝑊(𝑦,𝑢,𝑎)   𝑋(𝑢,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑎)

Proof of Theorem pntlemf
Dummy variables 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pntlem1.r . . . . . . 7 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem1.a . . . . . . 7 (𝜑𝐴 ∈ ℝ+)
3 pntlem1.b . . . . . . 7 (𝜑𝐵 ∈ ℝ+)
4 pntlem1.l . . . . . . 7 (𝜑𝐿 ∈ (0(,)1))
5 pntlem1.d . . . . . . 7 𝐷 = (𝐴 + 1)
6 pntlem1.f . . . . . . 7 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
7 pntlem1.u . . . . . . 7 (𝜑𝑈 ∈ ℝ+)
8 pntlem1.u2 . . . . . . 7 (𝜑𝑈𝐴)
9 pntlem1.e . . . . . . 7 𝐸 = (𝑈 / 𝐷)
10 pntlem1.k . . . . . . 7 𝐾 = (exp‘(𝐵 / 𝐸))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 26179 . . . . . 6 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
1211simp3d 1141 . . . . 5 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
1312simp3d 1141 . . . 4 (𝜑 → (𝑈𝐸) ∈ ℝ+)
141, 2, 3, 4, 5, 6pntlemd 26178 . . . . . . . 8 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
1514simp1d 1139 . . . . . . 7 (𝜑𝐿 ∈ ℝ+)
1611simp1d 1139 . . . . . . . 8 (𝜑𝐸 ∈ ℝ+)
17 2z 12002 . . . . . . . 8 2 ∈ ℤ
18 rpexpcl 13444 . . . . . . . 8 ((𝐸 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐸↑2) ∈ ℝ+)
1916, 17, 18sylancl 589 . . . . . . 7 (𝜑 → (𝐸↑2) ∈ ℝ+)
2015, 19rpmulcld 12435 . . . . . 6 (𝜑 → (𝐿 · (𝐸↑2)) ∈ ℝ+)
21 3nn0 11903 . . . . . . . . 9 3 ∈ ℕ0
22 2nn 11698 . . . . . . . . 9 2 ∈ ℕ
2321, 22decnncl 12106 . . . . . . . 8 32 ∈ ℕ
24 nnrp 12388 . . . . . . . 8 (32 ∈ ℕ → 32 ∈ ℝ+)
2523, 24ax-mp 5 . . . . . . 7 32 ∈ ℝ+
26 rpmulcl 12400 . . . . . . 7 ((32 ∈ ℝ+𝐵 ∈ ℝ+) → (32 · 𝐵) ∈ ℝ+)
2725, 3, 26sylancr 590 . . . . . 6 (𝜑 → (32 · 𝐵) ∈ ℝ+)
2820, 27rpdivcld 12436 . . . . 5 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) ∈ ℝ+)
29 pntlem1.y . . . . . . . . . 10 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
30 pntlem1.x . . . . . . . . . 10 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
31 pntlem1.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
32 pntlem1.w . . . . . . . . . 10 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
33 pntlem1.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝑊[,)+∞))
341, 2, 3, 4, 5, 6, 7, 8, 9, 10, 29, 30, 31, 32, 33pntlemb 26181 . . . . . . . . 9 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
3534simp1d 1139 . . . . . . . 8 (𝜑𝑍 ∈ ℝ+)
3635rpred 12419 . . . . . . 7 (𝜑𝑍 ∈ ℝ)
3734simp2d 1140 . . . . . . . 8 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
3837simp1d 1139 . . . . . . 7 (𝜑 → 1 < 𝑍)
3936, 38rplogcld 25220 . . . . . 6 (𝜑 → (log‘𝑍) ∈ ℝ+)
40 rpexpcl 13444 . . . . . 6 (((log‘𝑍) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((log‘𝑍)↑2) ∈ ℝ+)
4139, 17, 40sylancl 589 . . . . 5 (𝜑 → ((log‘𝑍)↑2) ∈ ℝ+)
4228, 41rpmulcld 12435 . . . 4 (𝜑 → (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) ∈ ℝ+)
4313, 42rpmulcld 12435 . . 3 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ∈ ℝ+)
4443rpred 12419 . 2 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ∈ ℝ)
4515, 16rpmulcld 12435 . . . . . . 7 (𝜑 → (𝐿 · 𝐸) ∈ ℝ+)
46 8re 11721 . . . . . . . 8 8 ∈ ℝ
47 8pos 11737 . . . . . . . 8 0 < 8
4846, 47elrpii 12380 . . . . . . 7 8 ∈ ℝ+
49 rpdivcl 12402 . . . . . . 7 (((𝐿 · 𝐸) ∈ ℝ+ ∧ 8 ∈ ℝ+) → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
5045, 48, 49sylancl 589 . . . . . 6 (𝜑 → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
5150, 39rpmulcld 12435 . . . . 5 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℝ+)
5213, 51rpmulcld 12435 . . . 4 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ+)
5352rpred 12419 . . 3 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ)
54 pntlem1.m . . . . . . . 8 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
55 pntlem1.n . . . . . . . 8 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
561, 2, 3, 4, 5, 6, 7, 8, 9, 10, 29, 30, 31, 32, 33, 54, 55pntlemg 26182 . . . . . . 7 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
5756simp1d 1139 . . . . . 6 (𝜑𝑀 ∈ ℕ)
5856simp2d 1140 . . . . . 6 (𝜑𝑁 ∈ (ℤ𝑀))
59 eluznn 12306 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℕ)
6057, 58, 59syl2anc 587 . . . . 5 (𝜑𝑁 ∈ ℕ)
6160nnred 11640 . . . 4 (𝜑𝑁 ∈ ℝ)
6257nnred 11640 . . . 4 (𝜑𝑀 ∈ ℝ)
6361, 62resubcld 11057 . . 3 (𝜑 → (𝑁𝑀) ∈ ℝ)
6453, 63remulcld 10660 . 2 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) ∈ ℝ)
65 fzfid 13336 . . 3 (𝜑 → (1...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
667rpred 12419 . . . . . 6 (𝜑𝑈 ∈ ℝ)
67 elfznn 12931 . . . . . 6 (𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))) → 𝑛 ∈ ℕ)
68 nndivre 11666 . . . . . 6 ((𝑈 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑈 / 𝑛) ∈ ℝ)
6966, 67, 68syl2an 598 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑈 / 𝑛) ∈ ℝ)
7035adantr 484 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑍 ∈ ℝ+)
