MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemf Structured version   Visualization version   GIF version

Theorem pntlemf 27563
Description: Lemma for pnt 27572. Add up the pieces in pntlemi 27562 to get an estimate slightly better than the naive lower bound 0. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
Assertion
Ref Expression
pntlemf (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
Distinct variable groups:   𝑧,𝐶   𝑦,𝑛,𝑧,𝑢,𝐿   𝑛,𝐾,𝑦,𝑧   𝑛,𝑀,𝑧   𝜑,𝑛   𝑛,𝑁,𝑧   𝑅,𝑛,𝑢,𝑦,𝑧   𝑈,𝑛,𝑧   𝑛,𝑊,𝑧   𝑛,𝑋,𝑦,𝑧   𝑛,𝑌,𝑧   𝑛,𝑎,𝑢,𝑦,𝑧,𝐸   𝑛,𝑍,𝑢,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐶(𝑦,𝑢,𝑛,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑛,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑎)   𝐹(𝑦,𝑧,𝑢,𝑛,𝑎)   𝐾(𝑢,𝑎)   𝐿(𝑎)   𝑀(𝑦,𝑢,𝑎)   𝑁(𝑦,𝑢,𝑎)   𝑊(𝑦,𝑢,𝑎)   𝑋(𝑢,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑎)

Proof of Theorem pntlemf
Dummy variables 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pntlem1.r . . . . . . 7 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem1.a . . . . . . 7 (𝜑𝐴 ∈ ℝ+)
3 pntlem1.b . . . . . . 7 (𝜑𝐵 ∈ ℝ+)
4 pntlem1.l . . . . . . 7 (𝜑𝐿 ∈ (0(,)1))
5 pntlem1.d . . . . . . 7 𝐷 = (𝐴 + 1)
6 pntlem1.f . . . . . . 7 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
7 pntlem1.u . . . . . . 7 (𝜑𝑈 ∈ ℝ+)
8 pntlem1.u2 . . . . . . 7 (𝜑𝑈𝐴)
9 pntlem1.e . . . . . . 7 𝐸 = (𝑈 / 𝐷)
10 pntlem1.k . . . . . . 7 𝐾 = (exp‘(𝐵 / 𝐸))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 27553 . . . . . 6 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
1211simp3d 1144 . . . . 5 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
1312simp3d 1144 . . . 4 (𝜑 → (𝑈𝐸) ∈ ℝ+)
141, 2, 3, 4, 5, 6pntlemd 27552 . . . . . . . 8 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
1514simp1d 1142 . . . . . . 7 (𝜑𝐿 ∈ ℝ+)
1611simp1d 1142 . . . . . . . 8 (𝜑𝐸 ∈ ℝ+)
17 2z 12514 . . . . . . . 8 2 ∈ ℤ
18 rpexpcl 13994 . . . . . . . 8 ((𝐸 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐸↑2) ∈ ℝ+)
1916, 17, 18sylancl 586 . . . . . . 7 (𝜑 → (𝐸↑2) ∈ ℝ+)
2015, 19rpmulcld 12956 . . . . . 6 (𝜑 → (𝐿 · (𝐸↑2)) ∈ ℝ+)
21 3nn0 12410 . . . . . . . . 9 3 ∈ ℕ0
22 2nn 12209 . . . . . . . . 9 2 ∈ ℕ
2321, 22decnncl 12618 . . . . . . . 8 32 ∈ ℕ
24 nnrp 12908 . . . . . . . 8 (32 ∈ ℕ → 32 ∈ ℝ+)
2523, 24ax-mp 5 . . . . . . 7 32 ∈ ℝ+
26 rpmulcl 12921 . . . . . . 7 ((32 ∈ ℝ+𝐵 ∈ ℝ+) → (32 · 𝐵) ∈ ℝ+)
2725, 3, 26sylancr 587 . . . . . 6 (𝜑 → (32 · 𝐵) ∈ ℝ+)
2820, 27rpdivcld 12957 . . . . 5 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) ∈ ℝ+)
29 pntlem1.y . . . . . . . . . 10 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
30 pntlem1.x . . . . . . . . . 10 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
31 pntlem1.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
32 pntlem1.w . . . . . . . . . 10 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
33 pntlem1.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝑊[,)+∞))
341, 2, 3, 4, 5, 6, 7, 8, 9, 10, 29, 30, 31, 32, 33pntlemb 27555 . . . . . . . . 9 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
3534simp1d 1142 . . . . . . . 8 (𝜑𝑍 ∈ ℝ+)
3635rpred 12940 . . . . . . 7 (𝜑𝑍 ∈ ℝ)
3734simp2d 1143 . . . . . . . 8 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
3837simp1d 1142 . . . . . . 7 (𝜑 → 1 < 𝑍)
3936, 38rplogcld 26585 . . . . . 6 (𝜑 → (log‘𝑍) ∈ ℝ+)
40 rpexpcl 13994 . . . . . 6 (((log‘𝑍) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((log‘𝑍)↑2) ∈ ℝ+)
4139, 17, 40sylancl 586 . . . . 5 (𝜑 → ((log‘𝑍)↑2) ∈ ℝ+)
4228, 41rpmulcld 12956 . . . 4 (𝜑 → (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) ∈ ℝ+)
4313, 42rpmulcld 12956 . . 3 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ∈ ℝ+)
4443rpred 12940 . 2 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ∈ ℝ)
4515, 16rpmulcld 12956 . . . . . . 7 (𝜑 → (𝐿 · 𝐸) ∈ ℝ+)
46 8re 12232 . . . . . . . 8 8 ∈ ℝ
47 8pos 12248 . . . . . . . 8 0 < 8
4846, 47elrpii 12899 . . . . . . 7 8 ∈ ℝ+
49 rpdivcl 12923 . . . . . . 7 (((𝐿 · 𝐸) ∈ ℝ+ ∧ 8 ∈ ℝ+) → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
5045, 48, 49sylancl 586 . . . . . 6 (𝜑 → ((𝐿 · 𝐸) / 8) ∈ ℝ+)
5150, 39rpmulcld 12956 . . . . 5 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℝ+)
5213, 51rpmulcld 12956 . . . 4 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ+)
5352rpred 12940 . . 3 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ)
54 pntlem1.m . . . . . . . 8 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
55 pntlem1.n . . . . . . . 8 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
561, 2, 3, 4, 5, 6, 7, 8, 9, 10, 29, 30, 31, 32, 33, 54, 55pntlemg 27556 . . . . . . 7 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
5756simp1d 1142 . . . . . 6 (𝜑𝑀 ∈ ℕ)
5856simp2d 1143 . . . . . 6 (𝜑𝑁 ∈ (ℤ𝑀))
59 eluznn 12822 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℕ)
6057, 58, 59syl2anc 584 . . . . 5 (𝜑𝑁 ∈ ℕ)
6160nnred 12151 . . . 4 (𝜑𝑁 ∈ ℝ)
6257nnred 12151 . . . 4 (𝜑𝑀 ∈ ℝ)
6361, 62resubcld 11556 . . 3 (𝜑 → (𝑁𝑀) ∈ ℝ)
6453, 63remulcld 11153 . 2 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) ∈ ℝ)
65 fzfid 13887 . . 3 (𝜑 → (1...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
