Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemf Structured version   Visualization version   GIF version

Theorem pntlemf 26278
 Description: Lemma for pnt 26287. Add up the pieces in pntlemi 26277 to get an estimate slightly better than the naive lower bound 0. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
Assertion
Ref Expression
pntlemf (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
Distinct variable groups:   𝑧,𝐶   𝑦,𝑛,𝑧,𝑢,𝐿   𝑛,𝐾,𝑦,𝑧   𝑛,𝑀,𝑧   𝜑,𝑛   𝑛,𝑁,𝑧   𝑅,𝑛,𝑢,𝑦,𝑧   𝑈,𝑛,𝑧   𝑛,𝑊,𝑧   𝑛,𝑋,𝑦,𝑧   𝑛,𝑌,𝑧   𝑛,𝑎,𝑢,𝑦,𝑧,𝐸   𝑛,𝑍,𝑢,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐶(𝑦,𝑢,𝑛,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑛,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑎)   𝐹(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑀(𝑦,𝑢,𝑎)   𝑁(𝑦,𝑢,𝑎)   𝑊(𝑦,𝑢,𝑎)   𝑋(𝑢,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑎)

Proof of Theorem pntlemf
Dummy variables 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pntlem1.r . . . . . . 7 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem1.a . . . . . . 7 (𝜑𝐴 ∈ ℝ+)
3 pntlem1.b . . . . . . 7 (𝜑𝐵 ∈ ℝ+)
4 pntlem1.l . . . . . . 7 (𝜑𝐿 ∈ (0(,)1))
5 pntlem1.d . . . . . . 7 𝐷 = (𝐴 + 1)
6 pntlem1.f . . . . . . 7 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
7 pntlem1.u . . . . . . 7 (𝜑𝑈 ∈ ℝ+)
8 pntlem1.u2 . . . . . . 7 (𝜑𝑈𝐴)
9 pntlem1.e . . . . . . 7 𝐸 = (𝑈 / 𝐷)
10 pntlem1.k . . . . . . 7 𝐾 = (exp‘(𝐵 / 𝐸))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 26268 . . . . . 6 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
1211simp3d 1142 . . . . 5 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
1312simp3d 1142 . . . 4 (𝜑 → (𝑈𝐸) ∈ ℝ+)
141, 2, 3, 4, 5, 6pntlemd 26267 . . . . . . . 8 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
1514simp1d 1140 . . . . . . 7 (𝜑𝐿 ∈ ℝ+)
1611simp1d 1140 . . . . . . . 8 (𝜑𝐸 ∈ ℝ+)
17 2z 12043 . . . . . . . 8 2 ∈ ℤ
18 rpexpcl 13488 . . . . . . . 8 ((𝐸 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐸↑2) ∈ ℝ+)
1916, 17, 18sylancl 590 . . . . . . 7 (𝜑 → (𝐸↑2) ∈ ℝ+)
2015, 19rpmulcld 12478 . . . . . 6 (𝜑 → (𝐿 · (𝐸↑2)) ∈ ℝ+)
21 3nn0 11942 . . . . . . . . 9 3 ∈ ℕ0
22 2nn 11737 . . . . . . . . 9 2 ∈ ℕ
2321, 22decnncl 12147 . . . . . . . 8 32 ∈ ℕ
24 nnrp 12431 . . . . . . . 8 (32 ∈ ℕ → 32 ∈ ℝ+)
2523, 24ax-mp 5 . . . . . . 7 32 ∈ ℝ+
26 rpmulcl 12443 . . . . . . 7 ((32 ∈ ℝ+𝐵 ∈ ℝ+) → (32 · 𝐵) ∈ ℝ+)
2725, 3, 26sylancr 591 . . . . . 6 (𝜑 → (32 · 𝐵) ∈ ℝ+)
2820, 27rpdivcld 12479 . . . . 5 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) ∈ ℝ+)
29 pntlem1.y . . . . . . . . . 10 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
30 pntlem1.x . . . . . . . . . 10 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
31 pntlem1.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
32 pntlem1.w . . . . . . . . . 10 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
33 pntlem1.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝑊[,)+∞))
341, 2, 3, 4, 5, 6, 7, 8, 9, 10, 29, 30, 31, 32, 33pntlemb 26270 . . . . . . . . 9 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
3534simp1d 1140 . . . . . . . 8 (𝜑𝑍 ∈ ℝ+)
3635rpred 12462 . . . . . . 7 (𝜑𝑍 ∈ ℝ)
3734simp2d 1141 . . . . . . . 8 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
3837simp1d 1140 . . . . . . 7 (𝜑 → 1 < 𝑍)
3936, 38rplogcld 25309 . . . . . 6 (𝜑 → (log‘𝑍) ∈ ℝ+)
40 rpexpcl 13488 . . . . . 6 (((log‘𝑍) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((log‘𝑍)↑2) ∈ ℝ+)
4139, 17, 40sylancl 590 . . . . 5 (𝜑 → ((log‘𝑍)↑2) ∈ ℝ+)
4228, 41rpmulcld 12478 . . . 4 (𝜑 → (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) ∈ ℝ+)
4313, 42rpmulcld 12478 . . 3 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ∈ ℝ+)
4443rpred 12462 . 2 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ∈ ℝ)
4515, 16rpmulcld 12478 . . . . . . 7 (𝜑 → (𝐿 · 𝐸) ∈ ℝ+)
46 8re 11760 . . . . . . . 8 8 ∈ ℝ
47 8pos 11776 . . . . . . . 8 0 < 8
4846, 47elrpii 12423 . . . . . . 7 8 ∈ ℝ+
49 rpdivcl 12445 . . . . . . 7 (((𝐿 · 𝐸) ∈ ℝ+ ∧ 8 ∈ ℝ+) → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
5045, 48, 49sylancl 590 . . . . . 6 (𝜑 → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
5150, 39rpmulcld 12478 . . . . 5 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℝ+)
5213, 51rpmulcld 12478 . . . 4 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ+)
5352rpred 12462 . . 3 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ)
54 pntlem1.m . . . . . . . 8 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
55 pntlem1.n . . . . . . . 8 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
561, 2, 3, 4, 5, 6, 7, 8, 9, 10, 29, 30, 31, 32, 33, 54, 55pntlemg 26271 . . . . . . 7 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
5756simp1d 1140 . . . . . 6 (𝜑𝑀 ∈ ℕ)
5856simp2d 1141 . . . . . 6 (𝜑𝑁 ∈ (ℤ𝑀))
59 eluznn 12348 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℕ)
6057, 58, 59syl2anc 588 . . . . 5 (𝜑𝑁 ∈ ℕ)
6160nnred 11679 . . . 4 (𝜑𝑁 ∈ ℝ)
6257nnred 11679 . . . 4 (𝜑𝑀 ∈ ℝ)
6361, 62resubcld 11096 . . 3 (𝜑 → (𝑁𝑀) ∈ ℝ)
6453, 63remulcld 10699 . 2 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) ∈ ℝ)
65 fzfid 13380 . . 3 (𝜑 → (1...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
667rpred 12462 . . . . . 6 (𝜑𝑈 ∈ ℝ)
