MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemf Structured version   Visualization version   GIF version

Theorem pntlemf 27667
Description: Lemma for pnt 27676. Add up the pieces in pntlemi 27666 to get an estimate slightly better than the naive lower bound 0. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
Assertion
Ref Expression
pntlemf (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
Distinct variable groups:   𝑧,𝐶   𝑦,𝑛,𝑧,𝑢,𝐿   𝑛,𝐾,𝑦,𝑧   𝑛,𝑀,𝑧   𝜑,𝑛   𝑛,𝑁,𝑧   𝑅,𝑛,𝑢,𝑦,𝑧   𝑈,𝑛,𝑧   𝑛,𝑊,𝑧   𝑛,𝑋,𝑦,𝑧   𝑛,𝑌,𝑧   𝑛,𝑎,𝑢,𝑦,𝑧,𝐸   𝑛,𝑍,𝑢,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐶(𝑦,𝑢,𝑛,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑛,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑎)   𝐹(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑀(𝑦,𝑢,𝑎)   𝑁(𝑦,𝑢,𝑎)   𝑊(𝑦,𝑢,𝑎)   𝑋(𝑢,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑎)

Proof of Theorem pntlemf
Dummy variables 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pntlem1.r . . . . . . 7 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem1.a . . . . . . 7 (𝜑𝐴 ∈ ℝ+)
3 pntlem1.b . . . . . . 7 (𝜑𝐵 ∈ ℝ+)
4 pntlem1.l . . . . . . 7 (𝜑𝐿 ∈ (0(,)1))
5 pntlem1.d . . . . . . 7 𝐷 = (𝐴 + 1)
6 pntlem1.f . . . . . . 7 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
7 pntlem1.u . . . . . . 7 (𝜑𝑈 ∈ ℝ+)
8 pntlem1.u2 . . . . . . 7 (𝜑𝑈𝐴)
9 pntlem1.e . . . . . . 7 𝐸 = (𝑈 / 𝐷)
10 pntlem1.k . . . . . . 7 𝐾 = (exp‘(𝐵 / 𝐸))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 27657 . . . . . 6 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
1211simp3d 1144 . . . . 5 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
1312simp3d 1144 . . . 4 (𝜑 → (𝑈𝐸) ∈ ℝ+)
141, 2, 3, 4, 5, 6pntlemd 27656 . . . . . . . 8 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
1514simp1d 1142 . . . . . . 7 (𝜑𝐿 ∈ ℝ+)
1611simp1d 1142 . . . . . . . 8 (𝜑𝐸 ∈ ℝ+)
17 2z 12675 . . . . . . . 8 2 ∈ ℤ
18 rpexpcl 14131 . . . . . . . 8 ((𝐸 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐸↑2) ∈ ℝ+)
1916, 17, 18sylancl 585 . . . . . . 7 (𝜑 → (𝐸↑2) ∈ ℝ+)
2015, 19rpmulcld 13115 . . . . . 6 (𝜑 → (𝐿 · (𝐸↑2)) ∈ ℝ+)
21 3nn0 12571 . . . . . . . . 9 3 ∈ ℕ0
22 2nn 12366 . . . . . . . . 9 2 ∈ ℕ
2321, 22decnncl 12778 . . . . . . . 8 32 ∈ ℕ
24 nnrp 13068 . . . . . . . 8 (32 ∈ ℕ → 32 ∈ ℝ+)
2523, 24ax-mp 5 . . . . . . 7 32 ∈ ℝ+
26 rpmulcl 13080 . . . . . . 7 ((32 ∈ ℝ+𝐵 ∈ ℝ+) → (32 · 𝐵) ∈ ℝ+)
2725, 3, 26sylancr 586 . . . . . 6 (𝜑 → (32 · 𝐵) ∈ ℝ+)
2820, 27rpdivcld 13116 . . . . 5 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) ∈ ℝ+)
29 pntlem1.y . . . . . . . . . 10 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
30 pntlem1.x . . . . . . . . . 10 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
31 pntlem1.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
32 pntlem1.w . . . . . . . . . 10 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
33 pntlem1.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝑊[,)+∞))
341, 2, 3, 4, 5, 6, 7, 8, 9, 10, 29, 30, 31, 32, 33pntlemb 27659 . . . . . . . . 9 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
3534simp1d 1142 . . . . . . . 8 (𝜑𝑍 ∈ ℝ+)
3635rpred 13099 . . . . . . 7 (𝜑𝑍 ∈ ℝ)
3734simp2d 1143 . . . . . . . 8 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
3837simp1d 1142 . . . . . . 7 (𝜑 → 1 < 𝑍)
3936, 38rplogcld 26689 . . . . . 6 (𝜑 → (log‘𝑍) ∈ ℝ+)
40 rpexpcl 14131 . . . . . 6 (((log‘𝑍) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((log‘𝑍)↑2) ∈ ℝ+)
4139, 17, 40sylancl 585 . . . . 5 (𝜑 → ((log‘𝑍)↑2) ∈ ℝ+)
4228, 41rpmulcld 13115 . . . 4 (𝜑 → (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) ∈ ℝ+)
4313, 42rpmulcld 13115 . . 3 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ∈ ℝ+)
4443rpred 13099 . 2 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ∈ ℝ)
4515, 16rpmulcld 13115 . . . . . . 7 (𝜑 → (𝐿 · 𝐸) ∈ ℝ+)
46 8re 12389 . . . . . . . 8 8 ∈ ℝ
47 8pos 12405 . . . . . . . 8 0 < 8
4846, 47elrpii 13060 . . . . . . 7 8 ∈ ℝ+
49 rpdivcl 13082 . . . . . . 7 (((𝐿 · 𝐸) ∈ ℝ+ ∧ 8 ∈ ℝ+) → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
5045, 48, 49sylancl 585 . . . . . 6 (𝜑 → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
5150, 39rpmulcld 13115 . . . . 5 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℝ+)
5213, 51rpmulcld 13115 . . . 4 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ+)
5352rpred 13099 . . 3 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ)
54 pntlem1.m . . . . . . . 8 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
55 pntlem1.n . . . . . . . 8 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
561, 2, 3, 4, 5, 6, 7, 8, 9, 10, 29, 30, 31, 32, 33, 54, 55pntlemg 27660 . . . . . . 7 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
5756simp1d 1142 . . . . . 6 (𝜑𝑀 ∈ ℕ)
5856simp2d 1143 . . . . . 6 (𝜑𝑁 ∈ (ℤ𝑀))
59 eluznn 12983 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℕ)