7167adantl 485 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℕ)
7271nnrpd 12417 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℝ+)
7370, 72rpdivcld 12436 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑍 / 𝑛) ∈ ℝ+)
741pntrf 26147 . . . . . . . . . 10 𝑅:ℝ+⟶ℝ
7574ffvelrni 6827 . . . . . . . . 9 ((𝑍 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
7673, 75syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
7776, 70rerpdivcld 12450 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℝ)
7877recnd 10658 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℂ)
7978abscld 14788 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ∈ ℝ)
8069, 79resubcld 11057 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) ∈ ℝ)
8172relogcld 25214 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℝ)
8280, 81remulcld 10660 . . 3 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
8365, 82fsumrecl 15083 . 2 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
8445rpcnd 12421 . . . . . . . . 9 (𝜑 → (𝐿 · 𝐸) ∈ ℂ)
8511simp2d 1140 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ ℝ+)
8685rpred 12419 . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℝ)
8712simp2d 1140 . . . . . . . . . . . 12 (𝜑 → 1 < 𝐾)
8886, 87rplogcld 25220 . . . . . . . . . . 11 (𝜑 → (log‘𝐾) ∈ ℝ+)
8939, 88rpdivcld 12436 . . . . . . . . . 10 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ+)
9089rpcnd 12421 . . . . . . . . 9 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℂ)
91 rpcnne0 12395 . . . . . . . . . 10 (8 ∈ ℝ+ → (8 ∈ ℂ ∧ 8 ≠ 0))
9248, 91mp1i 13 . . . . . . . . 9 (𝜑 → (8 ∈ ℂ ∧ 8 ≠ 0))
93 4re 11709 . . . . . . . . . . 11 4 ∈ ℝ
94 4pos 11732 . . . . . . . . . . 11 0 < 4
9593, 94elrpii 12380 . . . . . . . . . 10 4 ∈ ℝ+
96 rpcnne0 12395 . . . . . . . . . 10 (4 ∈ ℝ+ → (4 ∈ ℂ ∧ 4 ≠ 0))
9795, 96mp1i 13 . . . . . . . . 9 (𝜑 → (4 ∈ ℂ ∧ 4 ≠ 0))
98 divmuldiv 11329 . . . . . . . . 9 ((((𝐿 · 𝐸) ∈ ℂ ∧ ((log‘𝑍) / (log‘𝐾)) ∈ ℂ) ∧ ((8 ∈ ℂ ∧ 8 ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0))) → (((𝐿 · 𝐸) / 8) · (((log‘𝑍) / (log‘𝐾)) / 4)) = (((𝐿 · 𝐸) · ((log‘𝑍) / (log‘𝐾))) / (8 · 4)))
9984, 90, 92, 97, 98syl22anc 837 . . . . . . . 8 (𝜑 → (((𝐿 · 𝐸) / 8) · (((log‘𝑍) / (log‘𝐾)) / 4)) = (((𝐿 · 𝐸) · ((log‘𝑍) / (log‘𝐾))) / (8 · 4)))
10010fveq2i 6648 . . . . . . . . . . . . . 14 (log‘𝐾) = (log‘(exp‘(𝐵 / 𝐸)))
1013, 16rpdivcld 12436 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 / 𝐸) ∈ ℝ+)
102101rpred 12419 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 / 𝐸) ∈ ℝ)
103102relogefd 25219 . . . . . . . . . . . . . 14 (𝜑 → (log‘(exp‘(𝐵 / 𝐸))) = (𝐵 / 𝐸))
104100, 103syl5eq 2845 . . . . . . . . . . . . 13 (𝜑 → (log‘𝐾) = (𝐵 / 𝐸))
105104oveq2d 7151 . . . . . . . . . . . 12 (𝜑 → ((log‘𝑍) / (log‘𝐾)) = ((log‘𝑍) / (𝐵 / 𝐸)))
10639rpcnd 12421 . . . . . . . . . . . . 13 (𝜑 → (log‘𝑍) ∈ ℂ)
1073rpcnne0d 12428 . . . . . . . . . . . . 13 (𝜑 → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
10816rpcnne0d 12428 . . . . . . . . . . . . 13 (𝜑 → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
109 divdiv2 11341 . . . . . . . . . . . . 13 (((log‘𝑍) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0)) → ((log‘𝑍) / (𝐵 / 𝐸)) = (((log‘𝑍) · 𝐸) / 𝐵))
110106, 107, 108, 109syl3anc 1368 . . . . . . . . . . . 12 (𝜑 → ((log‘𝑍) / (𝐵 / 𝐸)) = (((log‘𝑍) · 𝐸) / 𝐵))
111105, 110eqtrd 2833 . . . . . . . . . . 11 (𝜑 → ((log‘𝑍) / (log‘𝐾)) = (((log‘𝑍) · 𝐸) / 𝐵))
112111oveq2d 7151 . . . . . . . . . 10 (𝜑 → ((𝐿 · 𝐸) · ((log‘𝑍) / (log‘𝐾))) = ((𝐿 · 𝐸) · (((log‘𝑍) · 𝐸) / 𝐵)))
11316rpcnd 12421 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℂ)
114106, 113mulcld 10650 . . . . . . . . . . 11 (𝜑 → ((log‘𝑍) · 𝐸) ∈ ℂ)
115 divass 11305 . . . . . . . . . . 11 (((𝐿 · 𝐸) ∈ ℂ ∧ ((log‘𝑍) · 𝐸) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝐿 · 𝐸) · ((log‘𝑍) · 𝐸)) / 𝐵) = ((𝐿 · 𝐸) · (((log‘𝑍) · 𝐸) / 𝐵)))
11684, 114, 107, 115syl3anc 1368 . . . . . . . . . 10 (𝜑 → (((𝐿 · 𝐸) · ((log‘𝑍) · 𝐸)) / 𝐵) = ((𝐿 · 𝐸) · (((log‘𝑍) · 𝐸) / 𝐵)))
11715rpcnd 12421 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ℂ)
118117, 113, 106, 113mul4d 10841 . . . . . . . . . . . 12 (𝜑 → ((𝐿 · 𝐸) · ((log‘𝑍) · 𝐸)) = ((𝐿 · (log‘𝑍)) · (𝐸 · 𝐸)))
119113sqvald 13503 . . . . . . . . . . . . 13 (𝜑 → (𝐸↑2) = (𝐸 · 𝐸))
120119oveq2d 7151 . . . . . . . . . . . 12 (𝜑 → ((𝐿 · (log‘𝑍)) · (𝐸↑2)) = ((𝐿 · (log‘𝑍)) · (𝐸 · 𝐸)))
121113sqcld 13504 . . . . . . . . . . . . 13 (𝜑 → (𝐸↑2) ∈ ℂ)
122117, 106, 121mul32d 10839 . . . . . . . . . . . 12 (𝜑 → ((𝐿 · (log‘𝑍)) · (𝐸↑2)) = ((𝐿 · (𝐸↑2)) · (log‘𝑍)))
123118, 120, 1223eqtr2d 2839 . . . . . . . . . . 11 (𝜑 → ((𝐿 · 𝐸) · ((log‘𝑍) · 𝐸)) = ((𝐿 · (𝐸↑2)) · (log‘𝑍)))
124123oveq1d 7150 . . . . . . . . . 10 (𝜑 → (((𝐿 · 𝐸) · ((log‘𝑍) · 𝐸)) / 𝐵) = (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵))