67 elfznn 12975 . . . . . 6 (𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))) → 𝑛 ∈ ℕ)
68 nndivre 11705 . . . . . 6 ((𝑈 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑈 / 𝑛) ∈ ℝ)
6966, 67, 68syl2an 599 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑈 / 𝑛) ∈ ℝ)
7035adantr 485 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑍 ∈ ℝ+)
7167adantl 486 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℕ)
7271nnrpd 12460 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℝ+)
7370, 72rpdivcld 12479 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑍 / 𝑛) ∈ ℝ+)
741pntrf 26236 . . . . . . . . . 10 𝑅:ℝ+⟶ℝ
7574ffvelrni 6839 . . . . . . . . 9 ((𝑍 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
7673, 75syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
7776, 70rerpdivcld 12493 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℝ)
7877recnd 10697 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℂ)
7978abscld 14834 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ∈ ℝ)
8069, 79resubcld 11096 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) ∈ ℝ)
8172relogcld 25303 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℝ)
8280, 81remulcld 10699 . . 3 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
8365, 82fsumrecl 15129 . 2 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
8445rpcnd 12464 . . . . . . . . 9 (𝜑 → (𝐿 · 𝐸) ∈ ℂ)
8511simp2d 1141 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ ℝ+)
8685rpred 12462 . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℝ)
8712simp2d 1141 . . . . . . . . . . . 12 (𝜑 → 1 < 𝐾)
8886, 87rplogcld 25309 . . . . . . . . . . 11 (𝜑 → (log‘𝐾) ∈ ℝ+)
8939, 88rpdivcld 12479 . . . . . . . . . 10 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ+)
9089rpcnd 12464 . . . . . . . . 9 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℂ)
91 rpcnne0 12438 . . . . . . . . . 10 (8 ∈ ℝ+ → (8 ∈ ℂ ∧ 8 ≠ 0))
9248, 91mp1i 13 . . . . . . . . 9 (𝜑 → (8 ∈ ℂ ∧ 8 ≠ 0))
93 4re 11748 . . . . . . . . . . 11 4 ∈ ℝ
94 4pos 11771 . . . . . . . . . . 11 0 < 4
9593, 94elrpii 12423 . . . . . . . . . 10 4 ∈ ℝ+
96 rpcnne0 12438 . . . . . . . . . 10 (4 ∈ ℝ+ → (4 ∈ ℂ ∧ 4 ≠ 0))
9795, 96mp1i 13 . . . . . . . . 9 (𝜑 → (4 ∈ ℂ ∧ 4 ≠ 0))
98 divmuldiv 11368 . . . . . . . . 9 ((((𝐿 · 𝐸) ∈ ℂ ∧ ((log‘𝑍) / (log‘𝐾)) ∈ ℂ) ∧ ((8 ∈ ℂ ∧ 8 ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0))) → (((𝐿 · 𝐸) / 8) · (((log‘𝑍) / (log‘𝐾)) / 4)) = (((𝐿 · 𝐸) · ((log‘𝑍) / (log‘𝐾))) / (8 · 4)))
9984, 90, 92, 97, 98syl22anc 838 . . . . . . . 8 (𝜑 → (((𝐿 · 𝐸) / 8) · (((log‘𝑍) / (log‘𝐾)) / 4)) = (((𝐿 · 𝐸) · ((log‘𝑍) / (log‘𝐾))) / (8 · 4)))
10010fveq2i 6659 . . . . . . . . . . . . . 14 (log‘𝐾) = (log‘(exp‘(𝐵 / 𝐸)))
1013, 16rpdivcld 12479 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 / 𝐸) ∈ ℝ+)
102101rpred 12462 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 / 𝐸) ∈ ℝ)
103102relogefd 25308 . . . . . . . . . . . . . 14 (𝜑 → (log‘(exp‘(𝐵 / 𝐸))) = (𝐵 / 𝐸))
104100, 103syl5eq 2806 . . . . . . . . . . . . 13 (𝜑 → (log‘𝐾) = (𝐵 / 𝐸))
105104oveq2d 7164 . . . . . . . . . . . 12 (𝜑 → ((log‘𝑍) / (log‘𝐾)) = ((log‘𝑍) / (𝐵 / 𝐸)))
10639rpcnd 12464 . . . . . . . . . . . . 13 (𝜑 → (log‘𝑍) ∈ ℂ)
1073rpcnne0d 12471 . . . . . . . . . . . . 13 (𝜑 → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
10816rpcnne0d 12471 . . . . . . . . . . . . 13 (𝜑 → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
109 divdiv2 11380 . . . . . . . . . . . . 13 (((log‘𝑍) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0)) → ((log‘𝑍) / (𝐵 / 𝐸)) = (((log‘𝑍) · 𝐸) / 𝐵))
110106, 107, 108, 109syl3anc 1369 . . . . . . . . . . . 12 (𝜑 → ((log‘𝑍) / (𝐵 / 𝐸)) = (((log‘𝑍) · 𝐸) / 𝐵))
111105, 110eqtrd 2794 . . . . . . . . . . 11 (𝜑 → ((log‘𝑍) / (log‘𝐾)) = (((log‘𝑍) · 𝐸) / 𝐵))
112111oveq2d 7164 . . . . . . . . . 10 (𝜑 → ((𝐿 · 𝐸) · ((log‘𝑍) / (log‘𝐾))) = ((𝐿 · 𝐸) · (((log‘𝑍) · 𝐸) / 𝐵)))
11316rpcnd 12464 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℂ)
114106, 113mulcld 10689 . . . . . . . . . . 11 (𝜑 → ((log‘𝑍) · 𝐸) ∈ ℂ)
115 divass 11344 . . . . . . . . . . 11 (((𝐿 · 𝐸) ∈ ℂ ∧ ((log‘𝑍) · 𝐸) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝐿 · 𝐸) · ((log‘𝑍) · 𝐸)) / 𝐵) = ((𝐿 · 𝐸) · (((log‘𝑍) · 𝐸) / 𝐵)))
11684, 114, 107, 115syl3anc 1369 . . . . . . . . . 10 (𝜑 → (((𝐿 · 𝐸) · ((log‘𝑍) · 𝐸)) / 𝐵) = ((𝐿 · 𝐸) · (((log‘𝑍) · 𝐸) / 𝐵)))
11715rpcnd 12464 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ℂ)
118117, 113, 106, 113mul4d 10880 . . . . . . . . . . . 12 (𝜑 → ((𝐿 · 𝐸) · ((log‘𝑍) · 𝐸)) = ((𝐿 · (log‘𝑍)) · (𝐸 · 𝐸)))
119113sqvald 13547 . . . . . . . . . . . . 13 (𝜑 → (𝐸↑2) = (𝐸 · 𝐸))
120119oveq2d 7164 . . . . . . . . . . . 12 (𝜑 → ((𝐿 · (log‘𝑍)) · (𝐸↑2)) = ((𝐿 · (log‘𝑍)) · (𝐸 · 𝐸)))
121113sqcld 13548 . . . . . . . . . . . . 13 (𝜑 → (𝐸↑2) ∈ ℂ)
122117, 106, 121mul32d 10878 . . . . . . . . . . . 12 (𝜑 → ((𝐿 · (log‘𝑍)) · (𝐸↑2)) = ((𝐿 · (𝐸↑2)) · (log‘𝑍)))
123118, 120, 1223eqtr2d 2800 . . . . . . . . . . 11 (𝜑 → ((𝐿 · 𝐸) · ((log‘𝑍) · 𝐸)) = ((𝐿 · (𝐸↑2)) · (log‘𝑍)))
124123oveq1d 7163 . . . . . . . . . 10 (𝜑 → (((𝐿 · 𝐸) · ((log‘𝑍) · 𝐸)) / 𝐵) = (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵))
125112, 116, 1243eqtr2d 2800 . . . . . . . . 9 (𝜑 → ((𝐿 · 𝐸) · ((log‘𝑍) / (log‘𝐾))) = (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵))