667rpred 12940 . . . . . 6 (𝜑𝑈 ∈ ℝ)
67 elfznn 13460 . . . . . 6 (𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))) → 𝑛 ∈ ℕ)
68 nndivre 12177 . . . . . 6 ((𝑈 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑈 / 𝑛) ∈ ℝ)
6966, 67, 68syl2an 596 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑈 / 𝑛) ∈ ℝ)
7035adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑍 ∈ ℝ+)
7167adantl 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℕ)
7271nnrpd 12938 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℝ+)
7370, 72rpdivcld 12957 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑍 / 𝑛) ∈ ℝ+)
741pntrf 27521 . . . . . . . . . 10 𝑅:ℝ+⟶ℝ
7574ffvelcdmi 7025 . . . . . . . . 9 ((𝑍 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
7673, 75syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
7776, 70rerpdivcld 12971 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℝ)
7877recnd 11151 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℂ)
7978abscld 15353 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ∈ ℝ)
8069, 79resubcld 11556 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) ∈ ℝ)
8172relogcld 26579 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℝ)
8280, 81remulcld 11153 . . 3 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
8365, 82fsumrecl 15648 . 2 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
8445rpcnd 12942 . . . . . . . . 9 (𝜑 → (𝐿 · 𝐸) ∈ ℂ)
8511simp2d 1143 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ ℝ+)
8685rpred 12940 . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℝ)
8712simp2d 1143 . . . . . . . . . . . 12 (𝜑 → 1 < 𝐾)
8886, 87rplogcld 26585 . . . . . . . . . . 11 (𝜑 → (log‘𝐾) ∈ ℝ+)
8939, 88rpdivcld 12957 . . . . . . . . . 10 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ+)
9089rpcnd 12942 . . . . . . . . 9 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℂ)
91 rpcnne0 12915 . . . . . . . . . 10 (8 ∈ ℝ+ → (8 ∈ ℂ ∧ 8 ≠ 0))
9248, 91mp1i 13 . . . . . . . . 9 (𝜑 → (8 ∈ ℂ ∧ 8 ≠ 0))
93 4re 12220 . . . . . . . . . . 11 4 ∈ ℝ
94 4pos 12243 . . . . . . . . . . 11 0 < 4
9593, 94elrpii 12899 . . . . . . . . . 10 4 ∈ ℝ+
96 rpcnne0 12915 . . . . . . . . . 10 (4 ∈ ℝ+ → (4 ∈ ℂ ∧ 4 ≠ 0))
9795, 96mp1i 13 . . . . . . . . 9 (𝜑 → (4 ∈ ℂ ∧ 4 ≠ 0))
98 divmuldiv 11832 . . . . . . . . 9 ((((𝐿 · 𝐸) ∈ ℂ ∧ ((log‘𝑍) / (log‘𝐾)) ∈ ℂ) ∧ ((8 ∈ ℂ ∧ 8 ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0))) → (((𝐿 · 𝐸) / 8) · (((log‘𝑍) / (log‘𝐾)) / 4)) = (((𝐿 · 𝐸) · ((log‘𝑍) / (log‘𝐾))) / (8 · 4)))
9984, 90, 92, 97, 98syl22anc 838 . . . . . . . 8 (𝜑 → (((𝐿 · 𝐸) / 8) · (((log‘𝑍) / (log‘𝐾)) / 4)) = (((𝐿 · 𝐸) · ((log‘𝑍) / (log‘𝐾))) / (8 · 4)))
10010fveq2i 6834 . . . . . . . . . . . . . 14 (log‘𝐾) = (log‘(exp‘(𝐵 / 𝐸)))
1013, 16rpdivcld 12957 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 / 𝐸) ∈ ℝ+)
102101rpred 12940 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 / 𝐸) ∈ ℝ)
103102relogefd 26584 . . . . . . . . . . . . . 14 (𝜑 → (log‘(exp‘(𝐵 / 𝐸))) = (𝐵 / 𝐸))
104100, 103eqtrid 2780 . . . . . . . . . . . . 13 (𝜑 → (log‘𝐾) = (𝐵 / 𝐸))
105104oveq2d 7371 . . . . . . . . . . . 12 (𝜑 → ((log‘𝑍) / (log‘𝐾)) = ((log‘𝑍) / (𝐵 / 𝐸)))
10639rpcnd 12942 . . . . . . . . . . . . 13 (𝜑 → (log‘𝑍) ∈ ℂ)
1073rpcnne0d 12949 . . . . . . . . . . . . 13 (𝜑 → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
10816rpcnne0d 12949 . . . . . . . . . . . . 13 (𝜑 → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
109 divdiv2 11844 . . . . . . . . . . . . 13 (((log‘𝑍) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0)) → ((log‘𝑍) / (𝐵 / 𝐸)) = (((log‘𝑍) · 𝐸) / 𝐵))
110106, 107, 108, 109syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → ((log‘𝑍) / (𝐵 / 𝐸)) = (((log‘𝑍) · 𝐸) / 𝐵))
111105, 110eqtrd 2768 . . . . . . . . . . 11 (𝜑 → ((log‘𝑍) / (log‘𝐾)) = (((log‘𝑍) · 𝐸) / 𝐵))
112111oveq2d 7371 . . . . . . . . . 10 (𝜑 → ((𝐿 · 𝐸) · ((log‘𝑍) / (log‘𝐾))) = ((𝐿 · 𝐸) · (((log‘𝑍) · 𝐸) / 𝐵)))
11316rpcnd 12942 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℂ)
114106, 113mulcld 11143 . . . . . . . . . . 11 (𝜑 → ((log‘𝑍) · 𝐸) ∈ ℂ)
115 divass 11805 . . . . . . . . . . 11 (((𝐿 · 𝐸) ∈ ℂ ∧ ((log‘𝑍) · 𝐸) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (((𝐿 · 𝐸) · ((log‘𝑍) · 𝐸)) / 𝐵) = ((𝐿 · 𝐸) · (((log‘𝑍) · 𝐸) / 𝐵)))
11684, 114, 107, 115syl3anc 1373 . . . . . . . . . 10 (𝜑 → (((𝐿 · 𝐸) · ((log‘𝑍) · 𝐸)) / 𝐵) = ((𝐿 · 𝐸) · (((log‘𝑍) · 𝐸) / 𝐵)))
11715rpcnd 12942 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ℂ)
118117, 113, 106, 113mul4d 11336 . . . . . . . . . . . 12 (𝜑 → ((𝐿 · 𝐸) · ((log‘𝑍) · 𝐸)) = ((𝐿 · (log‘𝑍)) · (𝐸 · 𝐸)))
119113sqvald 14057 . . . . . . . . . . . . 13 (𝜑 → (𝐸↑2) = (𝐸 · 𝐸))
120119oveq2d 7371 . . . . . . . . . . . 12 (𝜑 → ((𝐿 · (log‘𝑍)) · (𝐸↑2)) = ((𝐿 · (log‘𝑍)) · (𝐸 · 𝐸)))
121113sqcld 14058 . . . . . . . . . . . . 13 (𝜑 → (𝐸↑2) ∈ ℂ)
122117, 106, 121mul32d 11334 . . . . . . . . . . . 12 (𝜑 → ((𝐿 · (log‘𝑍)) · (𝐸↑2)) = ((𝐿 · (𝐸↑2)) · (log‘𝑍)))
123118, 120, 1223eqtr2d 2774 . . . . . . . . . . 11 (𝜑 → ((𝐿 · 𝐸) · ((log‘𝑍) · 𝐸)) = ((𝐿 · (𝐸↑2)) · (log‘𝑍)))