125112, 116, 1243eqtr2d 2839 . . . . . . . . 9 (𝜑 → ((𝐿 · 𝐸) · ((log‘𝑍) / (log‘𝐾))) = (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵))
126 8t4e32 12203 . . . . . . . . . 10 (8 · 4) = 32
127126a1i 11 . . . . . . . . 9 (𝜑 → (8 · 4) = 32)
128125, 127oveq12d 7153 . . . . . . . 8 (𝜑 → (((𝐿 · 𝐸) · ((log‘𝑍) / (log‘𝐾))) / (8 · 4)) = ((((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵) / 32))
12920rpcnd 12421 . . . . . . . . . . 11 (𝜑 → (𝐿 · (𝐸↑2)) ∈ ℂ)
130129, 106mulcld 10650 . . . . . . . . . 10 (𝜑 → ((𝐿 · (𝐸↑2)) · (log‘𝑍)) ∈ ℂ)
131 rpcnne0 12395 . . . . . . . . . . 11 (32 ∈ ℝ+ → (32 ∈ ℂ ∧ 32 ≠ 0))
13225, 131mp1i 13 . . . . . . . . . 10 (𝜑 → (32 ∈ ℂ ∧ 32 ≠ 0))
133 divdiv1 11340 . . . . . . . . . 10 ((((𝐿 · (𝐸↑2)) · (log‘𝑍)) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (32 ∈ ℂ ∧ 32 ≠ 0)) → ((((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵) / 32) = (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (𝐵 · 32)))
134130, 107, 132, 133syl3anc 1368 . . . . . . . . 9 (𝜑 → ((((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵) / 32) = (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (𝐵 · 32)))
13523nncni 11635 . . . . . . . . . . 11 32 ∈ ℂ
1363rpcnd 12421 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
137 mulcom 10612 . . . . . . . . . . 11 ((32 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (32 · 𝐵) = (𝐵 · 32))
138135, 136, 137sylancr 590 . . . . . . . . . 10 (𝜑 → (32 · 𝐵) = (𝐵 · 32))
139138oveq2d 7151 . . . . . . . . 9 (𝜑 → (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (32 · 𝐵)) = (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (𝐵 · 32)))
14027rpcnne0d 12428 . . . . . . . . . 10 (𝜑 → ((32 · 𝐵) ∈ ℂ ∧ (32 · 𝐵) ≠ 0))
141 div23 11306 . . . . . . . . . 10 (((𝐿 · (𝐸↑2)) ∈ ℂ ∧ (log‘𝑍) ∈ ℂ ∧ ((32 · 𝐵) ∈ ℂ ∧ (32 · 𝐵) ≠ 0)) → (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (32 · 𝐵)) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)))
142129, 106, 140, 141syl3anc 1368 . . . . . . . . 9 (𝜑 → (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (32 · 𝐵)) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)))
143134, 139, 1423eqtr2d 2839 . . . . . . . 8 (𝜑 → ((((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵) / 32) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)))
14499, 128, 1433eqtrd 2837 . . . . . . 7 (𝜑 → (((𝐿 · 𝐸) / 8) · (((log‘𝑍) / (log‘𝐾)) / 4)) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)))
145144oveq1d 7150 . . . . . 6 (𝜑 → ((((𝐿 · 𝐸) / 8) · (((log‘𝑍) / (log‘𝐾)) / 4)) · (log‘𝑍)) = ((((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)) · (log‘𝑍)))
14650rpcnd 12421 . . . . . . 7 (𝜑 → ((𝐿 · 𝐸) / 8) ∈ ℂ)
14789rpred 12419 . . . . . . . . 9 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ)
148 4nn 11708 . . . . . . . . 9 4 ∈ ℕ
149 nndivre 11666 . . . . . . . . 9 ((((log‘𝑍) / (log‘𝐾)) ∈ ℝ ∧ 4 ∈ ℕ) → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ)
150147, 148, 149sylancl 589 . . . . . . . 8 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ)
151150recnd 10658 . . . . . . 7 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℂ)
152146, 106, 151mul32d 10839 . . . . . 6 (𝜑 → ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (((log‘𝑍) / (log‘𝐾)) / 4)) = ((((𝐿 · 𝐸) / 8) · (((log‘𝑍) / (log‘𝐾)) / 4)) · (log‘𝑍)))
153106sqvald 13503 . . . . . . . 8 (𝜑 → ((log‘𝑍)↑2) = ((log‘𝑍) · (log‘𝑍)))
154153oveq2d 7151 . . . . . . 7 (𝜑 → (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍) · (log‘𝑍))))
15528rpcnd 12421 . . . . . . . 8 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) ∈ ℂ)
156155, 106, 106mulassd 10653 . . . . . . 7 (𝜑 → ((((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)) · (log‘𝑍)) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍) · (log‘𝑍))))
157154, 156eqtr4d 2836 . . . . . 6 (𝜑 → (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) = ((((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)) · (log‘𝑍)))
158145, 152, 1573eqtr4d 2843 . . . . 5 (𝜑 → ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (((log‘𝑍) / (log‘𝐾)) / 4)) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))
15956simp3d 1141 . . . . . 6 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀))
160150, 63, 51lemul2d 12463 . . . . . 6 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀) ↔ ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (((log‘𝑍) / (log‘𝐾)) / 4)) ≤ ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀))))
161159, 160mpbid 235 . . . . 5 (𝜑 → ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (((log‘𝑍) / (log‘𝐾)) / 4)) ≤ ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀)))
162158, 161eqbrtrrd 5054 . . . 4 (𝜑 → (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) ≤ ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀)))