126 8t4e32 12244 . . . . . . . . . 10 (8 · 4) = 32
127126a1i 11 . . . . . . . . 9 (𝜑 → (8 · 4) = 32)
128125, 127oveq12d 7166 . . . . . . . 8 (𝜑 → (((𝐿 · 𝐸) · ((log‘𝑍) / (log‘𝐾))) / (8 · 4)) = ((((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵) / 32))
12920rpcnd 12464 . . . . . . . . . . 11 (𝜑 → (𝐿 · (𝐸↑2)) ∈ ℂ)
130129, 106mulcld 10689 . . . . . . . . . 10 (𝜑 → ((𝐿 · (𝐸↑2)) · (log‘𝑍)) ∈ ℂ)
131 rpcnne0 12438 . . . . . . . . . . 11 (32 ∈ ℝ+ → (32 ∈ ℂ ∧ 32 ≠ 0))
13225, 131mp1i 13 . . . . . . . . . 10 (𝜑 → (32 ∈ ℂ ∧ 32 ≠ 0))
133 divdiv1 11379 . . . . . . . . . 10 ((((𝐿 · (𝐸↑2)) · (log‘𝑍)) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (32 ∈ ℂ ∧ 32 ≠ 0)) → ((((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵) / 32) = (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (𝐵 · 32)))
134130, 107, 132, 133syl3anc 1369 . . . . . . . . 9 (𝜑 → ((((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵) / 32) = (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (𝐵 · 32)))
13523nncni 11674 . . . . . . . . . . 11 32 ∈ ℂ
1363rpcnd 12464 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
137 mulcom 10651 . . . . . . . . . . 11 ((32 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (32 · 𝐵) = (𝐵 · 32))
138135, 136, 137sylancr 591 . . . . . . . . . 10 (𝜑 → (32 · 𝐵) = (𝐵 · 32))
139138oveq2d 7164 . . . . . . . . 9 (𝜑 → (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (32 · 𝐵)) = (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (𝐵 · 32)))
14027rpcnne0d 12471 . . . . . . . . . 10 (𝜑 → ((32 · 𝐵) ∈ ℂ ∧ (32 · 𝐵) ≠ 0))
141 div23 11345 . . . . . . . . . 10 (((𝐿 · (𝐸↑2)) ∈ ℂ ∧ (log‘𝑍) ∈ ℂ ∧ ((32 · 𝐵) ∈ ℂ ∧ (32 · 𝐵) ≠ 0)) → (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (32 · 𝐵)) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)))
142129, 106, 140, 141syl3anc 1369 . . . . . . . . 9 (𝜑 → (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (32 · 𝐵)) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)))
143134, 139, 1423eqtr2d 2800 . . . . . . . 8 (𝜑 → ((((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵) / 32) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)))
14499, 128, 1433eqtrd 2798 . . . . . . 7 (𝜑 → (((𝐿 · 𝐸) / 8) · (((log‘𝑍) / (log‘𝐾)) / 4)) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)))
145144oveq1d 7163 . . . . . 6 (𝜑 → ((((𝐿 · 𝐸) / 8) · (((log‘𝑍) / (log‘𝐾)) / 4)) · (log‘𝑍)) = ((((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)) · (log‘𝑍)))
14650rpcnd 12464 . . . . . . 7 (𝜑 → ((𝐿 · 𝐸) / 8) ∈ ℂ)
14789rpred 12462 . . . . . . . . 9 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ)
148 4nn 11747 . . . . . . . . 9 4 ∈ ℕ
149 nndivre 11705 . . . . . . . . 9 ((((log‘𝑍) / (log‘𝐾)) ∈ ℝ ∧ 4 ∈ ℕ) → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ)
150147, 148, 149sylancl 590 . . . . . . . 8 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ)
151150recnd 10697 . . . . . . 7 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℂ)
152146, 106, 151mul32d 10878 . . . . . 6 (𝜑 → ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (((log‘𝑍) / (log‘𝐾)) / 4)) = ((((𝐿 · 𝐸) / 8) · (((log‘𝑍) / (log‘𝐾)) / 4)) · (log‘𝑍)))
153106sqvald 13547 . . . . . . . 8 (𝜑 → ((log‘𝑍)↑2) = ((log‘𝑍) · (log‘𝑍)))
154153oveq2d 7164 . . . . . . 7 (𝜑 → (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍) · (log‘𝑍))))
15528rpcnd 12464 . . . . . . . 8 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) ∈ ℂ)
156155, 106, 106mulassd 10692 . . . . . . 7 (𝜑 → ((((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)) · (log‘𝑍)) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍) · (log‘𝑍))))
157154, 156eqtr4d 2797 . . . . . 6 (𝜑 → (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) = ((((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)) · (log‘𝑍)))
158145, 152, 1573eqtr4d 2804 . . . . 5 (𝜑 → ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (((log‘𝑍) / (log‘𝐾)) / 4)) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))
15956simp3d 1142 . . . . . 6 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀))
160150, 63, 51lemul2d 12506 . . . . . 6 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀) ↔ ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (((log‘𝑍) / (log‘𝐾)) / 4)) ≤ ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀))))
161159, 160mpbid 235 . . . . 5 (𝜑 → ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (((log‘𝑍) / (log‘𝐾)) / 4)) ≤ ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀)))
162158, 161eqbrtrrd 5054 . . . 4 (𝜑 → (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) ≤ ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀)))
16342rpred 12462 . . . . 5 (𝜑 → (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) ∈ ℝ)
16451rpred 12462 . . . . . 6 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℝ)
165164, 63remulcld 10699 . . . . 5 (𝜑 → ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀)) ∈ ℝ)
166163, 165, 13lemul2d 12506 . . . 4 (𝜑 → ((((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) ≤ ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀)) ↔ ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ ((𝑈𝐸) · ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀)))))
