MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1lem3 Structured version   Visualization version   GIF version

Theorem chebbnd1lem3 27500
Description: Lemma for chebbnd1 27501: get a lower bound on π(𝑁) / (𝑁 / log(𝑁)) that is independent of 𝑁. (Contributed by Mario Carneiro, 21-Sep-2014.)
Hypothesis
Ref Expression
chebbnd1lem2.1 𝑀 = (⌊‘(𝑁 / 2))
Assertion
Ref Expression
chebbnd1lem3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) / 2) < ((π𝑁) · ((log‘𝑁) / 𝑁)))

Proof of Theorem chebbnd1lem3
StepHypRef Expression
1 2rp 13033 . . . . . 6 2 ∈ ℝ+
2 relogcl 26602 . . . . . 6 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
31, 2ax-mp 5 . . . . 5 (log‘2) ∈ ℝ
4 1re 11264 . . . . . 6 1 ∈ ℝ
5 2re 12338 . . . . . . 7 2 ∈ ℝ
6 ere 16091 . . . . . . 7 e ∈ ℝ
75, 6remulcli 11280 . . . . . 6 (2 · e) ∈ ℝ
8 2pos 12367 . . . . . . . 8 0 < 2
9 epos 16209 . . . . . . . 8 0 < e
105, 6, 8, 9mulgt0ii 11397 . . . . . . 7 0 < (2 · e)
117, 10gt0ne0ii 11800 . . . . . 6 (2 · e) ≠ 0
124, 7, 11redivcli 12032 . . . . 5 (1 / (2 · e)) ∈ ℝ
133, 12resubcli 11572 . . . 4 ((log‘2) − (1 / (2 · e))) ∈ ℝ
14 2ne0 12368 . . . 4 2 ≠ 0
1513, 5, 14redivcli 12032 . . 3 (((log‘2) − (1 / (2 · e))) / 2) ∈ ℝ
1615a1i 11 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) / 2) ∈ ℝ)
175a1i 11 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ∈ ℝ)
18 8re 12360 . . . . . . . 8 8 ∈ ℝ
1918a1i 11 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 8 ∈ ℝ)
20 simpl 481 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ∈ ℝ)
21 2lt8 12461 . . . . . . . . 9 2 < 8
225, 18, 21ltleii 11387 . . . . . . . 8 2 ≤ 8
2322a1i 11 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ≤ 8)
24 simpr 483 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 8 ≤ 𝑁)
2517, 19, 20, 23, 24letrd 11421 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ≤ 𝑁)
26 ppinncl 27202 . . . . . 6 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → (π𝑁) ∈ ℕ)
2725, 26syldan 589 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π𝑁) ∈ ℕ)
2827nnred 12279 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π𝑁) ∈ ℝ)
29 chebbnd1lem2.1 . . . . . . . . . 10 𝑀 = (⌊‘(𝑁 / 2))
30 rehalfcl 12490 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (𝑁 / 2) ∈ ℝ)
3130adantr 479 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) ∈ ℝ)
3231flcld 13818 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (⌊‘(𝑁 / 2)) ∈ ℤ)
3329, 32eqeltrid 2830 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℤ)
3433zred 12718 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℝ)
35 remulcl 11243 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (2 · 𝑀) ∈ ℝ)
365, 34, 35sylancr 585 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℝ)
374a1i 11 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 1 ∈ ℝ)
38 1lt2 12435 . . . . . . . . 9 1 < 2
3938a1i 11 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 1 < 2)
40 2t1e2 12427 . . . . . . . . 9 (2 · 1) = 2
41 4nn 12347 . . . . . . . . . . . 12 4 ∈ ℕ
42 4z 12648 . . . . . . . . . . . . . 14 4 ∈ ℤ
4342a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ∈ ℤ)
44 4t2e8 12432 . . . . . . . . . . . . . . . . 17 (4 · 2) = 8
4544, 24eqbrtrid 5188 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (4 · 2) ≤ 𝑁)
46 4re 12348 . . . . . . . . . . . . . . . . . 18 4 ∈ ℝ
4746a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ∈ ℝ)
488a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 2)
49 lemuldiv 12146 . . . . . . . . . . . . . . . . 17 ((4 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((4 · 2) ≤ 𝑁 ↔ 4 ≤ (𝑁 / 2)))
5047, 20, 17, 48, 49syl112anc 1371 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((4 · 2) ≤ 𝑁 ↔ 4 ≤ (𝑁 / 2)))