124123oveq1d 7370 . . . . . . . . . 10 (𝜑 → (((𝐿 · 𝐸) · ((log‘𝑍) · 𝐸)) / 𝐵) = (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵))
125112, 116, 1243eqtr2d 2774 . . . . . . . . 9 (𝜑 → ((𝐿 · 𝐸) · ((log‘𝑍) / (log‘𝐾))) = (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵))
126 8t4e32 12715 . . . . . . . . . 10 (8 · 4) = 32
127126a1i 11 . . . . . . . . 9 (𝜑 → (8 · 4) = 32)
128125, 127oveq12d 7373 . . . . . . . 8 (𝜑 → (((𝐿 · 𝐸) · ((log‘𝑍) / (log‘𝐾))) / (8 · 4)) = ((((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵) / 32))
12920rpcnd 12942 . . . . . . . . . . 11 (𝜑 → (𝐿 · (𝐸↑2)) ∈ ℂ)
130129, 106mulcld 11143 . . . . . . . . . 10 (𝜑 → ((𝐿 · (𝐸↑2)) · (log‘𝑍)) ∈ ℂ)
131 rpcnne0 12915 . . . . . . . . . . 11 (32 ∈ ℝ+ → (32 ∈ ℂ ∧ 32 ≠ 0))
13225, 131mp1i 13 . . . . . . . . . 10 (𝜑 → (32 ∈ ℂ ∧ 32 ≠ 0))
133 divdiv1 11843 . . . . . . . . . 10 ((((𝐿 · (𝐸↑2)) · (log‘𝑍)) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (32 ∈ ℂ ∧ 32 ≠ 0)) → ((((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵) / 32) = (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (𝐵 · 32)))
134130, 107, 132, 133syl3anc 1373 . . . . . . . . 9 (𝜑 → ((((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵) / 32) = (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (𝐵 · 32)))
13523nncni 12146 . . . . . . . . . . 11 32 ∈ ℂ
1363rpcnd 12942 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
137 mulcom 11103 . . . . . . . . . . 11 ((32 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (32 · 𝐵) = (𝐵 · 32))
138135, 136, 137sylancr 587 . . . . . . . . . 10 (𝜑 → (32 · 𝐵) = (𝐵 · 32))
139138oveq2d 7371 . . . . . . . . 9 (𝜑 → (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (32 · 𝐵)) = (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (𝐵 · 32)))
14027rpcnne0d 12949 . . . . . . . . . 10 (𝜑 → ((32 · 𝐵) ∈ ℂ ∧ (32 · 𝐵) ≠ 0))
141 div23 11806 . . . . . . . . . 10 (((𝐿 · (𝐸↑2)) ∈ ℂ ∧ (log‘𝑍) ∈ ℂ ∧ ((32 · 𝐵) ∈ ℂ ∧ (32 · 𝐵) ≠ 0)) → (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (32 · 𝐵)) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)))
142129, 106, 140, 141syl3anc 1373 . . . . . . . . 9 (𝜑 → (((𝐿 · (𝐸↑2)) · (log‘𝑍)) / (32 · 𝐵)) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)))
143134, 139, 1423eqtr2d 2774 . . . . . . . 8 (𝜑 → ((((𝐿 · (𝐸↑2)) · (log‘𝑍)) / 𝐵) / 32) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)))
14499, 128, 1433eqtrd 2772 . . . . . . 7 (𝜑 → (((𝐿 · 𝐸) / 8) · (((log‘𝑍) / (log‘𝐾)) / 4)) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)))
145144oveq1d 7370 . . . . . 6 (𝜑 → ((((𝐿 · 𝐸) / 8) · (((log‘𝑍) / (log‘𝐾)) / 4)) · (log‘𝑍)) = ((((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)) · (log‘𝑍)))
14650rpcnd 12942 . . . . . . 7 (𝜑 → ((𝐿 · 𝐸) / 8) ∈ ℂ)
14789rpred 12940 . . . . . . . . 9 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ)
148 4nn 12219 . . . . . . . . 9 4 ∈ ℕ
149 nndivre 12177 . . . . . . . . 9 ((((log‘𝑍) / (log‘𝐾)) ∈ ℝ ∧ 4 ∈ ℕ) → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ)
150147, 148, 149sylancl 586 . . . . . . . 8 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ)
151150recnd 11151 . . . . . . 7 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℂ)
152146, 106, 151mul32d 11334 . . . . . 6 (𝜑 → ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (((log‘𝑍) / (log‘𝐾)) / 4)) = ((((𝐿 · 𝐸) / 8) · (((log‘𝑍) / (log‘𝐾)) / 4)) · (log‘𝑍)))
153106sqvald 14057 . . . . . . . 8 (𝜑 → ((log‘𝑍)↑2) = ((log‘𝑍) · (log‘𝑍)))
154153oveq2d 7371 . . . . . . 7 (𝜑 → (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍) · (log‘𝑍))))
15528rpcnd 12942 . . . . . . . 8 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) ∈ ℂ)
156155, 106, 106mulassd 11146 . . . . . . 7 (𝜑 → ((((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)) · (log‘𝑍)) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍) · (log‘𝑍))))
157154, 156eqtr4d 2771 . . . . . 6 (𝜑 → (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) = ((((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · (log‘𝑍)) · (log‘𝑍)))
158145, 152, 1573eqtr4d 2778 . . . . 5 (𝜑 → ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (((log‘𝑍) / (log‘𝐾)) / 4)) = (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))
15956simp3d 1144 . . . . . 6 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀))
160150, 63, 51lemul2d 12984 . . . . . 6 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀) ↔ ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (((log‘𝑍) / (log‘𝐾)) / 4)) ≤ ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀))))
161159, 160mpbid 232 . . . . 5 (𝜑 → ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (((log‘𝑍) / (log‘𝐾)) / 4)) ≤ ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀)))
162158, 161eqbrtrrd 5119 . . . 4 (𝜑 → (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) ≤ ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀)))
16342rpred 12940 . . . . 5 (𝜑 → (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) ∈ ℝ)
16451rpred 12940 . . . . . 6 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℝ)
165164, 63remulcld 11153 . . . . 5 (𝜑 → ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀)) ∈ ℝ)