167162, 166mpbid 235 . . 3 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ ((𝑈𝐸) · ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀))))
16813rpcnd 12464 . . . 4 (𝜑 → (𝑈𝐸) ∈ ℂ)
16951rpcnd 12464 . . . 4 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℂ)
17063recnd 10697 . . . 4 (𝜑 → (𝑁𝑀) ∈ ℂ)
171168, 169, 170mulassd 10692 . . 3 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) = ((𝑈𝐸) · ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀))))
172167, 171breqtrrd 5058 . 2 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)))
173 fzfid 13380 . . . 4 (𝜑 → (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
17460nnzd 12115 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
17585, 174rpexpcld 13648 . . . . . . . . . . 11 (𝜑 → (𝐾𝑁) ∈ ℝ+)
17635, 175rpdivcld 12479 . . . . . . . . . 10 (𝜑 → (𝑍 / (𝐾𝑁)) ∈ ℝ+)
177176rprege0d 12469 . . . . . . . . 9 (𝜑 → ((𝑍 / (𝐾𝑁)) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾𝑁))))
178 flge0nn0 13229 . . . . . . . . 9 (((𝑍 / (𝐾𝑁)) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾𝑁))) → (⌊‘(𝑍 / (𝐾𝑁))) ∈ ℕ0)
179 nn0p1nn 11963 . . . . . . . . 9 ((⌊‘(𝑍 / (𝐾𝑁))) ∈ ℕ0 → ((⌊‘(𝑍 / (𝐾𝑁))) + 1) ∈ ℕ)
180177, 178, 1793syl 18 . . . . . . . 8 (𝜑 → ((⌊‘(𝑍 / (𝐾𝑁))) + 1) ∈ ℕ)
181 nnuz 12311 . . . . . . . 8 ℕ = (ℤ‘1)
182180, 181eleqtrdi 2863 . . . . . . 7 (𝜑 → ((⌊‘(𝑍 / (𝐾𝑁))) + 1) ∈ (ℤ‘1))
183 fzss1 12985 . . . . . . 7 (((⌊‘(𝑍 / (𝐾𝑁))) + 1) ∈ (ℤ‘1) → (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
184182, 183syl 17 . . . . . 6 (𝜑 → (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
185184sselda 3893 . . . . 5 ((𝜑𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))))
186185, 82syldan 595 . . . 4 ((𝜑𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
187173, 186fsumrecl 15129 . . 3 (𝜑 → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
188 eluzfz2 12954 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
18958, 188syl 17 . . . 4 (𝜑𝑁 ∈ (𝑀...𝑁))
190 oveq1 7155 . . . . . . . 8 (𝑚 = 𝑀 → (𝑚𝑀) = (𝑀𝑀))
191190oveq2d 7164 . . . . . . 7 (𝑚 = 𝑀 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)))
192 oveq2 7156 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (𝐾𝑚) = (𝐾𝑀))
193192oveq2d 7164 . . . . . . . . . . 11 (𝑚 = 𝑀 → (𝑍 / (𝐾𝑚)) = (𝑍 / (𝐾𝑀)))
194193fveq2d 6660 . . . . . . . . . 10 (𝑚 = 𝑀 → (⌊‘(𝑍 / (𝐾𝑚))) = (⌊‘(𝑍 / (𝐾𝑀))))
195194oveq1d 7163 . . . . . . . . 9 (𝑚 = 𝑀 → ((⌊‘(𝑍 / (𝐾𝑚))) + 1) = ((⌊‘(𝑍 / (𝐾𝑀))) + 1))
196195oveq1d 7163 . . . . . . . 8 (𝑚 = 𝑀 → (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌))) = (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌))))
197196sumeq1d 15096 . . . . . . 7 (𝑚 = 𝑀 → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
198191, 197breq12d 5043 . . . . . 6 (𝑚 = 𝑀 → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
199198imbi2d 345 . . . . 5 (𝑚 = 𝑀 → ((𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ↔ (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
200 oveq1 7155 . . . . . . . 8 (𝑚 = 𝑗 → (𝑚𝑀) = (𝑗𝑀))
201200oveq2d 7164 . . . . . . 7 (𝑚 = 𝑗 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)))
202 oveq2 7156 . . . . . . . . . . . 12 (𝑚 = 𝑗 → (𝐾𝑚) = (𝐾𝑗))
203202oveq2d 7164 . . . . . . . . . . 11 (𝑚 = 𝑗 → (𝑍 / (𝐾𝑚)) = (𝑍 / (𝐾𝑗)))
204203fveq2d 6660 . . . . . . . . . 10 (𝑚 = 𝑗 → (⌊‘(𝑍 / (𝐾𝑚))) = (⌊‘(𝑍 / (𝐾𝑗))))
205204oveq1d 7163 . . . . . . . . 9 (𝑚 = 𝑗 → ((⌊‘(𝑍 / (𝐾𝑚))) + 1) = ((⌊‘(𝑍 / (𝐾𝑗))) + 1))
206205oveq1d 7163 . . . . . . . 8 (𝑚 = 𝑗 → (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌))) = (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))))
207206sumeq1d 15096 . . . . . . 7 (𝑚 = 𝑗 → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
208201, 207breq12d 5043 . . . . . 6 (𝑚 = 𝑗 → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
209208imbi2d 345 . . . . 5 (𝑚 = 𝑗 → ((𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ↔ (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
210 oveq1 7155 . . . . . . . 8 (𝑚 = (𝑗 + 1) → (𝑚𝑀) = ((𝑗 + 1) − 𝑀))
211210oveq2d 7164 . . . . . . 7 (𝑚 = (𝑗 + 1) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)))
212 oveq2 7156 . . . . . . . . . . . 12 (𝑚 = (𝑗 + 1) → (𝐾𝑚) = (𝐾↑(𝑗 + 1)))
213212oveq2d 7164 . . . . . . . . . . 11 (𝑚 = (𝑗 + 1) → (𝑍 / (𝐾𝑚)) = (𝑍 / (𝐾↑(𝑗 + 1))))
214213fveq2d 6660 . . . . . . . . . 10 (𝑚 = (𝑗 + 1) → (⌊‘(𝑍 / (𝐾𝑚))) = (⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))))
215214oveq1d 7163 . . . . . . . . 9 (𝑚 = (𝑗 + 1) → ((⌊‘(𝑍 / (𝐾𝑚))) + 1) = ((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1))
216215oveq1d 7163 . . . . . . . 8 (𝑚 = (𝑗 + 1) → (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌))) = (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))))
217216sumeq1d 15096 . . . . . . 7 (𝑚 = (𝑗 + 1) → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
218211, 217breq12d 5043 . . . . . 6 (𝑚 = (𝑗 + 1) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
219218imbi2d 345 . . . . 5 (𝑚 = (𝑗 + 1) → ((𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ↔ (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
220 oveq1 7155 . . . . . . . 8 (𝑚 = 𝑁 → (𝑚𝑀) = (𝑁𝑀))
221220oveq2d 7164 . . . . . . 7 (𝑚 = 𝑁 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)))
222 oveq2 7156 . . . . . . . . . . . 12 (𝑚 = 𝑁 → (𝐾𝑚) = (𝐾𝑁))
223222oveq2d 7164 . . . . . . . . . . 11 (𝑚 = 𝑁 → (𝑍 / (𝐾𝑚)) = (𝑍 / (𝐾𝑁)))