6057, 58, 59syl2anc 583 . . . . 5 (𝜑𝑁 ∈ ℕ)
6160nnred 12308 . . . 4 (𝜑𝑁 ∈ ℝ)
6257nnred 12308 . . . 4 (𝜑𝑀 ∈ ℝ)
6361, 62resubcld 11718 . . 3 (𝜑 → (𝑁𝑀) ∈ ℝ)
6453, 63remulcld 11320 . 2 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) ∈ ℝ)
65 fzfid 14024 . . 3 (𝜑 → (1...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
667rpred 13099 . . . . . 6 (𝜑𝑈 ∈ ℝ)
67 elfznn 13613 . . . . . 6 (𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))) → 𝑛 ∈ ℕ)
68 nndivre 12334 . . . . . 6 ((𝑈 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑈 / 𝑛) ∈ ℝ)
6966, 67, 68syl2an 595 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑈 / 𝑛) ∈ ℝ)
7035adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑍 ∈ ℝ+)
7167adantl 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℕ)
7271nnrpd 13097 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℝ+)
7370, 72rpdivcld 13116 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑍 / 𝑛) ∈ ℝ+)
741pntrf 27625 . . . . . . . . . 10 𝑅:ℝ+⟶ℝ
7574ffvelcdmi 7117 . . . . . . . . 9 ((𝑍 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
7673, 75syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
7776, 70rerpdivcld 13130 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℝ)
7877recnd 11318 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℂ)
7978abscld 15485 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ∈ ℝ)
8069, 79resubcld 11718 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) ∈ ℝ)
8172relogcld 26683 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℝ)
8280, 81remulcld 11320 . . 3 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
8365, 82fsumrecl 15782 . 2 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
8445rpcnd 13101 . . . . . . . . 9 (𝜑 → (𝐿 · 𝐸) ∈ ℂ)
8511simp2d 1143 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ ℝ+)
8685rpred 13099 . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℝ)
8712simp2d 1143 . . . . . . . . . . . 12 (𝜑 → 1 < 𝐾)
8886, 87rplogcld 26689 . . . . . . . . . . 11 (𝜑 → (log‘𝐾) ∈ ℝ+)
8939, 88rpdivcld 13116 . . . . . . . . . 10 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ+)
9089rpcnd 13101 . . . . . . . . 9 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℂ)
91 rpcnne0 13075 . . . . . . . . . 10 (8 ∈ ℝ+ → (8 ∈ ℂ ∧ 8 ≠ 0))
9248, 91mp1i 13 . . . . . . . . 9 (𝜑 → (8 ∈ ℂ ∧ 8 ≠ 0))
93 4re 12377 . . . . . . . . . . 11 4 ∈ ℝ
94 4pos 12400 . . . . . . . . . . 11 0 < 4
9593, 94elrpii 13060 . . . . . . . . . 10 4 ∈ ℝ+
96 rpcnne0 13075 . . . . . . . . . 10 (4 ∈ ℝ+ → (4 ∈ ℂ ∧ 4 ≠ 0))
9795, 96mp1i 13 . . . . . . . . 9 (𝜑 → (4 ∈ ℂ ∧ 4 ≠ 0))
98 divmuldiv 11994 . . . . . . . . 9 ((((𝐿 · 𝐸) ∈ ℂ ∧ ((log‘𝑍) / (log‘𝐾)) ∈ ℂ) ∧ ((8 ∈ ℂ ∧ 8 ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0))) → (((𝐿 · 𝐸) / 8) · (((log‘𝑍) / (log‘𝐾)) / 4)) = (((𝐿 · 𝐸) · ((log‘𝑍) / (log‘𝐾))) / (8 · 4)))
9984, 90, 92, 97, 98syl22anc 838 . . . . . . . 8 (𝜑 → (((𝐿 · 𝐸) / 8) · (((log‘𝑍) / (log‘𝐾)) / 4)) = (((𝐿 · 𝐸) · ((log‘𝑍) / (log‘𝐾))) / (8 · 4)))
10010fveq2i 6923 . . . . . . . . . . . . . 14 (log‘𝐾) = (log‘(exp‘(𝐵 / 𝐸)))
1013, 16rpdivcld 13116 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 / 𝐸) ∈ ℝ+)
102101rpred 13099 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 / 𝐸) ∈ ℝ)
103102relogefd 26688 . . . . . . . . . . . . . 14 (𝜑 → (log‘(exp‘(𝐵 / 𝐸))) = (𝐵 / 𝐸))
104100, 103eqtrid 2792 . . . . . . . . . . . . 13 (𝜑 → (log‘𝐾) = (𝐵 / 𝐸))
105104oveq2d 7464 . . . . . . . . . . . 12 (𝜑 → ((log‘𝑍) / (log‘𝐾)) = ((log‘𝑍) / (𝐵 / 𝐸)))
10639rpcnd 13101 . . . . . . . . . . . . 13 (𝜑 → (log‘𝑍) ∈ ℂ)
1073rpcnne0d 13108 . . . . . . . . . . . . 13 (𝜑 → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
10816rpcnne0d 13108 . . . . . . . . . . . . 13 (𝜑 → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
109 divdiv2 12006 . . . . . . . . . . . . 13 (((log‘𝑍) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0)) → ((log‘𝑍) / (𝐵 / 𝐸)) = (((log‘𝑍) · 𝐸) / 𝐵))
110106, 107, 108, 109syl3anc 1371 . . . . . . . . . . . 12 (𝜑 → ((log‘𝑍) / (𝐵 / 𝐸)) = (((log‘𝑍) · 𝐸) / 𝐵))
111105, 110eqtrd 2780 . . . . . . . . . . 11 (𝜑 → ((log‘𝑍) / (log‘𝐾)) = (((log‘𝑍) · 𝐸) / 𝐵))
112111oveq2d 7464 . . . . . . . . . 10 (𝜑 → ((𝐿 · 𝐸) · ((log‘𝑍) / (log‘𝐾))) = ((𝐿 · 𝐸) · (((log‘𝑍) · 𝐸) / 𝐵)))
11316rpcnd 13101 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℂ)
114106, 113mulcld 11310 . . . . . . . . . . 11 (𝜑 → ((log‘𝑍) · 𝐸) ∈ ℂ)
115 divass 11967 . . . . . . . . . . 11 (((𝐿 · 𝐸) ∈ ℂ ∧ ((log‘𝑍) · 𝐸) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝐿 · 𝐸) · ((log‘𝑍) · 𝐸)) / 𝐵) = ((𝐿 · 𝐸) · (((log‘𝑍) · 𝐸) / 𝐵)))
11684, 114, 107, 115syl3anc 1371 . . . . . . . . . 10 (𝜑 → (((𝐿 · 𝐸) · ((log‘𝑍) · 𝐸)) / 𝐵) = ((𝐿 · 𝐸) · (((log‘𝑍) · 𝐸) / 𝐵)))
11715rpcnd 13101 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ℂ)
118117, 113, 106, 113mul4d 11502 . . . . . . . . . . . 12 (𝜑 → ((𝐿 · 𝐸) · ((log‘𝑍) · 𝐸)) = ((𝐿 · (log‘𝑍)) · (𝐸 · 𝐸)))