16342rpred 12419 . . . . 5 (𝜑 → (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) ∈ ℝ)
16451rpred 12419 . . . . . 6 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℝ)
165164, 63remulcld 10660 . . . . 5 (𝜑 → ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀)) ∈ ℝ)
166163, 165, 13lemul2d 12463 . . . 4 (𝜑 → ((((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) ≤ ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀)) ↔ ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ ((𝑈𝐸) · ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀)))))
167162, 166mpbid 235 . . 3 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ ((𝑈𝐸) · ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀))))
16813rpcnd 12421 . . . 4 (𝜑 → (𝑈𝐸) ∈ ℂ)
16951rpcnd 12421 . . . 4 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℂ)
17063recnd 10658 . . . 4 (𝜑 → (𝑁𝑀) ∈ ℂ)
171168, 169, 170mulassd 10653 . . 3 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) = ((𝑈𝐸) · ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀))))
172167, 171breqtrrd 5058 . 2 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)))
173 fzfid 13336 . . . 4 (𝜑 → (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
17460nnzd 12074 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
17585, 174rpexpcld 13604 . . . . . . . . . . 11 (𝜑 → (𝐾𝑁) ∈ ℝ+)
17635, 175rpdivcld 12436 . . . . . . . . . 10 (𝜑 → (𝑍 / (𝐾𝑁)) ∈ ℝ+)
177176rprege0d 12426 . . . . . . . . 9 (𝜑 → ((𝑍 / (𝐾𝑁)) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾𝑁))))
178 flge0nn0 13185 . . . . . . . . 9 (((𝑍 / (𝐾𝑁)) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾𝑁))) → (⌊‘(𝑍 / (𝐾𝑁))) ∈ ℕ0)
179 nn0p1nn 11924 . . . . . . . . 9 ((⌊‘(𝑍 / (𝐾𝑁))) ∈ ℕ0 → ((⌊‘(𝑍 / (𝐾𝑁))) + 1) ∈ ℕ)
180177, 178, 1793syl 18 . . . . . . . 8 (𝜑 → ((⌊‘(𝑍 / (𝐾𝑁))) + 1) ∈ ℕ)
181 nnuz 12269 . . . . . . . 8 ℕ = (ℤ‘1)
182180, 181eleqtrdi 2900 . . . . . . 7 (𝜑 → ((⌊‘(𝑍 / (𝐾𝑁))) + 1) ∈ (ℤ‘1))
183 fzss1 12941 . . . . . . 7 (((⌊‘(𝑍 / (𝐾𝑁))) + 1) ∈ (ℤ‘1) → (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
184182, 183syl 17 . . . . . 6 (𝜑 → (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
185184sselda 3915 . . . . 5 ((𝜑𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))))
186185, 82syldan 594 . . . 4 ((𝜑𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
187173, 186fsumrecl 15083 . . 3 (𝜑 → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
188 eluzfz2 12910 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
18958, 188syl 17 . . . 4 (𝜑𝑁 ∈ (𝑀...𝑁))
190 oveq1 7142 . . . . . . . 8 (𝑚 = 𝑀 → (𝑚𝑀) = (𝑀𝑀))
191190oveq2d 7151 . . . . . . 7 (𝑚 = 𝑀 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)))
192 oveq2 7143 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (𝐾𝑚) = (𝐾𝑀))
193192oveq2d 7151 . . . . . . . . . . 11 (𝑚 = 𝑀 → (𝑍 / (𝐾𝑚)) = (𝑍 / (𝐾𝑀)))
194193fveq2d 6649 . . . . . . . . . 10 (𝑚 = 𝑀 → (⌊‘(𝑍 / (𝐾𝑚))) = (⌊‘(𝑍 / (𝐾𝑀))))
195194oveq1d 7150 . . . . . . . . 9 (𝑚 = 𝑀 → ((⌊‘(𝑍 / (𝐾𝑚))) + 1) = ((⌊‘(𝑍 / (𝐾𝑀))) + 1))
196195oveq1d 7150 . . . . . . . 8 (𝑚 = 𝑀 → (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌))) = (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌))))
197196sumeq1d 15050 . . . . . . 7 (𝑚 = 𝑀 → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
198191, 197breq12d 5043 . . . . . 6 (𝑚 = 𝑀 → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
199198imbi2d 344 . . . . 5 (𝑚 = 𝑀 → ((𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ↔ (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
200 oveq1 7142 . . . . . . . 8 (𝑚 = 𝑗 → (𝑚𝑀) = (𝑗𝑀))
201200oveq2d 7151 . . . . . . 7 (𝑚 = 𝑗 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)))
202 oveq2 7143 . . . . . . . . . . . 12 (𝑚 = 𝑗 → (𝐾𝑚) = (𝐾𝑗))
203202oveq2d 7151 . . . . . . . . . . 11 (𝑚 = 𝑗 → (𝑍 / (𝐾𝑚)) = (𝑍 / (𝐾𝑗)))
204203fveq2d 6649 . . . . . . . . . 10 (𝑚 = 𝑗 → (⌊‘(𝑍 / (𝐾𝑚))) = (⌊‘(𝑍 / (𝐾𝑗))))
205204oveq1d 7150 . . . . . . . . 9 (𝑚 = 𝑗 → ((⌊‘(𝑍 / (𝐾𝑚))) + 1) = ((⌊‘(𝑍 / (𝐾𝑗))) + 1))
206205oveq1d 7150 . . . . . . . 8 (𝑚 = 𝑗 → (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌))) = (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))))
207206sumeq1d 15050 . . . . . . 7 (𝑚 = 𝑗 → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
208201, 207breq12d 5043 . . . . . 6 (𝑚 = 𝑗 → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
209208imbi2d 344 . . . . 5 (𝑚 = 𝑗 → ((𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ↔ (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
210 oveq1 7142 . . . . . . . 8 (𝑚 = (𝑗 + 1) → (𝑚𝑀) = ((𝑗 + 1) − 𝑀))
211210oveq2d 7151 . . . . . . 7 (𝑚 = (𝑗 + 1) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)))
212 oveq2 7143 . . . . . . . . . . . 12 (𝑚 = (𝑗 + 1) → (𝐾𝑚) = (𝐾↑(𝑗 + 1)))
213212oveq2d 7151 . . . . . . . . . . 11 (𝑚 = (𝑗 + 1) → (𝑍 / (𝐾𝑚)) = (𝑍 / (𝐾↑(𝑗 + 1))))