224223fveq2d 6660 . . . . . . . . . 10 (𝑚 = 𝑁 → (⌊‘(𝑍 / (𝐾𝑚))) = (⌊‘(𝑍 / (𝐾𝑁))))
225224oveq1d 7163 . . . . . . . . 9 (𝑚 = 𝑁 → ((⌊‘(𝑍 / (𝐾𝑚))) + 1) = ((⌊‘(𝑍 / (𝐾𝑁))) + 1))
226225oveq1d 7163 . . . . . . . 8 (𝑚 = 𝑁 → (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌))) = (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌))))
227226sumeq1d 15096 . . . . . . 7 (𝑚 = 𝑁 → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
228221, 227breq12d 5043 . . . . . 6 (𝑚 = 𝑁 → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
229228imbi2d 345 . . . . 5 (𝑚 = 𝑁 → ((𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ↔ (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
23057nncnd 11680 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
231230subidd 11013 . . . . . . . . 9 (𝜑 → (𝑀𝑀) = 0)
232231oveq2d 7164 . . . . . . . 8 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · 0))
23352rpcnd 12464 . . . . . . . . 9 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℂ)
234233mul01d 10867 . . . . . . . 8 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · 0) = 0)
235232, 234eqtrd 2794 . . . . . . 7 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)) = 0)
236 fzfid 13380 . . . . . . . 8 (𝜑 → (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
23757nnzd 12115 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℤ)
23885, 237rpexpcld 13648 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾𝑀) ∈ ℝ+)
23935, 238rpdivcld 12479 . . . . . . . . . . . . . 14 (𝜑 → (𝑍 / (𝐾𝑀)) ∈ ℝ+)
240239rprege0d 12469 . . . . . . . . . . . . 13 (𝜑 → ((𝑍 / (𝐾𝑀)) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾𝑀))))
241 flge0nn0 13229 . . . . . . . . . . . . 13 (((𝑍 / (𝐾𝑀)) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾𝑀))) → (⌊‘(𝑍 / (𝐾𝑀))) ∈ ℕ0)
242 nn0p1nn 11963 . . . . . . . . . . . . 13 ((⌊‘(𝑍 / (𝐾𝑀))) ∈ ℕ0 → ((⌊‘(𝑍 / (𝐾𝑀))) + 1) ∈ ℕ)
243240, 241, 2423syl 18 . . . . . . . . . . . 12 (𝜑 → ((⌊‘(𝑍 / (𝐾𝑀))) + 1) ∈ ℕ)
244243, 181eleqtrdi 2863 . . . . . . . . . . 11 (𝜑 → ((⌊‘(𝑍 / (𝐾𝑀))) + 1) ∈ (ℤ‘1))
245 fzss1 12985 . . . . . . . . . . 11 (((⌊‘(𝑍 / (𝐾𝑀))) + 1) ∈ (ℤ‘1) → (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
246244, 245syl 17 . . . . . . . . . 10 (𝜑 → (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
247246sselda 3893 . . . . . . . . 9 ((𝜑𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))))
248247, 82syldan 595 . . . . . . . 8 ((𝜑𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
249 elfzle2 12950 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))) → 𝑛 ≤ (⌊‘(𝑍 / 𝑌)))
250249adantl 486 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ≤ (⌊‘(𝑍 / 𝑌)))
25129simpld 499 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ ℝ+)
25235, 251rpdivcld 12479 . . . . . . . . . . . . . 14 (𝜑 → (𝑍 / 𝑌) ∈ ℝ+)
253252rpred 12462 . . . . . . . . . . . . 13 (𝜑 → (𝑍 / 𝑌) ∈ ℝ)
254 elfzelz 12946 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))) → 𝑛 ∈ ℤ)
255 flge 13214 . . . . . . . . . . . . 13 (((𝑍 / 𝑌) ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ (𝑍 / 𝑌) ↔ 𝑛 ≤ (⌊‘(𝑍 / 𝑌))))
256253, 254, 255syl2an 599 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑛 ≤ (𝑍 / 𝑌) ↔ 𝑛 ≤ (⌊‘(𝑍 / 𝑌))))
257250, 256mpbird 260 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ≤ (𝑍 / 𝑌))
25871, 257jca 516 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝑍 / 𝑌)))
259 pntlem1.U . . . . . . . . . . 11 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
2601, 2, 3, 4, 5, 6, 7, 8, 9, 10, 29, 30, 31, 32, 33, 54, 55, 259pntlemn 26273 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝑍 / 𝑌))) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
261258, 260syldan 595 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
262247, 261syldan 595 . . . . . . . 8 ((𝜑𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
263236, 248, 262fsumge0 15188 . . . . . . 7 (𝜑 → 0 ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
264235, 263eqbrtrd 5052 . . . . . 6 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
265264a1i 11 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
266 pntlem1.K . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
267 eqid 2759 . . . . . . . . . 10 (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) = (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))
2681, 2, 3, 4, 5, 6, 7, 8, 9, 10, 29, 30, 31, 32, 33, 54, 55, 259, 266, 267pntlemi 26277 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
26952adantr 485 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ+)
270269rpred 12462 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ)
271 elfzoelz 13077 . . . . . . . . . . . . . 14 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ ℤ)
272271adantl 486 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℤ)
273272zred 12116 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℝ)
27457adantr 485 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℕ)
275274nnred 11679 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ)
276273, 275resubcld 11096 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗𝑀) ∈ ℝ)
277270, 276remulcld 10699 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ∈ ℝ)
278 fzfid 13380 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∈ Fin)