119113sqvald 14193 . . . . . . . . . . . . 13 (𝜑 → (𝐸↑2) = (𝐸 · 𝐸))
120119oveq2d 7464 . . . . . . . . . . . 12 (𝜑 → ((𝐿 · (log‘𝑍)) · (𝐸↑2)) = ((𝐿 · (log‘𝑍)) · (𝐸 · 𝐸)))
121113sqcld 14194 . . . . . . . . . . . . 13 (𝜑 → (𝐸↑2) ∈ ℂ)
122117, 106, 121mul32d 11500 . . . . . . . . . . . 12 (𝜑 → ((𝐿 · (log‘𝑍)) · (𝐸↑2)) = ((𝐿 · (𝐸↑2)) · (log‘𝑍)))
123118, 120, 1223eqtr2d 2786 . . . . . . . . . . 11 (𝜑 → ((𝐿 · 𝐸) · ((log‘𝑍) · 𝐸)) = ((𝐿 · (𝐸↑2)) · (log‘𝑍)))
124123oveq1d 7463 . . . . . . . . . 10 (𝜑 → (((𝐿 · 𝐸) · ((log‘𝑍) · 𝐸)) / 𝐵) = (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵))
125112, 116, 1243eqtr2d 2786 . . . . . . . . 9 (𝜑 → ((𝐿 · 𝐸) · ((log‘𝑍) / (log‘𝐾))) = (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵))
126 8t4e32 12875 . . . . . . . . . 10 (8 · 4) = 32
127126a1i 11 . . . . . . . . 9 (𝜑 → (8 · 4) = 32)
128125, 127oveq12d 7466 . . . . . . . 8 (𝜑 → (((𝐿 · 𝐸) · ((log‘𝑍) / (log‘𝐾))) / (8 · 4)) = ((((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵) / 32))
12920rpcnd 13101 . . . . . . . . . . 11 (𝜑 → (𝐿 · (𝐸↑2)) ∈ ℂ)
130129, 106mulcld 11310 . . . . . . . . . 10 (𝜑 → ((𝐿 · (𝐸↑2)) · (log‘𝑍)) ∈ ℂ)
131 rpcnne0 13075 . . . . . . . . . . 11 (32 ∈ ℝ+ → (32 ∈ ℂ ∧ 32 ≠ 0))
13225, 131mp1i 13 . . . . . . . . . 10 (𝜑 → (32 ∈ ℂ ∧ 32 ≠ 0))
133 divdiv1 12005 . . . . . . . . . 10 ((((𝐿 · (𝐸↑2)) · (log‘𝑍)) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (32 ∈ ℂ ∧ 32 ≠ 0)) → ((((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵) / 32) = (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (𝐵 · 32)))
134130, 107, 132, 133syl3anc 1371 . . . . . . . . 9 (𝜑 → ((((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵) / 32) = (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (𝐵 · 32)))
13523nncni 12303 . . . . . . . . . . 11 32 ∈ ℂ
1363rpcnd 13101 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
137 mulcom 11270 . . . . . . . . . . 11 ((32 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (32 · 𝐵) = (𝐵 · 32))
138135, 136, 137sylancr 586 . . . . . . . . . 10 (𝜑 → (32 · 𝐵) = (𝐵 · 32))
139138oveq2d 7464 . . . . . . . . 9 (𝜑 → (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (32 · 𝐵)) = (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (𝐵 · 32)))
14027rpcnne0d 13108 . . . . . . . . . 10 (𝜑 → ((32 · 𝐵) ∈ ℂ ∧ (32 · 𝐵) ≠ 0))
141 div23 11968 . . . . . . . . . 10 (((𝐿 · (𝐸↑2)) ∈ ℂ ∧ (log‘𝑍) ∈ ℂ ∧ ((32 · 𝐵) ∈ ℂ ∧ (32 · 𝐵) ≠ 0)) → (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (32 · 𝐵)) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)))
142129, 106, 140, 141syl3anc 1371 . . . . . . . . 9 (𝜑 → (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (32 · 𝐵)) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)))
143134, 139, 1423eqtr2d 2786 . . . . . . . 8 (𝜑 → ((((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵) / 32) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)))
14499, 128, 1433eqtrd 2784 . . . . . . 7 (𝜑 → (((𝐿 · 𝐸) / 8) · (((log‘𝑍) / (log‘𝐾)) / 4)) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)))
145144oveq1d 7463 . . . . . 6 (𝜑 → ((((𝐿 · 𝐸) / 8) · (((log‘𝑍) / (log‘𝐾)) / 4)) · (log‘𝑍)) = ((((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)) · (log‘𝑍)))
14650rpcnd 13101 . . . . . . 7 (𝜑 → ((𝐿 · 𝐸) / 8) ∈ ℂ)
14789rpred 13099 . . . . . . . . 9 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ)
148 4nn 12376 . . . . . . . . 9 4 ∈ ℕ
149 nndivre 12334 . . . . . . . . 9 ((((log‘𝑍) / (log‘𝐾)) ∈ ℝ ∧ 4 ∈ ℕ) → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ)
150147, 148, 149sylancl 585 . . . . . . . 8 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ)
151150recnd 11318 . . . . . . 7 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℂ)
152146, 106, 151mul32d 11500 . . . . . 6 (𝜑 → ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (((log‘𝑍) / (log‘𝐾)) / 4)) = ((((𝐿 · 𝐸) / 8) · (((log‘𝑍) / (log‘𝐾)) / 4)) · (log‘𝑍)))
153106sqvald 14193 . . . . . . . 8 (𝜑 → ((log‘𝑍)↑2) = ((log‘𝑍) · (log‘𝑍)))
154153oveq2d 7464 . . . . . . 7 (𝜑 → (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍) · (log‘𝑍))))
15528rpcnd 13101 . . . . . . . 8 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) ∈ ℂ)
156155, 106, 106mulassd 11313 . . . . . . 7 (𝜑 → ((((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)) · (log‘𝑍)) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍) · (log‘𝑍))))
157154, 156eqtr4d 2783 . . . . . 6 (𝜑 → (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) = ((((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)) · (log‘𝑍)))
158145, 152, 1573eqtr4d 2790 . . . . 5 (𝜑 → ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (((log‘𝑍) / (log‘𝐾)) / 4)) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))
15956simp3d 1144 . . . . . 6 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀))