5145, 50mpbid 231 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ (𝑁 / 2))
52 flge 13825 . . . . . . . . . . . . . . . 16 (((𝑁 / 2) ∈ ℝ ∧ 4 ∈ ℤ) → (4 ≤ (𝑁 / 2) ↔ 4 ≤ (⌊‘(𝑁 / 2))))
5331, 42, 52sylancl 584 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (4 ≤ (𝑁 / 2) ↔ 4 ≤ (⌊‘(𝑁 / 2))))
5451, 53mpbid 231 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ (⌊‘(𝑁 / 2)))
5554, 29breqtrrdi 5195 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ 𝑀)
56 eluz2 12880 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 4 ≤ 𝑀))
5743, 33, 55, 56syl3anbrc 1340 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ (ℤ‘4))
58 eluznn 12954 . . . . . . . . . . . 12 ((4 ∈ ℕ ∧ 𝑀 ∈ (ℤ‘4)) → 𝑀 ∈ ℕ)
5941, 57, 58sylancr 585 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℕ)
6059nnge1d 12312 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 1 ≤ 𝑀)
61 lemul2 12118 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (1 ≤ 𝑀 ↔ (2 · 1) ≤ (2 · 𝑀)))
6237, 34, 17, 48, 61syl112anc 1371 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (1 ≤ 𝑀 ↔ (2 · 1) ≤ (2 · 𝑀)))
6360, 62mpbid 231 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 1) ≤ (2 · 𝑀))
6440, 63eqbrtrrid 5189 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ≤ (2 · 𝑀))
6537, 17, 36, 39, 64ltletrd 11424 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 1 < (2 · 𝑀))
6636, 65rplogcld 26656 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(2 · 𝑀)) ∈ ℝ+)
6766rpred 13070 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(2 · 𝑀)) ∈ ℝ)
68 2nn 12337 . . . . . 6 2 ∈ ℕ
69 nnmulcl 12288 . . . . . 6 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
7068, 59, 69sylancr 585 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℕ)
7167, 70nndivred 12318 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) ∈ ℝ)
7228, 71remulcld 11294 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ∈ ℝ)
73 rehalfcl 12490 . . 3 (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ∈ ℝ → (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2) ∈ ℝ)
7472, 73syl 17 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2) ∈ ℝ)
75 0red 11267 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 ∈ ℝ)
76 8pos 12376 . . . . . . . 8 0 < 8
7776a1i 11 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 8)
7875, 19, 20, 77, 24ltletrd 11424 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 𝑁)
7920, 78elrpd 13067 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ∈ ℝ+)
8079relogcld 26650 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘𝑁) ∈ ℝ)
8180, 79rerpdivcld 13101 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) / 𝑁) ∈ ℝ)
8228, 81remulcld 11294 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π𝑁) · ((log‘𝑁) / 𝑁)) ∈ ℝ)
8313a1i 11 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘2) − (1 / (2 · e))) ∈ ℝ)
84 ppinncl 27202 . . . . . . 7 (((2 · 𝑀) ∈ ℝ ∧ 2 ≤ (2 · 𝑀)) → (π‘(2 · 𝑀)) ∈ ℕ)
8536, 64, 84syl2anc 582 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π‘(2 · 𝑀)) ∈ ℕ)
8685nnred 12279 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π‘(2 · 𝑀)) ∈ ℝ)
8786, 71remulcld 11294 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π‘(2 · 𝑀)) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ∈ ℝ)
88 remulcl 11243 . . . . . . . 8 ((((log‘2) − (1 / (2 · e))) ∈ ℝ ∧ (2 · 𝑀) ∈ ℝ) → (((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) ∈ ℝ)
8913, 36, 88sylancr 585 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) ∈ ℝ)
90 4pos 12371 . . . . . . . . . . 11 0 < 4
9146, 90elrpii 13031 . . . . . . . . . 10 4 ∈ ℝ+
92 rpexpcl 14100 . . . . . . . . . 10 ((4 ∈ ℝ+𝑀 ∈ ℤ) → (4↑𝑀) ∈ ℝ+)