166163, 165, 13lemul2d 12984 . . . 4 (𝜑 → ((((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) ≤ ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀)) ↔ ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ ((𝑈𝐸) · ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀)))))
167162, 166mpbid 232 . . 3 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ ((𝑈𝐸) · ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀))))
16813rpcnd 12942 . . . 4 (𝜑 → (𝑈𝐸) ∈ ℂ)
16951rpcnd 12942 . . . 4 (𝜑 → (((𝐿 · 𝐸) / 8) · (log‘𝑍)) ∈ ℂ)
17063recnd 11151 . . . 4 (𝜑 → (𝑁𝑀) ∈ ℂ)
171168, 169, 170mulassd 11146 . . 3 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) = ((𝑈𝐸) · ((((𝐿 · 𝐸) / 8) · (log‘𝑍)) · (𝑁𝑀))))
172167, 171breqtrrd 5123 . 2 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)))
173 fzfid 13887 . . . 4 (𝜑 → (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
17460nnzd 12505 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
17585, 174rpexpcld 14161 . . . . . . . . . . 11 (𝜑 → (𝐾𝑁) ∈ ℝ+)
17635, 175rpdivcld 12957 . . . . . . . . . 10 (𝜑 → (𝑍 / (𝐾𝑁)) ∈ ℝ+)
177176rprege0d 12947 . . . . . . . . 9 (𝜑 → ((𝑍 / (𝐾𝑁)) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾𝑁))))
178 flge0nn0 13731 . . . . . . . . 9 (((𝑍 / (𝐾𝑁)) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾𝑁))) → (⌊‘(𝑍 / (𝐾𝑁))) ∈ ℕ0)
179 nn0p1nn 12431 . . . . . . . . 9 ((⌊‘(𝑍 / (𝐾𝑁))) ∈ ℕ0 → ((⌊‘(𝑍 / (𝐾𝑁))) + 1) ∈ ℕ)
180177, 178, 1793syl 18 . . . . . . . 8 (𝜑 → ((⌊‘(𝑍 / (𝐾𝑁))) + 1) ∈ ℕ)
181 nnuz 12781 . . . . . . . 8 ℕ = (ℤ‘1)
182180, 181eleqtrdi 2843 . . . . . . 7 (𝜑 → ((⌊‘(𝑍 / (𝐾𝑁))) + 1) ∈ (ℤ‘1))
183 fzss1 13470 . . . . . . 7 (((⌊‘(𝑍 / (𝐾𝑁))) + 1) ∈ (ℤ‘1) → (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
184182, 183syl 17 . . . . . 6 (𝜑 → (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
185184sselda 3930 . . . . 5 ((𝜑𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))))
186185, 82syldan 591 . . . 4 ((𝜑𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
187173, 186fsumrecl 15648 . . 3 (𝜑 → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
188 eluzfz2 13439 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
18958, 188syl 17 . . . 4 (𝜑𝑁 ∈ (𝑀...𝑁))
190 oveq1 7362 . . . . . . . 8 (𝑚 = 𝑀 → (𝑚𝑀) = (𝑀𝑀))
191190oveq2d 7371 . . . . . . 7 (𝑚 = 𝑀 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)))
192 oveq2 7363 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (𝐾𝑚) = (𝐾𝑀))
193192oveq2d 7371 . . . . . . . . . . 11 (𝑚 = 𝑀 → (𝑍 / (𝐾𝑚)) = (𝑍 / (𝐾𝑀)))
194193fveq2d 6835 . . . . . . . . . 10 (𝑚 = 𝑀 → (⌊‘(𝑍 / (𝐾𝑚))) = (⌊‘(𝑍 / (𝐾𝑀))))
195194oveq1d 7370 . . . . . . . . 9 (𝑚 = 𝑀 → ((⌊‘(𝑍 / (𝐾𝑚))) + 1) = ((⌊‘(𝑍 / (𝐾𝑀))) + 1))
196195oveq1d 7370 . . . . . . . 8 (𝑚 = 𝑀 → (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌))) = (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌))))
197196sumeq1d 15614 . . . . . . 7 (𝑚 = 𝑀 → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
198191, 197breq12d 5108 . . . . . 6 (𝑚 = 𝑀 → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
199198imbi2d 340 . . . . 5 (𝑚 = 𝑀 → ((𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ↔ (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
200 oveq1 7362 . . . . . . . 8 (𝑚 = 𝑗 → (𝑚𝑀) = (𝑗𝑀))
201200oveq2d 7371 . . . . . . 7 (𝑚 = 𝑗 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)))
202 oveq2 7363 . . . . . . . . . . . 12 (𝑚 = 𝑗 → (𝐾𝑚) = (𝐾𝑗))
203202oveq2d 7371 . . . . . . . . . . 11 (𝑚 = 𝑗 → (𝑍 / (𝐾𝑚)) = (𝑍 / (𝐾𝑗)))
204203fveq2d 6835 . . . . . . . . . 10 (𝑚 = 𝑗 → (⌊‘(𝑍 / (𝐾𝑚))) = (⌊‘(𝑍 / (𝐾𝑗))))
205204oveq1d 7370 . . . . . . . . 9 (𝑚 = 𝑗 → ((⌊‘(𝑍 / (𝐾𝑚))) + 1) = ((⌊‘(𝑍 / (𝐾𝑗))) + 1))
206205oveq1d 7370 . . . . . . . 8 (𝑚 = 𝑗 → (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌))) = (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))))
207206sumeq1d 15614 . . . . . . 7 (𝑚 = 𝑗 → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
208201, 207breq12d 5108 . . . . . 6 (𝑚 = 𝑗 → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
209208imbi2d 340 . . . . 5 (𝑚 = 𝑗 → ((𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ↔ (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
210 oveq1 7362 . . . . . . . 8 (𝑚 = (𝑗 + 1) → (𝑚𝑀) = ((𝑗 + 1) − 𝑀))
211210oveq2d 7371 . . . . . . 7 (𝑚 = (𝑗 + 1) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)))
212 oveq2 7363 . . . . . . . . . . . 12 (𝑚 = (𝑗 + 1) → (𝐾𝑚) = (𝐾↑(𝑗 + 1)))
213212oveq2d 7371 . . . . . . . . . . 11 (𝑚 = (𝑗 + 1) → (𝑍 / (𝐾𝑚)) = (𝑍 / (𝐾↑(𝑗 + 1))))
214213fveq2d 6835 . . . . . . . . . 10 (𝑚 = (𝑗 + 1) → (⌊‘(𝑍 / (𝐾𝑚))) = (⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))))
215214oveq1d 7370 . . . . . . . . 9 (𝑚 = (𝑗 + 1) → ((⌊‘(𝑍 / (𝐾𝑚))) + 1) = ((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1))
216215oveq1d 7370 . . . . . . . 8 (𝑚 = (𝑗 + 1) → (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌))) = (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))))
217216sumeq1d 15614 . . . . . . 7 (𝑚 = (𝑗 + 1) → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
218211, 217breq12d 5108 . . . . . 6 (𝑚 = (𝑗 + 1) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