160150, 63, 51lemul2d 13143 . . . . . 6 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀) ↔ ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (((log‘𝑍) / (log‘𝐾)) / 4)) ≤ ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀))))
161159, 160mpbid 232 . . . . 5 (𝜑 → ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (((log‘𝑍) / (log‘𝐾)) / 4)) ≤ ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀)))
162158, 161eqbrtrrd 5190 . . . 4 (𝜑 → (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) ≤ ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀)))
16342rpred 13099 . . . . 5 (𝜑 → (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) ∈ ℝ)
16451rpred 13099 . . . . . 6 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℝ)
165164, 63remulcld 11320 . . . . 5 (𝜑 → ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀)) ∈ ℝ)
166163, 165, 13lemul2d 13143 . . . 4 (𝜑 → ((((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) ≤ ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀)) ↔ ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ ((𝑈𝐸) · ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀)))))
167162, 166mpbid 232 . . 3 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ ((𝑈𝐸) · ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀))))
16813rpcnd 13101 . . . 4 (𝜑 → (𝑈𝐸) ∈ ℂ)
16951rpcnd 13101 . . . 4 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℂ)
17063recnd 11318 . . . 4 (𝜑 → (𝑁𝑀) ∈ ℂ)
171168, 169, 170mulassd 11313 . . 3 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) = ((𝑈𝐸) · ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀))))
172167, 171breqtrrd 5194 . 2 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)))
173 fzfid 14024 . . . 4 (𝜑 → (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
17460nnzd 12666 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
17585, 174rpexpcld 14296 . . . . . . . . . . 11 (𝜑 → (𝐾𝑁) ∈ ℝ+)
17635, 175rpdivcld 13116 . . . . . . . . . 10 (𝜑 → (𝑍 / (𝐾𝑁)) ∈ ℝ+)
177176rprege0d 13106 . . . . . . . . 9 (𝜑 → ((𝑍 / (𝐾𝑁)) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾𝑁))))
178 flge0nn0 13871 . . . . . . . . 9 (((𝑍 / (𝐾𝑁)) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾𝑁))) → (⌊‘(𝑍 / (𝐾𝑁))) ∈ ℕ0)
179 nn0p1nn 12592 . . . . . . . . 9 ((⌊‘(𝑍 / (𝐾𝑁))) ∈ ℕ0 → ((⌊‘(𝑍 / (𝐾𝑁))) + 1) ∈ ℕ)
180177, 178, 1793syl 18 . . . . . . . 8 (𝜑 → ((⌊‘(𝑍 / (𝐾𝑁))) + 1) ∈ ℕ)
181 nnuz 12946 . . . . . . . 8 ℕ = (ℤ‘1)
182180, 181eleqtrdi 2854 . . . . . . 7 (𝜑 → ((⌊‘(𝑍 / (𝐾𝑁))) + 1) ∈ (ℤ‘1))
183 fzss1 13623 . . . . . . 7 (((⌊‘(𝑍 / (𝐾𝑁))) + 1) ∈ (ℤ‘1) → (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
184182, 183syl 17 . . . . . 6 (𝜑 → (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
185184sselda 4008 . . . . 5 ((𝜑𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))))
186185, 82syldan 590 . . . 4 ((𝜑𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
187173, 186fsumrecl 15782 . . 3 (𝜑 → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
188 eluzfz2 13592 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
18958, 188syl 17 . . . 4 (𝜑𝑁 ∈ (𝑀...𝑁))
190 oveq1 7455 . . . . . . . 8 (𝑚 = 𝑀 → (𝑚𝑀) = (𝑀𝑀))
191190oveq2d 7464 . . . . . . 7 (𝑚 = 𝑀 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)))
192 oveq2 7456 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (𝐾𝑚) = (𝐾𝑀))
193192oveq2d 7464 . . . . . . . . . . 11 (𝑚 = 𝑀 → (𝑍 / (𝐾𝑚)) = (𝑍 / (𝐾𝑀)))
194193fveq2d 6924 . . . . . . . . . 10 (𝑚 = 𝑀 → (⌊‘(𝑍 / (𝐾𝑚))) = (⌊‘(𝑍 / (𝐾𝑀))))
195194oveq1d 7463 . . . . . . . . 9 (𝑚 = 𝑀 → ((⌊‘(𝑍 / (𝐾𝑚))) + 1) = ((⌊‘(𝑍 / (𝐾𝑀))) + 1))
196195oveq1d 7463 . . . . . . . 8 (𝑚 = 𝑀 → (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌))) = (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌))))
197196sumeq1d 15748 . . . . . . 7 (𝑚 = 𝑀 → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
198191, 197breq12d 5179 . . . . . 6 (𝑚 = 𝑀 → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
199198imbi2d 340 . . . . 5 (𝑚 = 𝑀 → ((𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ↔ (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
200 oveq1 7455 . . . . . . . 8 (𝑚 = 𝑗 → (𝑚𝑀) = (𝑗𝑀))
201200oveq2d 7464 . . . . . . 7 (𝑚 = 𝑗 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)))
202 oveq2 7456 . . . . . . . . . . . 12 (𝑚 = 𝑗 → (𝐾𝑚) = (𝐾𝑗))
203202oveq2d 7464 . . . . . . . . . . 11 (𝑚 = 𝑗 → (𝑍 / (𝐾𝑚)) = (𝑍 / (𝐾𝑗)))
204203fveq2d 6924 . . . . . . . . . 10 (𝑚 = 𝑗 → (⌊‘(𝑍 / (𝐾𝑚))) = (⌊‘(𝑍 / (𝐾𝑗))))
205204oveq1d 7463 . . . . . . . . 9 (𝑚 = 𝑗 → ((⌊‘(𝑍 / (𝐾𝑚))) + 1) = ((⌊‘(𝑍 / (𝐾𝑗))) + 1))
206205oveq1d 7463 . . . . . . . 8 (𝑚 = 𝑗 → (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌))) = (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))))
207206sumeq1d 15748 . . . . . . 7 (𝑚 = 𝑗 → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
208201, 207breq12d 5179 . . . . . 6 (𝑚 = 𝑗 → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