9391, 33, 92sylancr 585 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (4↑𝑀) ∈ ℝ+)
9459nnrpd 13068 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℝ+)
9593, 94rpdivcld 13087 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((4↑𝑀) / 𝑀) ∈ ℝ+)
9695relogcld 26650 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘((4↑𝑀) / 𝑀)) ∈ ℝ)
9786, 67remulcld 11294 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))) ∈ ℝ)
9894relogcld 26650 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘𝑀) ∈ ℝ)
99 epr 16210 . . . . . . . . . 10 e ∈ ℝ+
100 rerpdivcl 13058 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ e ∈ ℝ+) → (𝑀 / e) ∈ ℝ)
10134, 99, 100sylancl 584 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑀 / e) ∈ ℝ)
10293relogcld 26650 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(4↑𝑀)) ∈ ℝ)
1036a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ∈ ℝ)
104 egt2lt3 16208 . . . . . . . . . . . . . . . . . 18 (2 < e ∧ e < 3)
105104simpri 484 . . . . . . . . . . . . . . . . 17 e < 3
106 3lt4 12438 . . . . . . . . . . . . . . . . 17 3 < 4
107 3re 12344 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
1086, 107, 46lttri 11390 . . . . . . . . . . . . . . . . 17 ((e < 3 ∧ 3 < 4) → e < 4)
109105, 106, 108mp2an 690 . . . . . . . . . . . . . . . 16 e < 4
110109a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e < 4)
111103, 47, 34, 110, 55ltletrd 11424 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e < 𝑀)
112103, 34, 111ltled 11412 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ≤ 𝑀)
1136leidi 11798 . . . . . . . . . . . . . . . 16 e ≤ e
114 logdivlt 26648 . . . . . . . . . . . . . . . 16 (((e ∈ ℝ ∧ e ≤ e) ∧ (𝑀 ∈ ℝ ∧ e ≤ 𝑀)) → (e < 𝑀 ↔ ((log‘𝑀) / 𝑀) < ((log‘e) / e)))
1156, 113, 114mpanl12 700 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℝ ∧ e ≤ 𝑀) → (e < 𝑀 ↔ ((log‘𝑀) / 𝑀) < ((log‘e) / e)))
11634, 112, 115syl2anc 582 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (e < 𝑀 ↔ ((log‘𝑀) / 𝑀) < ((log‘e) / e)))
117111, 116mpbid 231 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑀) / 𝑀) < ((log‘e) / e))
118 loge 26613 . . . . . . . . . . . . . 14 (log‘e) = 1
119118oveq1i 7434 . . . . . . . . . . . . 13 ((log‘e) / e) = (1 / e)
120117, 119breqtrdi 5194 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑀) / 𝑀) < (1 / e))
1216, 9pm3.2i 469 . . . . . . . . . . . . . 14 (e ∈ ℝ ∧ 0 < e)
122121a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (e ∈ ℝ ∧ 0 < e))
12359nngt0d 12313 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 𝑀)
12434, 123jca 510 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑀 ∈ ℝ ∧ 0 < 𝑀))
125 lt2mul2div 12144 . . . . . . . . . . . . 13 ((((log‘𝑀) ∈ ℝ ∧ (e ∈ ℝ ∧ 0 < e)) ∧ (1 ∈ ℝ ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀))) → (((log‘𝑀) · e) < (1 · 𝑀) ↔ ((log‘𝑀) / 𝑀) < (1 / e)))
12698, 122, 37, 124, 125syl22anc 837 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘𝑀) · e) < (1 · 𝑀) ↔ ((log‘𝑀) / 𝑀) < (1 / e)))
127120, 126mpbird 256 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑀) · e) < (1 · 𝑀))
12834recnd 11292 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℂ)
129128mullidd 11282 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (1 · 𝑀) = 𝑀)
130127, 129breqtrd 5179 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑀) · e) < 𝑀)
131 ltmuldiv 12139 . . . . . . . . . . 11 (((log‘𝑀) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (e ∈ ℝ ∧ 0 < e)) → (((log‘𝑀) · e) < 𝑀 ↔ (log‘𝑀) < (𝑀 / e)))
13298, 34, 122, 131syl3anc 1368 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘𝑀) · e) < 𝑀 ↔ (log‘𝑀) < (𝑀 / e)))
133130, 132mpbid 231 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘𝑀) < (𝑀 / e))