219218imbi2d 340 . . . . 5 (𝑚 = (𝑗 + 1) → ((𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ↔ (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
220 oveq1 7362 . . . . . . . 8 (𝑚 = 𝑁 → (𝑚𝑀) = (𝑁𝑀))
221220oveq2d 7371 . . . . . . 7 (𝑚 = 𝑁 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)))
222 oveq2 7363 . . . . . . . . . . . 12 (𝑚 = 𝑁 → (𝐾𝑚) = (𝐾𝑁))
223222oveq2d 7371 . . . . . . . . . . 11 (𝑚 = 𝑁 → (𝑍 / (𝐾𝑚)) = (𝑍 / (𝐾𝑁)))
224223fveq2d 6835 . . . . . . . . . 10 (𝑚 = 𝑁 → (⌊‘(𝑍 / (𝐾𝑚))) = (⌊‘(𝑍 / (𝐾𝑁))))
225224oveq1d 7370 . . . . . . . . 9 (𝑚 = 𝑁 → ((⌊‘(𝑍 / (𝐾𝑚))) + 1) = ((⌊‘(𝑍 / (𝐾𝑁))) + 1))
226225oveq1d 7370 . . . . . . . 8 (𝑚 = 𝑁 → (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌))) = (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌))))
227226sumeq1d 15614 . . . . . . 7 (𝑚 = 𝑁 → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
228221, 227breq12d 5108 . . . . . 6 (𝑚 = 𝑁 → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
229228imbi2d 340 . . . . 5 (𝑚 = 𝑁 → ((𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑚𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑚))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ↔ (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
23057nncnd 12152 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
231230subidd 11471 . . . . . . . . 9 (𝜑 → (𝑀𝑀) = 0)
232231oveq2d 7371 . . . . . . . 8 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · 0))
23352rpcnd 12942 . . . . . . . . 9 (𝜑 → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℂ)
234233mul01d 11323 . . . . . . . 8 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · 0) = 0)
235232, 234eqtrd 2768 . . . . . . 7 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)) = 0)
236 fzfid 13887 . . . . . . . 8 (𝜑 → (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
23757nnzd 12505 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℤ)
23885, 237rpexpcld 14161 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾𝑀) ∈ ℝ+)
23935, 238rpdivcld 12957 . . . . . . . . . . . . . 14 (𝜑 → (𝑍 / (𝐾𝑀)) ∈ ℝ+)
240239rprege0d 12947 . . . . . . . . . . . . 13 (𝜑 → ((𝑍 / (𝐾𝑀)) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾𝑀))))
241 flge0nn0 13731 . . . . . . . . . . . . 13 (((𝑍 / (𝐾𝑀)) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾𝑀))) → (⌊‘(𝑍 / (𝐾𝑀))) ∈ ℕ0)
242 nn0p1nn 12431 . . . . . . . . . . . . 13 ((⌊‘(𝑍 / (𝐾𝑀))) ∈ ℕ0 → ((⌊‘(𝑍 / (𝐾𝑀))) + 1) ∈ ℕ)
243240, 241, 2423syl 18 . . . . . . . . . . . 12 (𝜑 → ((⌊‘(𝑍 / (𝐾𝑀))) + 1) ∈ ℕ)
244243, 181eleqtrdi 2843 . . . . . . . . . . 11 (𝜑 → ((⌊‘(𝑍 / (𝐾𝑀))) + 1) ∈ (ℤ‘1))
245 fzss1 13470 . . . . . . . . . . 11 (((⌊‘(𝑍 / (𝐾𝑀))) + 1) ∈ (ℤ‘1) → (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
246244, 245syl 17 . . . . . . . . . 10 (𝜑 → (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
247246sselda 3930 . . . . . . . . 9 ((𝜑𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))))
248247, 82syldan 591 . . . . . . . 8 ((𝜑𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
249 elfzle2 13435 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))) → 𝑛 ≤ (⌊‘(𝑍 / 𝑌)))
250249adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ≤ (⌊‘(𝑍 / 𝑌)))
25129simpld 494 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ ℝ+)
25235, 251rpdivcld 12957 . . . . . . . . . . . . . 14 (𝜑 → (𝑍 / 𝑌) ∈ ℝ+)
253252rpred 12940 . . . . . . . . . . . . 13 (𝜑 → (𝑍 / 𝑌) ∈ ℝ)
254 elfzelz 13431 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))) → 𝑛 ∈ ℤ)
255 flge 13716 . . . . . . . . . . . . 13 (((𝑍 / 𝑌) ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ (𝑍 / 𝑌) ↔ 𝑛 ≤ (⌊‘(𝑍 / 𝑌))))
256253, 254, 255syl2an 596 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑛 ≤ (𝑍 / 𝑌) ↔ 𝑛 ≤ (⌊‘(𝑍 / 𝑌))))
257250, 256mpbird 257 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ≤ (𝑍 / 𝑌))
25871, 257jca 511 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝑍 / 𝑌)))
259 pntlem1.U . . . . . . . . . . 11 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
2601, 2, 3, 4, 5, 6, 7, 8, 9, 10, 29, 30, 31, 32, 33, 54, 55, 259pntlemn 27558 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝑍 / 𝑌))) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
261258, 260syldan 591 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
262247, 261syldan 591 . . . . . . . 8 ((𝜑𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))) → 0 ≤ (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
263236, 248, 262fsumge0 15709 . . . . . . 7 (𝜑 → 0 ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
264235, 263eqbrtrd 5117 . . . . . 6 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
265264a1i 11 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑀𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑀))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
266 pntlem1.K . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
267 eqid 2733 . . . . . . . . . 10 (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) = (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))
2681, 2, 3, 4, 5, 6, 7, 8, 9, 10, 29, 30, 31, 32, 33, 54, 55, 259, 266, 267pntlemi 27562 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