209208imbi2d 340 . . . . 5 (𝑚 = 𝑗 → ((𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ↔ (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
210 oveq1 7455 . . . . . . . 8 (𝑚 = (𝑗 + 1) → (𝑚𝑀) = ((𝑗 + 1) − 𝑀))
211210oveq2d 7464 . . . . . . 7 (𝑚 = (𝑗 + 1) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)))
212 oveq2 7456 . . . . . . . . . . . 12 (𝑚 = (𝑗 + 1) → (𝐾𝑚) = (𝐾↑(𝑗 + 1)))
213212oveq2d 7464 . . . . . . . . . . 11 (𝑚 = (𝑗 + 1) → (𝑍 / (𝐾𝑚)) = (𝑍 / (𝐾↑(𝑗 + 1))))
214213fveq2d 6924 . . . . . . . . . 10 (𝑚 = (𝑗 + 1) → (⌊‘(𝑍 / (𝐾𝑚))) = (⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))))
215214oveq1d 7463 . . . . . . . . 9 (𝑚 = (𝑗 + 1) → ((⌊‘(𝑍 / (𝐾𝑚))) + 1) = ((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1))
216215oveq1d 7463 . . . . . . . 8 (𝑚 = (𝑗 + 1) → (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌))) = (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))))
217216sumeq1d 15748 . . . . . . 7 (𝑚 = (𝑗 + 1) → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
218211, 217breq12d 5179 . . . . . 6 (𝑚 = (𝑗 + 1) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
219218imbi2d 340 . . . . 5 (𝑚 = (𝑗 + 1) → ((𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ↔ (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
220 oveq1 7455 . . . . . . . 8 (𝑚 = 𝑁 → (𝑚𝑀) = (𝑁𝑀))
221220oveq2d 7464 . . . . . . 7 (𝑚 = 𝑁 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)))
222 oveq2 7456 . . . . . . . . . . . 12 (𝑚 = 𝑁 → (𝐾𝑚) = (𝐾𝑁))
223222oveq2d 7464 . . . . . . . . . . 11 (𝑚 = 𝑁 → (𝑍 / (𝐾𝑚)) = (𝑍 / (𝐾𝑁)))
224223fveq2d 6924 . . . . . . . . . 10 (𝑚 = 𝑁 → (⌊‘(𝑍 / (𝐾𝑚))) = (⌊‘(𝑍 / (𝐾𝑁))))
225224oveq1d 7463 . . . . . . . . 9 (𝑚 = 𝑁 → ((⌊‘(𝑍 / (𝐾𝑚))) + 1) = ((⌊‘(𝑍 / (𝐾𝑁))) + 1))
226225oveq1d 7463 . . . . . . . 8 (𝑚 = 𝑁 → (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌))) = (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌))))
227226sumeq1d 15748 . . . . . . 7 (𝑚 = 𝑁 → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
228221, 227breq12d 5179 . . . . . 6 (𝑚 = 𝑁 → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
229228imbi2d 340 . . . . 5 (𝑚 = 𝑁 → ((𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ↔ (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
23057nncnd 12309 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
231230subidd 11635 . . . . . . . . 9 (𝜑 → (𝑀𝑀) = 0)
232231oveq2d 7464 . . . . . . . 8 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · 0))
23352rpcnd 13101 . . . . . . . . 9 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℂ)
234233mul01d 11489 . . . . . . . 8 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · 0) = 0)
235232, 234eqtrd 2780 . . . . . . 7 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)) = 0)
236 fzfid 14024 . . . . . . . 8 (𝜑 → (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
23757nnzd 12666 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℤ)
23885, 237rpexpcld 14296 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾𝑀) ∈ ℝ+)
23935, 238rpdivcld 13116 . . . . . . . . . . . . . 14 (𝜑 → (𝑍 / (𝐾𝑀)) ∈ ℝ+)
240239rprege0d 13106 . . . . . . . . . . . . 13 (𝜑 → ((𝑍 / (𝐾𝑀)) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾𝑀))))
241 flge0nn0 13871 . . . . . . . . . . . . 13 (((𝑍 / (𝐾𝑀)) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾𝑀))) → (⌊‘(𝑍 / (𝐾𝑀))) ∈ ℕ0)
242 nn0p1nn 12592 . . . . . . . . . . . . 13 ((⌊‘(𝑍 / (𝐾𝑀))) ∈ ℕ0 → ((⌊‘(𝑍 / (𝐾𝑀))) + 1) ∈ ℕ)
243240, 241, 2423syl 18 . . . . . . . . . . . 12 (𝜑 → ((⌊‘(𝑍 / (𝐾𝑀))) + 1) ∈ ℕ)
244243, 181eleqtrdi 2854 . . . . . . . . . . 11 (𝜑 → ((⌊‘(𝑍 / (𝐾𝑀))) + 1) ∈ (ℤ‘1))
245 fzss1 13623 . . . . . . . . . . 11 (((⌊‘(𝑍 / (𝐾𝑀))) + 1) ∈ (ℤ‘1) → (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
246244, 245syl 17 . . . . . . . . . 10 (𝜑 → (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
247246sselda 4008 . . . . . . . . 9 ((𝜑𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))))
248247, 82syldan 590 . . . . . . . 8 ((𝜑𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
249 elfzle2 13588 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))) → 𝑛 ≤ (⌊‘(𝑍 / 𝑌)))
250249adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ≤ (⌊‘(𝑍 / 𝑌)))
25129simpld 494 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ ℝ+)
25235, 251rpdivcld 13116 . . . . . . . . . . . . . 14 (𝜑 → (𝑍 / 𝑌) ∈ ℝ+)
253252rpred 13099 . . . . . . . . . . . . 13 (𝜑 → (𝑍 / 𝑌) ∈ ℝ)
254 elfzelz 13584 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))) → 𝑛 ∈ ℤ)
255 flge 13856 . . . . . . . . . . . . 13 (((𝑍 / 𝑌) ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ (𝑍 / 𝑌) ↔ 𝑛 ≤ (⌊‘(𝑍 / 𝑌))))
256253, 254, 255syl2an 595 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑛 ≤ (𝑍 / 𝑌) ↔ 𝑛 ≤ (⌊‘(𝑍 / 𝑌))))
257250, 256mpbird 257 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ≤ (𝑍 / 𝑌))
25871, 257jca 511 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝑍 / 𝑌)))
259 pntlem1.U . . . . . . . . . . 11 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
2601, 2, 3, 4, 5, 6, 7, 8, 9, 10, 29, 30, 31, 32, 33, 54, 55, 259pntlemn 27662 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝑍 / 𝑌))) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
261258, 260syldan 590 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
262247, 261syldan 590 . . . . . . . 8 ((𝜑𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
263236, 248, 262fsumge0 15843 . . . . . . 7 (𝜑 → 0 ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
264235, 263eqbrtrd 5188 . . . . . 6 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
265264a1i 11 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
266 pntlem1.K . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
267 eqid 2740 . . . . . . . . . 10 (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) = (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))
2681, 2, 3, 4, 5, 6, 7, 8, 9, 10, 29, 30, 31, 32, 33, 54, 55, 259, 266, 267pntlemi 27666 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
26952adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ+)
270269rpred 13099 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ)
271 elfzoelz 13716 . . . . . . . . . . . . . 14 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ ℤ)
272271adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℤ)
273272zred 12747 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℝ)
27457adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℕ)
275274nnred 12308 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ)
276273, 275resubcld 11718 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗𝑀) ∈ ℝ)
277270, 276remulcld 11320 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ∈ ℝ)
278 fzfid 14024 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∈ Fin)
279 ssun1 4201 . . . . . . . . . . . . . . 15 (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ⊆ ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∪ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))))
28036adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑍 ∈ ℝ)
28185adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐾 ∈ ℝ+)
282272peano2zd 12750 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ ℤ)
283281, 282rpexpcld 14296 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐾↑(𝑗 + 1)) ∈ ℝ+)
284280, 283rerpdivcld 13130 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / (𝐾↑(𝑗 + 1))) ∈ ℝ)
285281, 272rpexpcld 14296 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐾𝑗) ∈ ℝ+)
286280, 285rerpdivcld 13130 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / (𝐾𝑗)) ∈ ℝ)
28786adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐾 ∈ ℝ)
288 1re 11290 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ
289 ltle 11378 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (1 < 𝐾 → 1 ≤ 𝐾))
290288, 86, 289sylancr 586 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (1 < 𝐾 → 1 ≤ 𝐾))
29187, 290mpd 15 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ≤ 𝐾)
292291adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 1 ≤ 𝐾)
293 uzid 12918 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
294 peano2uz 12966 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (ℤ𝑗) → (𝑗 + 1) ∈ (ℤ𝑗))
295272, 293, 2943syl 18 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ (ℤ𝑗))
296287, 292, 295leexp2ad 14303 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐾𝑗) ≤ (𝐾↑(𝑗 + 1)))
29735adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑍 ∈ ℝ+)
298285, 283, 297lediv2d 13123 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝐾𝑗) ≤ (𝐾↑(𝑗 + 1)) ↔ (𝑍 / (𝐾↑(𝑗 + 1))) ≤ (𝑍 / (𝐾𝑗))))
299296, 298mpbid 232 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / (𝐾↑(𝑗 + 1))) ≤ (𝑍 / (𝐾𝑗)))
300 flword2 13864 . . . . . . . . . . . . . . . . . 18 (((𝑍 / (𝐾↑(𝑗 + 1))) ∈ ℝ ∧ (𝑍 / (𝐾𝑗)) ∈ ℝ ∧ (𝑍 / (𝐾↑(𝑗 + 1))) ≤ (𝑍 / (𝐾𝑗))) → (⌊‘(𝑍 / (𝐾𝑗))) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾↑(𝑗 + 1))))))
301284, 286, 299, 300syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / (𝐾𝑗))) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾↑(𝑗 + 1))))))
302 eluzp1p1 12931 . . . . . . . . . . . . . . . . 17 ((⌊‘(𝑍 / (𝐾𝑗))) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾↑(𝑗 + 1))))) → ((⌊‘(𝑍 / (𝐾𝑗))) + 1) ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)))
303301, 302syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((⌊‘(𝑍 / (𝐾𝑗))) + 1) ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)))
304286flcld 13849 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / (𝐾𝑗))) ∈ ℤ)
305252adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / 𝑌) ∈ ℝ+)
306305rpred 13099 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / 𝑌) ∈ ℝ)
307306flcld 13849 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / 𝑌)) ∈ ℤ)