13498, 101, 102, 133ltsub2dd 11877 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(4↑𝑀)) − (𝑀 / e)) < ((log‘(4↑𝑀)) − (log‘𝑀)))
1353recni 11278 . . . . . . . . . . 11 (log‘2) ∈ ℂ
136135a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘2) ∈ ℂ)
13712recni 11278 . . . . . . . . . . 11 (1 / (2 · e)) ∈ ℂ
138137a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (1 / (2 · e)) ∈ ℂ)
13970nnrpd 13068 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℝ+)
140139rpcnd 13072 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℂ)
141136, 138, 140subdird 11721 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) = (((log‘2) · (2 · 𝑀)) − ((1 / (2 · e)) · (2 · 𝑀))))
142136, 140mulcomd 11285 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘2) · (2 · 𝑀)) = ((2 · 𝑀) · (log‘2)))
143 2z 12646 . . . . . . . . . . . . 13 2 ∈ ℤ
144 zmulcl 12663 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 · 𝑀) ∈ ℤ)
145143, 33, 144sylancr 585 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℤ)
146 relogexp 26623 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ (2 · 𝑀) ∈ ℤ) → (log‘(2↑(2 · 𝑀))) = ((2 · 𝑀) · (log‘2)))
1471, 145, 146sylancr 585 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(2↑(2 · 𝑀))) = ((2 · 𝑀) · (log‘2)))
148 2cnd 12342 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ∈ ℂ)
14959nnnn0d 12584 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℕ0)
150 2nn0 12541 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
151150a1i 11 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ∈ ℕ0)
152148, 149, 151expmuld 14168 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2↑(2 · 𝑀)) = ((2↑2)↑𝑀))
153 sq2 14215 . . . . . . . . . . . . . 14 (2↑2) = 4
154153oveq1i 7434 . . . . . . . . . . . . 13 ((2↑2)↑𝑀) = (4↑𝑀)
155152, 154eqtrdi 2782 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2↑(2 · 𝑀)) = (4↑𝑀))
156155fveq2d 6905 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(2↑(2 · 𝑀))) = (log‘(4↑𝑀)))
157142, 147, 1563eqtr2d 2772 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘2) · (2 · 𝑀)) = (log‘(4↑𝑀)))
1587recni 11278 . . . . . . . . . . . . 13 (2 · e) ∈ ℂ
159158a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · e) ∈ ℂ)
16011a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · e) ≠ 0)
161140, 159, 160divrec2d 12045 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((2 · 𝑀) / (2 · e)) = ((1 / (2 · e)) · (2 · 𝑀)))
1626recni 11278 . . . . . . . . . . . . 13 e ∈ ℂ
163162a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ∈ ℂ)
1646, 9gt0ne0ii 11800 . . . . . . . . . . . . 13 e ≠ 0
165164a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ≠ 0)
16614a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ≠ 0)
167128, 163, 148, 165, 166divcan5d 12067 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((2 · 𝑀) / (2 · e)) = (𝑀 / e))
168161, 167eqtr3d 2768 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((1 / (2 · e)) · (2 · 𝑀)) = (𝑀 / e))
169157, 168oveq12d 7442 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) · (2 · 𝑀)) − ((1 / (2 · e)) · (2 · 𝑀))) = ((log‘(4↑𝑀)) − (𝑀 / e)))
170141, 169eqtrd 2766 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) = ((log‘(4↑𝑀)) − (𝑀 / e)))
17193, 94relogdivd 26653 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘((4↑𝑀) / 𝑀)) = ((log‘(4↑𝑀)) − (log‘𝑀)))
172134, 170, 1713brtr4d 5185 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) < (log‘((4↑𝑀) / 𝑀)))
173 eqid 2726 . . . . . . . . 9 if((2 · 𝑀) ≤ ((2 · 𝑀)C𝑀), (2 · 𝑀), ((2 · 𝑀)C𝑀)) = if((2 · 𝑀) ≤ ((2 · 𝑀)C𝑀), (2 · 𝑀), ((2 · 𝑀)C𝑀))
174173chebbnd1lem1 27498 . . . . . . . 8 (𝑀 ∈ (ℤ‘4) → (log‘((4↑𝑀) / 𝑀)) < ((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))))