26952adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ+)
270269rpred 12940 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ)
271 elfzoelz 13566 . . . . . . . . . . . . . 14 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ ℤ)
272271adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℤ)
273272zred 12587 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℝ)
27457adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℕ)
275274nnred 12151 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ)
276273, 275resubcld 11556 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗𝑀) ∈ ℝ)
277270, 276remulcld 11153 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ∈ ℝ)
278 fzfid 13887 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∈ Fin)
279 ssun1 4127 . . . . . . . . . . . . . . 15 (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ⊆ ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∪ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))))
28036adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑍 ∈ ℝ)
28185adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐾 ∈ ℝ+)
282272peano2zd 12590 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ ℤ)
283281, 282rpexpcld 14161 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐾↑(𝑗 + 1)) ∈ ℝ+)
284280, 283rerpdivcld 12971 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / (𝐾↑(𝑗 + 1))) ∈ ℝ)
285281, 272rpexpcld 14161 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐾𝑗) ∈ ℝ+)
286280, 285rerpdivcld 12971 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / (𝐾𝑗)) ∈ ℝ)
28786adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐾 ∈ ℝ)
288 1re 11123 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℝ
289 ltle 11212 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (1 < 𝐾 → 1 ≤ 𝐾))
290288, 86, 289sylancr 587 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (1 < 𝐾 → 1 ≤ 𝐾))
29187, 290mpd 15 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ≤ 𝐾)
292291adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 1 ≤ 𝐾)
293 uzid 12757 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
294 peano2uz 12805 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (ℤ𝑗) → (𝑗 + 1) ∈ (ℤ𝑗))
295272, 293, 2943syl 18 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ (ℤ𝑗))
296287, 292, 295leexp2ad 14168 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐾𝑗) ≤ (𝐾↑(𝑗 + 1)))
29735adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑍 ∈ ℝ+)
298285, 283, 297lediv2d 12964 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝐾𝑗) ≤ (𝐾↑(𝑗 + 1)) ↔ (𝑍 / (𝐾↑(𝑗 + 1))) ≤ (𝑍 / (𝐾𝑗))))
299296, 298mpbid 232 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / (𝐾↑(𝑗 + 1))) ≤ (𝑍 / (𝐾𝑗)))
300 flword2 13724 . . . . . . . . . . . . . . . . . 18 (((𝑍 / (𝐾↑(𝑗 + 1))) ∈ ℝ ∧ (𝑍 / (𝐾𝑗)) ∈ ℝ ∧ (𝑍 / (𝐾↑(𝑗 + 1))) ≤ (𝑍 / (𝐾𝑗))) → (⌊‘(𝑍 / (𝐾𝑗))) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾↑(𝑗 + 1))))))
301284, 286, 299, 300syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / (𝐾𝑗))) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾↑(𝑗 + 1))))))
302 eluzp1p1 12770 . . . . . . . . . . . . . . . . 17 ((⌊‘(𝑍 / (𝐾𝑗))) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾↑(𝑗 + 1))))) → ((⌊‘(𝑍 / (𝐾𝑗))) + 1) ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)))
303301, 302syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((⌊‘(𝑍 / (𝐾𝑗))) + 1) ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)))
304286flcld 13709 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / (𝐾𝑗))) ∈ ℤ)
305252adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / 𝑌) ∈ ℝ+)
306305rpred 12940 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / 𝑌) ∈ ℝ)
307306flcld 13709 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / 𝑌)) ∈ ℤ)
308251adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑌 ∈ ℝ+)
309308rpred 12940 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑌 ∈ ℝ)
310285rpred 12940 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐾𝑗) ∈ ℝ)
31130simpld 494 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑋 ∈ ℝ+)
312311rpred 12940 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑋 ∈ ℝ)
313312adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℝ)
31430simprd 495 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑌 < 𝑋)
315314adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑌 < 𝑋)
316 elfzofz 13582 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (𝑀...𝑁))
3171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 29, 30, 31, 32, 33, 54, 55pntlemh 27557 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝑋 < (𝐾𝑗) ∧ (𝐾𝑗) ≤ (√‘𝑍)))
318316, 317sylan2 593 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑋 < (𝐾𝑗) ∧ (𝐾𝑗) ≤ (√‘𝑍)))
319318simpld 494 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑋 < (𝐾𝑗))
320309, 313, 310, 315, 319lttrd 11285 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑌 < (𝐾𝑗))
321309, 310, 320ltled 11272 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑌 ≤ (𝐾𝑗))
322308, 285, 297lediv2d 12964 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑌 ≤ (𝐾𝑗) ↔ (𝑍 / (𝐾𝑗)) ≤ (𝑍 / 𝑌)))