214213fveq2d 6649 . . . . . . . . . 10 (𝑚 = (𝑗 + 1) → (⌊‘(𝑍 / (𝐾𝑚))) = (⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))))
215214oveq1d 7150 . . . . . . . . 9 (𝑚 = (𝑗 + 1) → ((⌊‘(𝑍 / (𝐾𝑚))) + 1) = ((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1))
216215oveq1d 7150 . . . . . . . 8 (𝑚 = (𝑗 + 1) → (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌))) = (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))))
217216sumeq1d 15050 . . . . . . 7 (𝑚 = (𝑗 + 1) → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
218211, 217breq12d 5043 . . . . . 6 (𝑚 = (𝑗 + 1) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
219218imbi2d 344 . . . . 5 (𝑚 = (𝑗 + 1) → ((𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ↔ (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
220 oveq1 7142 . . . . . . . 8 (𝑚 = 𝑁 → (𝑚𝑀) = (𝑁𝑀))
221220oveq2d 7151 . . . . . . 7 (𝑚 = 𝑁 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)))
222 oveq2 7143 . . . . . . . . . . . 12 (𝑚 = 𝑁 → (𝐾𝑚) = (𝐾𝑁))
223222oveq2d 7151 . . . . . . . . . . 11 (𝑚 = 𝑁 → (𝑍 / (𝐾𝑚)) = (𝑍 / (𝐾𝑁)))
224223fveq2d 6649 . . . . . . . . . 10 (𝑚 = 𝑁 → (⌊‘(𝑍 / (𝐾𝑚))) = (⌊‘(𝑍 / (𝐾𝑁))))
225224oveq1d 7150 . . . . . . . . 9 (𝑚 = 𝑁 → ((⌊‘(𝑍 / (𝐾𝑚))) + 1) = ((⌊‘(𝑍 / (𝐾𝑁))) + 1))
226225oveq1d 7150 . . . . . . . 8 (𝑚 = 𝑁 → (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌))) = (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌))))
227226sumeq1d 15050 . . . . . . 7 (𝑚 = 𝑁 → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
228221, 227breq12d 5043 . . . . . 6 (𝑚 = 𝑁 → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
229228imbi2d 344 . . . . 5 (𝑚 = 𝑁 → ((𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ↔ (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
23057nncnd 11641 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
231230subidd 10974 . . . . . . . . 9 (𝜑 → (𝑀𝑀) = 0)
232231oveq2d 7151 . . . . . . . 8 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · 0))
23352rpcnd 12421 . . . . . . . . 9 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℂ)
234233mul01d 10828 . . . . . . . 8 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · 0) = 0)
235232, 234eqtrd 2833 . . . . . . 7 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)) = 0)
236 fzfid 13336 . . . . . . . 8 (𝜑 → (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
23757nnzd 12074 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℤ)
23885, 237rpexpcld 13604 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾𝑀) ∈ ℝ+)
23935, 238rpdivcld 12436 . . . . . . . . . . . . . 14 (𝜑 → (𝑍 / (𝐾𝑀)) ∈ ℝ+)
240239rprege0d 12426 . . . . . . . . . . . . 13 (𝜑 → ((𝑍 / (𝐾𝑀)) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾𝑀))))
241 flge0nn0 13185 . . . . . . . . . . . . 13 (((𝑍 / (𝐾𝑀)) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾𝑀))) → (⌊‘(𝑍 / (𝐾𝑀))) ∈ ℕ0)
242 nn0p1nn 11924 . . . . . . . . . . . . 13 ((⌊‘(𝑍 / (𝐾𝑀))) ∈ ℕ0 → ((⌊‘(𝑍 / (𝐾𝑀))) + 1) ∈ ℕ)
243240, 241, 2423syl 18 . . . . . . . . . . . 12 (𝜑 → ((⌊‘(𝑍 / (𝐾𝑀))) + 1) ∈ ℕ)
244243, 181eleqtrdi 2900 . . . . . . . . . . 11 (𝜑 → ((⌊‘(𝑍 / (𝐾𝑀))) + 1) ∈ (ℤ‘1))
245 fzss1 12941 . . . . . . . . . . 11 (((⌊‘(𝑍 / (𝐾𝑀))) + 1) ∈ (ℤ‘1) → (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
246244, 245syl 17 . . . . . . . . . 10 (𝜑 → (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
247246sselda 3915 . . . . . . . . 9 ((𝜑𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))))
248247, 82syldan 594 . . . . . . . 8 ((𝜑𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
249 elfzle2 12906 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))) → 𝑛 ≤ (⌊‘(𝑍 / 𝑌)))
250249adantl 485 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ≤ (⌊‘(𝑍 / 𝑌)))
25129simpld 498 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ ℝ+)
25235, 251rpdivcld 12436 . . . . . . . . . . . . . 14 (𝜑 → (𝑍 / 𝑌) ∈ ℝ+)
253252rpred 12419 . . . . . . . . . . . . 13 (𝜑 → (𝑍 / 𝑌) ∈ ℝ)
254 elfzelz 12902 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))) → 𝑛 ∈ ℤ)
255 flge 13170 . . . . . . . . . . . . 13 (((𝑍 / 𝑌) ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ (𝑍 / 𝑌) ↔ 𝑛 ≤ (⌊‘(𝑍 / 𝑌))))
256253, 254, 255syl2an 598 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑛 ≤ (𝑍 / 𝑌) ↔ 𝑛 ≤ (⌊‘(𝑍 / 𝑌))))
257250, 256mpbird 260 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ≤ (𝑍 / 𝑌))
25871, 257jca 515 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝑍 / 𝑌)))
259 pntlem1.U . . . . . . . . . . 11 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
2601, 2, 3, 4, 5, 6, 7, 8, 9, 10, 29, 30, 31, 32, 33, 54, 55, 259pntlemn 26184 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝑍 / 𝑌))) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