17557, 174syl 17 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘((4↑𝑀) / 𝑀)) < ((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))))
17689, 96, 97, 172, 175lttrd 11425 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) < ((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))))
17783, 97, 139ltmuldivd 13117 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) < ((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))) ↔ ((log‘2) − (1 / (2 · e))) < (((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))) / (2 · 𝑀))))
178176, 177mpbid 231 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘2) − (1 / (2 · e))) < (((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))) / (2 · 𝑀)))
17986recnd 11292 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π‘(2 · 𝑀)) ∈ ℂ)
18066rpcnd 13072 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(2 · 𝑀)) ∈ ℂ)
181139rpcnne0d 13079 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((2 · 𝑀) ∈ ℂ ∧ (2 · 𝑀) ≠ 0))
182 divass 11941 . . . . . 6 (((π‘(2 · 𝑀)) ∈ ℂ ∧ (log‘(2 · 𝑀)) ∈ ℂ ∧ ((2 · 𝑀) ∈ ℂ ∧ (2 · 𝑀) ≠ 0)) → (((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))) / (2 · 𝑀)) = ((π‘(2 · 𝑀)) · ((log‘(2 · 𝑀)) / (2 · 𝑀))))
183179, 180, 181, 182syl3anc 1368 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))) / (2 · 𝑀)) = ((π‘(2 · 𝑀)) · ((log‘(2 · 𝑀)) / (2 · 𝑀))))
184178, 183breqtrd 5179 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘2) − (1 / (2 · e))) < ((π‘(2 · 𝑀)) · ((log‘(2 · 𝑀)) / (2 · 𝑀))))
185 flle 13819 . . . . . . . . 9 ((𝑁 / 2) ∈ ℝ → (⌊‘(𝑁 / 2)) ≤ (𝑁 / 2))
18631, 185syl 17 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (⌊‘(𝑁 / 2)) ≤ (𝑁 / 2))
18729, 186eqbrtrid 5188 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ≤ (𝑁 / 2))
188 lemuldiv2 12147 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑀) ≤ 𝑁𝑀 ≤ (𝑁 / 2)))
18934, 20, 17, 48, 188syl112anc 1371 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((2 · 𝑀) ≤ 𝑁𝑀 ≤ (𝑁 / 2)))
190187, 189mpbird 256 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ≤ 𝑁)
191 ppiwordi 27190 . . . . . 6 (((2 · 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 · 𝑀) ≤ 𝑁) → (π‘(2 · 𝑀)) ≤ (π𝑁))
19236, 20, 190, 191syl3anc 1368 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π‘(2 · 𝑀)) ≤ (π𝑁))
19366, 139rpdivcld 13087 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) ∈ ℝ+)
19486, 28, 193lemul1d 13113 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π‘(2 · 𝑀)) ≤ (π𝑁) ↔ ((π‘(2 · 𝑀)) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ≤ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀)))))
195192, 194mpbid 231 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π‘(2 · 𝑀)) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ≤ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))))
19683, 87, 72, 184, 195ltletrd 11424 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘2) − (1 / (2 · e))) < ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))))
197 ltdiv1 12130 . . . 4 ((((log‘2) − (1 / (2 · e))) ∈ ℝ ∧ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((log‘2) − (1 / (2 · e))) < ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ↔ (((log‘2) − (1 / (2 · e))) / 2) < (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2)))
19883, 72, 17, 48, 197syl112anc 1371 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) < ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ↔ (((log‘2) − (1 / (2 · e))) / 2) < (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2)))
199196, 198mpbid 231 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) / 2) < (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2))