279 ssun1 4078 . . . . . . . . . . . . . . 15 (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ⊆ ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∪ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))))
28036adantr 485 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑍 ∈ ℝ)
28185adantr 485 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐾 ∈ ℝ+)
282272peano2zd 12119 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ ℤ)
283281, 282rpexpcld 13648 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐾↑(𝑗 + 1)) ∈ ℝ+)
284280, 283rerpdivcld 12493 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / (𝐾↑(𝑗 + 1))) ∈ ℝ)
285281, 272rpexpcld 13648 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐾𝑗) ∈ ℝ+)
286280, 285rerpdivcld 12493 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / (𝐾𝑗)) ∈ ℝ)
28786adantr 485 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐾 ∈ ℝ)
288 1re 10669 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ
289 ltle 10757 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (1 < 𝐾 → 1 ≤ 𝐾))
290288, 86, 289sylancr 591 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (1 < 𝐾 → 1 ≤ 𝐾))
29187, 290mpd 15 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ≤ 𝐾)
292291adantr 485 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 1 ≤ 𝐾)
293 uzid 12287 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
294 peano2uz 12331 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (ℤ𝑗) → (𝑗 + 1) ∈ (ℤ𝑗))
295272, 293, 2943syl 18 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ (ℤ𝑗))
296287, 292, 295leexp2ad 13657 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐾𝑗) ≤ (𝐾↑(𝑗 + 1)))
29735adantr 485 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑍 ∈ ℝ+)
298285, 283, 297lediv2d 12486 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝐾𝑗) ≤ (𝐾↑(𝑗 + 1)) ↔ (𝑍 / (𝐾↑(𝑗 + 1))) ≤ (𝑍 / (𝐾𝑗))))
299296, 298mpbid 235 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / (𝐾↑(𝑗 + 1))) ≤ (𝑍 / (𝐾𝑗)))
300 flword2 13222 . . . . . . . . . . . . . . . . . 18 (((𝑍 / (𝐾↑(𝑗 + 1))) ∈ ℝ ∧ (𝑍 / (𝐾𝑗)) ∈ ℝ ∧ (𝑍 / (𝐾↑(𝑗 + 1))) ≤ (𝑍 / (𝐾𝑗))) → (⌊‘(𝑍 / (𝐾𝑗))) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾↑(𝑗 + 1))))))
301284, 286, 299, 300syl3anc 1369 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / (𝐾𝑗))) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾↑(𝑗 + 1))))))
302 eluzp1p1 12300 . . . . . . . . . . . . . . . . 17 ((⌊‘(𝑍 / (𝐾𝑗))) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾↑(𝑗 + 1))))) → ((⌊‘(𝑍 / (𝐾𝑗))) + 1) ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)))
303301, 302syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((⌊‘(𝑍 / (𝐾𝑗))) + 1) ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)))
304286flcld 13207 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / (𝐾𝑗))) ∈ ℤ)
305252adantr 485 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / 𝑌) ∈ ℝ+)
306305rpred 12462 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / 𝑌) ∈ ℝ)
307306flcld 13207 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / 𝑌)) ∈ ℤ)
308251adantr 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑌 ∈ ℝ+)
309308rpred 12462 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑌 ∈ ℝ)
310285rpred 12462 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐾𝑗) ∈ ℝ)
31130simpld 499 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑋 ∈ ℝ+)
312311rpred 12462 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑋 ∈ ℝ)
313312adantr 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℝ)
31430simprd 500 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑌 < 𝑋)
315314adantr 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑌 < 𝑋)
316 elfzofz 13092 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (𝑀...𝑁))
3171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 29, 30, 31, 32, 33, 54, 55pntlemh 26272 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝑗) ∧ (𝐾𝑗) ≤ (√‘𝑍)))
318316, 317sylan2 596 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑋 < (𝐾𝑗) ∧ (𝐾𝑗) ≤ (√‘𝑍)))
319318simpld 499 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑋 < (𝐾𝑗))
320309, 313, 310, 315, 319lttrd 10829 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑌 < (𝐾𝑗))
321309, 310, 320ltled 10816 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑌 ≤ (𝐾𝑗))
322308, 285, 297lediv2d 12486 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑌 ≤ (𝐾𝑗) ↔ (𝑍 / (𝐾𝑗)) ≤ (𝑍 / 𝑌)))
323321, 322mpbid 235 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / (𝐾𝑗)) ≤ (𝑍 / 𝑌))
324 flwordi 13221 . . . . . . . . . . . . . . . . . 18 (((𝑍 / (𝐾𝑗)) ∈ ℝ ∧ (𝑍 / 𝑌) ∈ ℝ ∧ (𝑍 / (𝐾𝑗)) ≤ (𝑍 / 𝑌)) → (⌊‘(𝑍 / (𝐾𝑗))) ≤ (⌊‘(𝑍 / 𝑌)))
325286, 306, 323, 324syl3anc 1369 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / (𝐾𝑗))) ≤ (⌊‘(𝑍 / 𝑌)))
326 eluz2 12278 . . . . . . . . . . . . . . . . 17 ((⌊‘(𝑍 / 𝑌)) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾𝑗)))) ↔ ((⌊‘(𝑍 / (𝐾𝑗))) ∈ ℤ ∧ (⌊‘(𝑍 / 𝑌)) ∈ ℤ ∧ (⌊‘(𝑍 / (𝐾𝑗))) ≤ (⌊‘(𝑍 / 𝑌))))
327304, 307, 325, 326syl3anbrc 1341 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / 𝑌)) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾𝑗)))))