261258, 260syldan 594 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
262247, 261syldan 594 . . . . . . . 8 ((𝜑𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
263236, 248, 262fsumge0 15142 . . . . . . 7 (𝜑 → 0 ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
264235, 263eqbrtrd 5052 . . . . . 6 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
265264a1i 11 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
266 pntlem1.K . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
267 eqid 2798 . . . . . . . . . 10 (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) = (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))
2681, 2, 3, 4, 5, 6, 7, 8, 9, 10, 29, 30, 31, 32, 33, 54, 55, 259, 266, 267pntlemi 26188 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
26952adantr 484 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ+)
270269rpred 12419 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ)
271 elfzoelz 13033 . . . . . . . . . . . . . 14 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ ℤ)
272271adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℤ)
273272zred 12075 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℝ)
27457adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℕ)
275274nnred 11640 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ)
276273, 275resubcld 11057 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗𝑀) ∈ ℝ)
277270, 276remulcld 10660 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ∈ ℝ)
278 fzfid 13336 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∈ Fin)
279 ssun1 4099 . . . . . . . . . . . . . . 15 (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ⊆ ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∪ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))))
28036adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑍 ∈ ℝ)
28185adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐾 ∈ ℝ+)
282272peano2zd 12078 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ ℤ)
283281, 282rpexpcld 13604 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐾↑(𝑗 + 1)) ∈ ℝ+)
284280, 283rerpdivcld 12450 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / (𝐾↑(𝑗 + 1))) ∈ ℝ)
285281, 272rpexpcld 13604 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐾𝑗) ∈ ℝ+)
286280, 285rerpdivcld 12450 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / (𝐾𝑗)) ∈ ℝ)
28786adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐾 ∈ ℝ)
288 1re 10630 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ
289 ltle 10718 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (1 < 𝐾 → 1 ≤ 𝐾))
290288, 86, 289sylancr 590 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (1 < 𝐾 → 1 ≤ 𝐾))
29187, 290mpd 15 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ≤ 𝐾)
292291adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 1 ≤ 𝐾)
293 uzid 12246 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
294 peano2uz 12289 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (ℤ𝑗) → (𝑗 + 1) ∈ (ℤ𝑗))
295272, 293, 2943syl 18 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ (ℤ𝑗))
296287, 292, 295leexp2ad 13613 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐾𝑗) ≤ (𝐾↑(𝑗 + 1)))
29735adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑍 ∈ ℝ+)
298285, 283, 297lediv2d 12443 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝐾𝑗) ≤ (𝐾↑(𝑗 + 1)) ↔ (𝑍 / (𝐾↑(𝑗 + 1))) ≤ (𝑍 / (𝐾𝑗))))
299296, 298mpbid 235 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / (𝐾↑(𝑗 + 1))) ≤ (𝑍 / (𝐾𝑗)))
300 flword2 13178 . . . . . . . . . . . . . . . . . 18 (((𝑍 / (𝐾↑(𝑗 + 1))) ∈ ℝ ∧ (𝑍 / (𝐾𝑗)) ∈ ℝ ∧ (𝑍 / (𝐾↑(𝑗 + 1))) ≤ (𝑍 / (𝐾𝑗))) → (⌊‘(𝑍 / (𝐾𝑗))) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾↑(𝑗 + 1))))))
301284, 286, 299, 300syl3anc 1368 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / (𝐾𝑗))) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾↑(𝑗 + 1))))))
302 eluzp1p1 12258 . . . . . . . . . . . . . . . . 17 ((⌊‘(𝑍 / (𝐾𝑗))) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾↑(𝑗 + 1))))) → ((⌊‘(𝑍 / (𝐾𝑗))) + 1) ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)))
303301, 302syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((⌊‘(𝑍 / (𝐾𝑗))) + 1) ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)))
304286flcld 13163 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / (𝐾𝑗))) ∈ ℤ)
305252adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / 𝑌) ∈ ℝ+)
306305rpred 12419 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / 𝑌) ∈ ℝ)
307306flcld 13163 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / 𝑌)) ∈ ℤ)
308251adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑌 ∈ ℝ+)
309308rpred 12419 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑌 ∈ ℝ)
310285rpred 12419 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐾𝑗) ∈ ℝ)