308251adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑌 ∈ ℝ+)
309308rpred 13099 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑌 ∈ ℝ)
310285rpred 13099 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐾𝑗) ∈ ℝ)
31130simpld 494 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑋 ∈ ℝ+)
312311rpred 13099 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑋 ∈ ℝ)
313312adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℝ)
31430simprd 495 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑌 < 𝑋)
315314adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑌 < 𝑋)
316 elfzofz 13732 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (𝑀...𝑁))
3171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 29, 30, 31, 32, 33, 54, 55pntlemh 27661 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝑗) ∧ (𝐾𝑗) ≤ (√‘𝑍)))
318316, 317sylan2 592 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑋 < (𝐾𝑗) ∧ (𝐾𝑗) ≤ (√‘𝑍)))
319318simpld 494 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑋 < (𝐾𝑗))
320309, 313, 310, 315, 319lttrd 11451 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑌 < (𝐾𝑗))
321309, 310, 320ltled 11438 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑌 ≤ (𝐾𝑗))
322308, 285, 297lediv2d 13123 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑌 ≤ (𝐾𝑗) ↔ (𝑍 / (𝐾𝑗)) ≤ (𝑍 / 𝑌)))
323321, 322mpbid 232 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / (𝐾𝑗)) ≤ (𝑍 / 𝑌))
324 flwordi 13863 . . . . . . . . . . . . . . . . . 18 (((𝑍 / (𝐾𝑗)) ∈ ℝ ∧ (𝑍 / 𝑌) ∈ ℝ ∧ (𝑍 / (𝐾𝑗)) ≤ (𝑍 / 𝑌)) → (⌊‘(𝑍 / (𝐾𝑗))) ≤ (⌊‘(𝑍 / 𝑌)))
325286, 306, 323, 324syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / (𝐾𝑗))) ≤ (⌊‘(𝑍 / 𝑌)))
326 eluz2 12909 . . . . . . . . . . . . . . . . 17 ((⌊‘(𝑍 / 𝑌)) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾𝑗)))) ↔ ((⌊‘(𝑍 / (𝐾𝑗))) ∈ ℤ ∧ (⌊‘(𝑍 / 𝑌)) ∈ ℤ ∧ (⌊‘(𝑍 / (𝐾𝑗))) ≤ (⌊‘(𝑍 / 𝑌))))
327304, 307, 325, 326syl3anbrc 1343 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / 𝑌)) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾𝑗)))))
328 fzsplit2 13609 . . . . . . . . . . . . . . . 16 ((((⌊‘(𝑍 / (𝐾𝑗))) + 1) ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)) ∧ (⌊‘(𝑍 / 𝑌)) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾𝑗))))) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))) = ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∪ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))))
329303, 327, 328syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))) = ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∪ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))))
330279, 329sseqtrrid 4062 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ⊆ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))))
331297, 283rpdivcld 13116 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / (𝐾↑(𝑗 + 1))) ∈ ℝ+)
332331rprege0d 13106 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑍 / (𝐾↑(𝑗 + 1))) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾↑(𝑗 + 1)))))
333 flge0nn0 13871 . . . . . . . . . . . . . . . . 17 (((𝑍 / (𝐾↑(𝑗 + 1))) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾↑(𝑗 + 1)))) → (⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) ∈ ℕ0)
334 nn0p1nn 12592 . . . . . . . . . . . . . . . . 17 ((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) ∈ ℕ0 → ((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1) ∈ ℕ)
335332, 333, 3343syl 18 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1) ∈ ℕ)
336335, 181eleqtrdi 2854 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1) ∈ (ℤ‘1))
337 fzss1 13623 . . . . . . . . . . . . . . 15 (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1) ∈ (ℤ‘1) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
338336, 337syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
339330, 338sstrd 4019 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
340339sselda 4008 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))) → 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))))
34182adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
342340, 341syldan 590 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
343278, 342fsumrecl 15782 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
344 fzfid 14024 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
345 ssun2 4202 . . . . . . . . . . . . . . 15 (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∪ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))))
346345, 329sseqtrrid 4062 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))))
347346, 338sstrd 4019 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
348347sselda 4008 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))))
349348, 341syldan 590 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
350344, 349fsumrecl 15782 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