328 fzsplit2 12971 . . . . . . . . . . . . . . . 16 ((((⌊‘(𝑍 / (𝐾𝑗))) + 1) ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)) ∧ (⌊‘(𝑍 / 𝑌)) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾𝑗))))) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))) = ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∪ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))))
329303, 327, 328syl2anc 588 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))) = ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∪ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))))
330279, 329sseqtrrid 3946 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ⊆ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))))
331297, 283rpdivcld 12479 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / (𝐾↑(𝑗 + 1))) ∈ ℝ+)
332331rprege0d 12469 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑍 / (𝐾↑(𝑗 + 1))) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾↑(𝑗 + 1)))))
333 flge0nn0 13229 . . . . . . . . . . . . . . . . 17 (((𝑍 / (𝐾↑(𝑗 + 1))) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾↑(𝑗 + 1)))) → (⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) ∈ ℕ0)
334 nn0p1nn 11963 . . . . . . . . . . . . . . . . 17 ((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) ∈ ℕ0 → ((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1) ∈ ℕ)
335332, 333, 3343syl 18 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1) ∈ ℕ)
336335, 181eleqtrdi 2863 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1) ∈ (ℤ‘1))
337 fzss1 12985 . . . . . . . . . . . . . . 15 (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1) ∈ (ℤ‘1) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
338336, 337syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
339330, 338sstrd 3903 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
340339sselda 3893 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))) → 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))))
34182adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
342340, 341syldan 595 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
343278, 342fsumrecl 15129 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
344 fzfid 13380 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
345 ssun2 4079 . . . . . . . . . . . . . . 15 (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∪ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))))
346345, 329sseqtrrid 3946 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))))
347346, 338sstrd 3903 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
348347sselda 3893 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))))
349348, 341syldan 595 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
350344, 349fsumrecl 15129 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
351 le2add 11150 . . . . . . . . . 10 (((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ ∧ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ∈ ℝ) ∧ (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ ∧ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∧ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))) ≤ (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
352270, 277, 343, 350, 351syl22anc 838 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∧ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))) ≤ (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
353268, 352mpand 695 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))) ≤ (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
354233adantr 485 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℂ)
355 1cnd 10664 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 1 ∈ ℂ)
356272zcnd 12117 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℂ)
357230adantr 485 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℂ)
358356, 357subcld 11025 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗𝑀) ∈ ℂ)
359354, 355, 358adddid 10693 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (1 + (𝑗𝑀))) = ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · 1) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))))
360355, 358addcomd 10870 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (1 + (𝑗𝑀)) = ((𝑗𝑀) + 1))
361356, 355, 357addsubd 11046 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑗 + 1) − 𝑀) = ((𝑗𝑀) + 1))
362360, 361eqtr4d 2797 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (1 + (𝑗𝑀)) = ((𝑗 + 1) − 𝑀))
363362oveq2d 7164 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (1 + (𝑗𝑀))) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)))
364354mulid1d 10686 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · 1) = ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))))
365364oveq1d 7163 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · 1) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))))
366359, 363, 3653eqtr3d 2802 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))))
367 reflcl 13205 . . . . . . . . . . . . 13 ((𝑍 / (𝐾𝑗)) ∈ ℝ → (⌊‘(𝑍 / (𝐾𝑗))) ∈ ℝ)
368286, 367syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / (𝐾𝑗))) ∈ ℝ)
369368ltp1d 11598 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / (𝐾𝑗))) < ((⌊‘(𝑍 / (𝐾𝑗))) + 1))
370 fzdisj 12973 . . . . . . . . . . 11 ((⌊‘(𝑍 / (𝐾𝑗))) < ((⌊‘(𝑍 / (𝐾𝑗))) + 1) → ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∩ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))) = ∅)