31130simpld 498 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑋 ∈ ℝ+)
312311rpred 12419 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑋 ∈ ℝ)
313312adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℝ)
31430simprd 499 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑌 < 𝑋)
315314adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑌 < 𝑋)
316 elfzofz 13048 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (𝑀...𝑁))
3171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 29, 30, 31, 32, 33, 54, 55pntlemh 26183 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝑗) ∧ (𝐾𝑗) ≤ (√‘𝑍)))
318316, 317sylan2 595 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑋 < (𝐾𝑗) ∧ (𝐾𝑗) ≤ (√‘𝑍)))
319318simpld 498 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑋 < (𝐾𝑗))
320309, 313, 310, 315, 319lttrd 10790 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑌 < (𝐾𝑗))
321309, 310, 320ltled 10777 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑌 ≤ (𝐾𝑗))
322308, 285, 297lediv2d 12443 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑌 ≤ (𝐾𝑗) ↔ (𝑍 / (𝐾𝑗)) ≤ (𝑍 / 𝑌)))
323321, 322mpbid 235 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / (𝐾𝑗)) ≤ (𝑍 / 𝑌))
324 flwordi 13177 . . . . . . . . . . . . . . . . . 18 (((𝑍 / (𝐾𝑗)) ∈ ℝ ∧ (𝑍 / 𝑌) ∈ ℝ ∧ (𝑍 / (𝐾𝑗)) ≤ (𝑍 / 𝑌)) → (⌊‘(𝑍 / (𝐾𝑗))) ≤ (⌊‘(𝑍 / 𝑌)))
325286, 306, 323, 324syl3anc 1368 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / (𝐾𝑗))) ≤ (⌊‘(𝑍 / 𝑌)))
326 eluz2 12237 . . . . . . . . . . . . . . . . 17 ((⌊‘(𝑍 / 𝑌)) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾𝑗)))) ↔ ((⌊‘(𝑍 / (𝐾𝑗))) ∈ ℤ ∧ (⌊‘(𝑍 / 𝑌)) ∈ ℤ ∧ (⌊‘(𝑍 / (𝐾𝑗))) ≤ (⌊‘(𝑍 / 𝑌))))
327304, 307, 325, 326syl3anbrc 1340 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / 𝑌)) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾𝑗)))))
328 fzsplit2 12927 . . . . . . . . . . . . . . . 16 ((((⌊‘(𝑍 / (𝐾𝑗))) + 1) ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)) ∧ (⌊‘(𝑍 / 𝑌)) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾𝑗))))) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))) = ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∪ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))))
329303, 327, 328syl2anc 587 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))) = ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∪ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))))
330279, 329sseqtrrid 3968 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ⊆ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))))
331297, 283rpdivcld 12436 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / (𝐾↑(𝑗 + 1))) ∈ ℝ+)
332331rprege0d 12426 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑍 / (𝐾↑(𝑗 + 1))) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾↑(𝑗 + 1)))))
333 flge0nn0 13185 . . . . . . . . . . . . . . . . 17 (((𝑍 / (𝐾↑(𝑗 + 1))) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾↑(𝑗 + 1)))) → (⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) ∈ ℕ0)
334 nn0p1nn 11924 . . . . . . . . . . . . . . . . 17 ((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) ∈ ℕ0 → ((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1) ∈ ℕ)
335332, 333, 3343syl 18 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1) ∈ ℕ)
336335, 181eleqtrdi 2900 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1) ∈ (ℤ‘1))
337 fzss1 12941 . . . . . . . . . . . . . . 15 (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1) ∈ (ℤ‘1) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
338336, 337syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
339330, 338sstrd 3925 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
340339sselda 3915 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))) → 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))))
34182adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
342340, 341syldan 594 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
343278, 342fsumrecl 15083 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
344 fzfid 13336 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
345 ssun2 4100 . . . . . . . . . . . . . . 15 (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∪ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))))
346345, 329sseqtrrid 3968 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))))
347346, 338sstrd 3925 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
348347sselda 3915 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))))
349348, 341syldan 594 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
350344, 349fsumrecl 15083 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