323321, 322mpbid 232 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / (𝐾𝑗)) ≤ (𝑍 / 𝑌))
324 flwordi 13723 . . . . . . . . . . . . . . . . . 18 (((𝑍 / (𝐾𝑗)) ∈ ℝ ∧ (𝑍 / 𝑌) ∈ ℝ ∧ (𝑍 / (𝐾𝑗)) ≤ (𝑍 / 𝑌)) → (⌊‘(𝑍 / (𝐾𝑗))) ≤ (⌊‘(𝑍 / 𝑌)))
325286, 306, 323, 324syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / (𝐾𝑗))) ≤ (⌊‘(𝑍 / 𝑌)))
326 eluz2 12748 . . . . . . . . . . . . . . . . 17 ((⌊‘(𝑍 / 𝑌)) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾𝑗)))) ↔ ((⌊‘(𝑍 / (𝐾𝑗))) ∈ ℤ ∧ (⌊‘(𝑍 / 𝑌)) ∈ ℤ ∧ (⌊‘(𝑍 / (𝐾𝑗))) ≤ (⌊‘(𝑍 / 𝑌))))
327304, 307, 325, 326syl3anbrc 1344 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / 𝑌)) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾𝑗)))))
328 fzsplit2 13456 . . . . . . . . . . . . . . . 16 ((((⌊‘(𝑍 / (𝐾𝑗))) + 1) ∈ (ℤ‘((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)) ∧ (⌊‘(𝑍 / 𝑌)) ∈ (ℤ‘(⌊‘(𝑍 / (𝐾𝑗))))) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))) = ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∪ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))))
329303, 327, 328syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))) = ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∪ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))))
330279, 329sseqtrrid 3974 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ⊆ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))))
331297, 283rpdivcld 12957 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑍 / (𝐾↑(𝑗 + 1))) ∈ ℝ+)
332331rprege0d 12947 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑍 / (𝐾↑(𝑗 + 1))) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾↑(𝑗 + 1)))))
333 flge0nn0 13731 . . . . . . . . . . . . . . . . 17 (((𝑍 / (𝐾↑(𝑗 + 1))) ∈ ℝ ∧ 0 ≤ (𝑍 / (𝐾↑(𝑗 + 1)))) → (⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) ∈ ℕ0)
334 nn0p1nn 12431 . . . . . . . . . . . . . . . . 17 ((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) ∈ ℕ0 → ((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1) ∈ ℕ)
335332, 333, 3343syl 18 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1) ∈ ℕ)
336335, 181eleqtrdi 2843 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1) ∈ (ℤ‘1))
337 fzss1 13470 . . . . . . . . . . . . . . 15 (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1) ∈ (ℤ‘1) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
338336, 337syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
339330, 338sstrd 3941 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
340339sselda 3930 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))) → 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))))
34182adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
342340, 341syldan 591 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
343278, 342fsumrecl 15648 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
344 fzfid 13887 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
345 ssun2 4128 . . . . . . . . . . . . . . 15 (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∪ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))))
346345, 329sseqtrrid 3974 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))))
347346, 338sstrd 3941 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌))) ⊆ (1...(⌊‘(𝑍 / 𝑌))))
348347sselda 3930 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))))
349348, 341syldan 591 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
350344, 349fsumrecl 15648 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
351 le2add 11610 . . . . . . . . . 10 (((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℝ ∧ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ∈ ℝ) ∧ (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ ∧ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∧ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))) ≤ (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
352270, 277, 343, 350, 351syl22anc 838 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∧ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))) ≤ (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
353268, 352mpand 695 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))) ≤ (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
354233adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) ∈ ℂ)
355 1cnd 11118 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 1 ∈ ℂ)
356272zcnd 12588 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℂ)
357230adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℂ)
358356, 357subcld 11483 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗𝑀) ∈ ℂ)
359354, 355, 358adddid 11147 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (1 + (𝑗𝑀))) = ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · 1) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))))
360355, 358addcomd 11326 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (1 + (𝑗𝑀)) = ((𝑗𝑀) + 1))
361356, 355, 357addsubd 11504 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑗 + 1) − 𝑀) = ((𝑗𝑀) + 1))
362360, 361eqtr4d 2771 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (1 + (𝑗𝑀)) = ((𝑗 + 1) − 𝑀))