371369, 370syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∩ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))) = ∅)
372 fzfid 13380 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
373338sselda 3893 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))))
374373, 341syldan 595 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
375374recnd 10697 . . . . . . . . . 10 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℂ)
376371, 329, 372, 375fsumsplit 15135 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
377366, 376breq12d 5043 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))) ≤ (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
378353, 377sylibrd 262 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
379378expcom 418 . . . . . 6 (𝑗 ∈ (𝑀..^𝑁) → (𝜑 → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
380379a2d 29 . . . . 5 (𝑗 ∈ (𝑀..^𝑁) → ((𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) → (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
381199, 209, 219, 229, 265, 380fzind2 13194 . . . 4 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
382189, 381mpcom 38 . . 3 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
38365, 82, 261, 184fsumless 15189 . . 3 (𝜑 → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
38464, 187, 83, 382, 383letrd 10825 . 2 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
38544, 64, 83, 172, 384letrd 10825 1 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 400   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112   ≠ wne 2952  ∀wral 3071  ∃wrex 3072   ∪ cun 3857   ∩ cin 3858   ⊆ wss 3859  ∅c0 4226   class class class wbr 5030   ↦ cmpt 5110  ‘cfv 6333  (class class class)co 7148  ℂcc 10563  ℝcr 10564  0cc0 10565  1c1 10566   + caddc 10568   · cmul 10570  +∞cpnf 10700   < clt 10703   ≤ cle 10704   − cmin 10898   / cdiv 11325  ℕcn 11664  2c2 11719  3c3 11720  4c4 11721  8c8 11725  ℕ0cn0 11924  ℤcz 12010  ;cdc 12127  ℤ≥cuz 12272  ℝ+crp 12420  (,)cioo 12769  [,)cico 12771  [,]cicc 12772  ...cfz 12929  ..^cfzo 13072  ⌊cfl 13199  ↑cexp 13469  √csqrt 14630  abscabs 14631  Σcsu 15080  expce 15453  eceu 15454  logclog 25235  ψcchp 25767 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-inf2 9127  ax-cnex 10621  ax-resscn 10622  ax-1cn 10623  ax-icn 10624  ax-addcl 10625  ax-addrcl 10626  ax-mulcl 10627  ax-mulrcl 10628  ax-mulcom 10629  ax-addass 10630  ax-mulass 10631  ax-distr 10632  ax-i2m1 10633  ax-1ne0 10634  ax-1rid 10635  ax-rnegex 10636  ax-rrecex 10637  ax-cnre 10638  ax-pre-lttri 10639  ax-pre-lttrn 10640  ax-pre-ltadd 10641  ax-pre-mulgt0 10642  ax-pre-sup 10643  ax-addf 10644  ax-mulf 10645 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-tp 4525  df-op 4527  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-se 5482  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7403  df-om 7578  df-1st 7691  df-2nd 7692  df-supp 7834  df-wrecs 7955  df-recs 8016  df-rdg 8054  df-1o 8110  df-2o 8111  df-oadd 8114  df-er 8297  df-map 8416  df-pm 8417  df-ixp 8478  df-en 8526  df-dom 8527  df-sdom 8528  df-fin 8529  df-fsupp 8857  df-fi 8898  df-sup 8929  df-inf 8930  df-oi 8997  df-dju 9353  df-card 9391  df-pnf 10705  df-mnf 10706  df-xr 10707  df-ltxr 10708  df-le 10709  df-sub 10900  df-neg 10901  df-div 11326  df-nn 11665  df-2 11727  df-3 11728  df-4 11729  df-5 11730  df-6 11731  df-7 11732  df-8 11733  df-9 11734  df-n0 11925  df-z 12011  df-dec 12128  df-uz 12273  df-q 12379  df-rp 12421  df-xneg 12538  df-xadd 12539  df-xmul 12540  df-ioo 12773  df-ioc 12774  df-ico 12775  df-icc 12776  df-fz 12930  df-fzo 13073  df-fl 13201  df-mod 13277  df-seq 13409  df-exp 13470  df-fac 13674  df-bc 13703  df-hash 13731  df-shft 14464  df-cj 14496  df-re 14497  df-im 14498  df-sqrt 14632  df-abs 14633  df-limsup 14866  df-clim 14883  df-rlim 14884  df-sum 15081  df-ef 15459  df-e 15460  df-sin 15461  df-cos 15462  df-pi 15464  df-dvds 15646  df-gcd 15884  df-prm 16058  df-pc 16219  df-struct 16533  df-ndx 16534  df-slot 16535  df-base 16537  df-sets 16538  df-ress 16539  df-plusg 16626  df-mulr 16627  df-starv 16628  df-sca 16629  df-vsca 16630  df-ip 16631  df-tset 16632  df-ple 16633  df-ds 16635  df-unif 16636  df-hom 16637  df-cco 16638  df-rest 16744  df-topn 16745  df-0g 16763  df-gsum 16764  df-topgen 16765  df-pt 16766  df-prds 16769  df-xrs 16823  df-qtop 16828  df-imas 16829  df-xps 16831  df-mre 16905  df-mrc 16906  df-acs 16908  df-mgm 17908  df-sgrp 17957  df-mnd 17968  df-submnd 18013  df-mulg 18282  df-cntz 18504  df-cmn 18965  df-psmet 20148  df-xmet 20149  df-met 20150  df-bl 20151  df-mopn 20152  df-fbas 20153  df-fg 20154  df-cnfld 20157  df-top 21584  df-topon 21601  df-topsp 21623  df-bases 21636  df-cld 21709  df-ntr 21710  df-cls 21711  df-nei 21788  df-lp 21826  df-perf 21827  df-cn 21917  df-cnp 21918  df-haus 22005  df-tx 22252  df-hmeo 22445  df-fil 22536  df-fm 22628  df-flim 22629  df-flf 22630  df-xms 23012  df-ms 23013  df-tms 23014  df-cncf 23569  df-limc 24555  df-dv 24556  df-log 25237  df-vma 25772  df-chp 25773 This theorem is referenced by:  pntlemo  26280
 Copyright terms: Public domain W3C validator