351 le2add 11772 . . . . . . . . . 10 (((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ ∧ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ∈ ℝ) ∧ (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ ∧ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∧ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))) ≤ (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
352270, 277, 343, 350, 351syl22anc 838 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∧ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))) ≤ (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
353268, 352mpand 694 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))) ≤ (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
354233adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℂ)
355 1cnd 11285 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 1 ∈ ℂ)
356272zcnd 12748 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℂ)
357230adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℂ)
358356, 357subcld 11647 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗𝑀) ∈ ℂ)
359354, 355, 358adddid 11314 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (1 + (𝑗𝑀))) = ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · 1) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))))
360355, 358addcomd 11492 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (1 + (𝑗𝑀)) = ((𝑗𝑀) + 1))
361356, 355, 357addsubd 11668 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑗 + 1) − 𝑀) = ((𝑗𝑀) + 1))
362360, 361eqtr4d 2783 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (1 + (𝑗𝑀)) = ((𝑗 + 1) − 𝑀))
363362oveq2d 7464 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (1 + (𝑗𝑀))) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)))
364354mulridd 11307 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · 1) = ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))))
365364oveq1d 7463 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · 1) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))))
366359, 363, 3653eqtr3d 2788 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))))
367 reflcl 13847 . . . . . . . . . . . . 13 ((𝑍 / (𝐾𝑗)) ∈ ℝ → (⌊‘(𝑍 / (𝐾𝑗))) ∈ ℝ)
368286, 367syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / (𝐾𝑗))) ∈ ℝ)
369368ltp1d 12225 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / (𝐾𝑗))) < ((⌊‘(𝑍 / (𝐾𝑗))) + 1))
370 fzdisj 13611 . . . . . . . . . . 11 ((⌊‘(𝑍 / (𝐾𝑗))) < ((⌊‘(𝑍 / (𝐾𝑗))) + 1) → ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∩ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))) = ∅)
371369, 370syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∩ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))) = ∅)
372 fzfid 14024 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
373338sselda 4008 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))))
374373, 341syldan 590 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
375374recnd 11318 . . . . . . . . . 10 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℂ)
376371, 329, 372, 375fsumsplit 15789 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
377366, 376breq12d 5179 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))) ≤ (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
378353, 377sylibrd 259 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
379378expcom 413 . . . . . 6 (𝑗 ∈ (𝑀..^𝑁) → (𝜑 → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
380379a2d 29 . . . . 5 (𝑗 ∈ (𝑀..^𝑁) → ((𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) → (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
381199, 209, 219, 229, 265, 380fzind2 13835 . . . 4 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
382189, 381mpcom 38 . . 3 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
38365, 82, 261, 184fsumless 15844 . . 3 (𝜑 → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
38464, 187, 83, 382, 383letrd 11447 . 2 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
38544, 64, 83, 172, 384letrd 11447 1 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cun 3974  cin 3975  wss 3976  c0 4352   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  +∞cpnf 11321   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  3c3 12349  4c4 12350  8c8 12354  0cn0 12553  cz 12639  cdc 12758  cuz 12903  +crp 13057  (,)cioo 13407  [,)cico 13409  [,]cicc 13410  ...cfz 13567  ..^cfzo 13711  cfl 13841  cexp 14112  csqrt 15282  abscabs 15283  Σcsu 15734  expce 16109  eceu 16110  logclog 26614  ψcchp 27154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-e 16116  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-gcd 16541  df-prm 16719  df-pc 16884  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-vma 27159  df-chp 27160
This theorem is referenced by:  pntlemo  27669
  Copyright terms: Public domain W3C validator