351 le2add 11111 . . . . . . . . . 10 (((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ ∧ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ∈ ℝ) ∧ (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ ∧ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∧ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))) ≤ (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
352270, 277, 343, 350, 351syl22anc 837 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∧ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))) ≤ (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
353268, 352mpand 694 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))) ≤ (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
354233adantr 484 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℂ)
355 1cnd 10625 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 1 ∈ ℂ)
356272zcnd 12076 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℂ)
357230adantr 484 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℂ)
358356, 357subcld 10986 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗𝑀) ∈ ℂ)
359354, 355, 358adddid 10654 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (1 + (𝑗𝑀))) = ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · 1) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))))
360355, 358addcomd 10831 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (1 + (𝑗𝑀)) = ((𝑗𝑀) + 1))
361356, 355, 357addsubd 11007 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑗 + 1) − 𝑀) = ((𝑗𝑀) + 1))
362360, 361eqtr4d 2836 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (1 + (𝑗𝑀)) = ((𝑗 + 1) − 𝑀))
363362oveq2d 7151 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (1 + (𝑗𝑀))) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)))
364354mulid1d 10647 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · 1) = ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))))
365364oveq1d 7150 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · 1) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))))
366359, 363, 3653eqtr3d 2841 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))))
367 reflcl 13161 . . . . . . . . . . . . 13 ((𝑍 / (𝐾𝑗)) ∈ ℝ → (⌊‘(𝑍 / (𝐾𝑗))) ∈ ℝ)
368286, 367syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / (𝐾𝑗))) ∈ ℝ)
369368ltp1d 11559 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / (𝐾𝑗))) < ((⌊‘(𝑍 / (𝐾𝑗))) + 1))
370 fzdisj 12929 . . . . . . . . . . 11 ((⌊‘(𝑍 / (𝐾𝑗))) < ((⌊‘(𝑍 / (𝐾𝑗))) + 1) → ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∩ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))) = ∅)
371369, 370syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∩ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))) = ∅)
372 fzfid 13336 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
373338sselda 3915 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))))
374373, 341syldan 594 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
375374recnd 10658 . . . . . . . . . 10 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℂ)
376371, 329, 372, 375fsumsplit 15089 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
377366, 376breq12d 5043 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))) ≤ (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
378353, 377sylibrd 262 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
379378expcom 417 . . . . . 6 (𝑗 ∈ (𝑀..^𝑁) → (𝜑 → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
380379a2d 29 . . . . 5 (𝑗 ∈ (𝑀..^𝑁) → ((𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) → (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
381199, 209, 219, 229, 265, 380fzind2 13150 . . . 4 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
382189, 381mpcom 38 . . 3 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
38365, 82, 261, 184fsumless 15143 . . 3 (𝜑 → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
38464, 187, 83, 382, 383letrd 10786 . 2 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
38544, 64, 83, 172, 384letrd 10786 1 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  cun 3879  cin 3880  wss 3881  c0 4243   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  +∞cpnf 10661   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  3c3 11681  4c4 11682  8c8 11686  0cn0 11885  cz 11969  cdc 12086  cuz 12231  +crp 12377  (,)cioo 12726  [,)cico 12728  [,]cicc 12729  ...cfz 12885  ..^cfzo 13028  cfl 13155  cexp 13425  csqrt 14584  abscabs 14585  Σcsu 15034  expce 15407  eceu 15408  logclog 25146  ψcchp 25678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-e 15414  df-sin 15415  df-cos 15416  df-pi 15418  df-dvds 15600  df-gcd 15834  df-prm 16006  df-pc 16164  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148  df-vma 25683  df-chp 25684
This theorem is referenced by:  pntlemo  26191
  Copyright terms: Public domain W3C validator