363362oveq2d 7371 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (1 + (𝑗𝑀))) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)))
364354mulridd 11140 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · 1) = ((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))))
365364oveq1d 7370 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · 1) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))))
366359, 363, 3653eqtr3d 2776 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) = (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))))
367 reflcl 13707 . . . . . . . . . . . . 13 ((𝑍 / (𝐾𝑗)) ∈ ℝ → (⌊‘(𝑍 / (𝐾𝑗))) ∈ ℝ)
368286, 367syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / (𝐾𝑗))) ∈ ℝ)
369368ltp1d 12063 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (⌊‘(𝑍 / (𝐾𝑗))) < ((⌊‘(𝑍 / (𝐾𝑗))) + 1))
370 fzdisj 13458 . . . . . . . . . . 11 ((⌊‘(𝑍 / (𝐾𝑗))) < ((⌊‘(𝑍 / (𝐾𝑗))) + 1) → ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∩ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))) = ∅)
371369, 370syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗)))) ∩ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))) = ∅)
372 fzfid 13887 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
373338sselda 3930 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))))
374373, 341syldan 591 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
375374recnd 11151 . . . . . . . . . 10 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℂ)
376371, 329, 372, 375fsumsplit 15655 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
377366, 376breq12d 5108 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) + (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀))) ≤ (Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / (𝐾𝑗))))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) + Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
378353, 377sylibrd 259 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
379378expcom 413 . . . . . 6 (𝑗 ∈ (𝑀..^𝑁) → (𝜑 → ((((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
380379a2d 29 . . . . 5 (𝑗 ∈ (𝑀..^𝑁) → ((𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑗𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑗))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) → (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · ((𝑗 + 1) − 𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾↑(𝑗 + 1)))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
381199, 209, 219, 229, 265, 380fzind2 13695 . . . 4 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
382189, 381mpcom 38 . . 3 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) ≤ Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
38365, 82, 261, 184fsumless 15710 . . 3 (𝜑 → Σ𝑛 ∈ (((⌊‘(𝑍 / (𝐾𝑁))) + 1)...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
38464, 187, 83, 382, 383letrd 11281 . 2 (𝜑 → (((𝑈𝐸) · (((𝐿 · 𝐸) / 8) · (log‘𝑍))) · (𝑁𝑀)) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
38544, 64, 83, 172, 384letrd 11281 1 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  cun 3896  cin 3897  wss 3898  c0 4282   class class class wbr 5095  cmpt 5176  cfv 6489  (class class class)co 7355  cc 11015  cr 11016  0cc0 11017  1c1 11018   + caddc 11020   · cmul 11022  +∞cpnf 11154   < clt 11157  cle 11158  cmin 11355   / cdiv 11785  cn 12136  2c2 12191  3c3 12192  4c4 12193  8c8 12197  0cn0 12392  cz 12479  cdc 12598  cuz 12742  +crp 12896  (,)cioo 13252  [,)cico 13254  [,]cicc 13255  ...cfz 13414  ..^cfzo 13561  cfl 13701  cexp 13975  csqrt 15147  abscabs 15148  Σcsu 15600  expce 15975  eceu 15976  logclog 26510  ψcchp 27050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-fi 9306  df-sup 9337  df-inf 9338  df-oi 9407  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13256  df-ioc 13257  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-fac 14188  df-bc 14217  df-hash 14245  df-shft 14981  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-limsup 15385  df-clim 15402  df-rlim 15403  df-sum 15601  df-ef 15981  df-e 15982  df-sin 15983  df-cos 15984  df-pi 15986  df-dvds 16171  df-gcd 16413  df-prm 16590  df-pc 16756  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-hom 17192  df-cco 17193  df-rest 17333  df-topn 17334  df-0g 17352  df-gsum 17353  df-topgen 17354  df-pt 17355  df-prds 17358  df-xrs 17414  df-qtop 17419  df-imas 17420  df-xps 17422  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-mulg 18989  df-cntz 19237  df-cmn 19702  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-fbas 21297  df-fg 21298  df-cnfld 21301  df-top 22829  df-topon 22846  df-topsp 22868  df-bases 22881  df-cld 22954  df-ntr 22955  df-cls 22956  df-nei 23033  df-lp 23071  df-perf 23072  df-cn 23162  df-cnp 23163  df-haus 23250  df-tx 23497  df-hmeo 23690  df-fil 23781  df-fm 23873  df-flim 23874  df-flf 23875  df-xms 24255  df-ms 24256  df-tms 24257  df-cncf 24818  df-limc 25814  df-dv 25815  df-log 26512  df-vma 27055  df-chp 27056
This theorem is referenced by:  pntlemo  27565
  Copyright terms: Public domain W3C validator