20029chebbnd1lem2 27499 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) < (2 · ((log‘𝑁) / 𝑁)))
201 remulcl 11243 . . . . . . 7 ((2 ∈ ℝ ∧ ((log‘𝑁) / 𝑁) ∈ ℝ) → (2 · ((log‘𝑁) / 𝑁)) ∈ ℝ)
2025, 81, 201sylancr 585 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · ((log‘𝑁) / 𝑁)) ∈ ℝ)
20327nngt0d 12313 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < (π𝑁))
204 ltmul2 12116 . . . . . 6 ((((log‘(2 · 𝑀)) / (2 · 𝑀)) ∈ ℝ ∧ (2 · ((log‘𝑁) / 𝑁)) ∈ ℝ ∧ ((π𝑁) ∈ ℝ ∧ 0 < (π𝑁))) → (((log‘(2 · 𝑀)) / (2 · 𝑀)) < (2 · ((log‘𝑁) / 𝑁)) ↔ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) < ((π𝑁) · (2 · ((log‘𝑁) / 𝑁)))))
20571, 202, 28, 203, 204syl112anc 1371 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘(2 · 𝑀)) / (2 · 𝑀)) < (2 · ((log‘𝑁) / 𝑁)) ↔ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) < ((π𝑁) · (2 · ((log‘𝑁) / 𝑁)))))
206200, 205mpbid 231 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) < ((π𝑁) · (2 · ((log‘𝑁) / 𝑁))))
20728recnd 11292 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π𝑁) ∈ ℂ)
20881recnd 11292 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) / 𝑁) ∈ ℂ)
209207, 148, 208mul12d 11473 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π𝑁) · (2 · ((log‘𝑁) / 𝑁))) = (2 · ((π𝑁) · ((log‘𝑁) / 𝑁))))
210206, 209breqtrd 5179 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) < (2 · ((π𝑁) · ((log‘𝑁) / 𝑁))))
211 ltdivmul 12141 . . . 4 ((((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ∈ ℝ ∧ ((π𝑁) · ((log‘𝑁) / 𝑁)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2) < ((π𝑁) · ((log‘𝑁) / 𝑁)) ↔ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) < (2 · ((π𝑁) · ((log‘𝑁) / 𝑁)))))
21272, 82, 17, 48, 211syl112anc 1371 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2) < ((π𝑁) · ((log‘𝑁) / 𝑁)) ↔ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) < (2 · ((π𝑁) · ((log‘𝑁) / 𝑁)))))
213210, 212mpbird 256 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2) < ((π𝑁) · ((log‘𝑁) / 𝑁)))
21416, 74, 82, 199, 213lttrd 11425 1 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) / 2) < ((π𝑁) · ((log‘𝑁) / 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  ifcif 4533   class class class wbr 5153  cfv 6554  (class class class)co 7424  cc 11156  cr 11157  0cc0 11158  1c1 11159   · cmul 11163   < clt 11298  cle 11299  cmin 11494   / cdiv 11921  cn 12264  2c2 12319  3c3 12320  4c4 12321  8c8 12325  0cn0 12524  cz 12610  cuz 12874  +crp 13028  cfl 13810  cexp 14081  Ccbc 14319  eceu 16064  logclog 26581  πcppi 27122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-addf 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-oadd 8500  df-er 8734  df-map 8857  df-pm 8858  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-fi 9454  df-sup 9485  df-inf 9486  df-oi 9553  df-dju 9944  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12597  df-z 12611  df-dec 12730  df-uz 12875  df-q 12985  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-ioo 13382  df-ioc 13383  df-ico 13384  df-icc 13385  df-fz 13539  df-fzo 13682  df-fl 13812  df-mod 13890  df-seq 14022  df-exp 14082  df-fac 14291  df-bc 14320  df-hash 14348  df-shft 15072  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-limsup 15473  df-clim 15490  df-rlim 15491  df-sum 15691  df-ef 16069  df-e 16070  df-sin 16071  df-cos 16072  df-pi 16074  df-dvds 16257  df-gcd 16495  df-prm 16673  df-pc 16839  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-hom 17290  df-cco 17291  df-rest 17437  df-topn 17438  df-0g 17456  df-gsum 17457  df-topgen 17458  df-pt 17459  df-prds 17462  df-xrs 17517  df-qtop 17522  df-imas 17523  df-xps 17525  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-mulg 19062  df-cntz 19311  df-cmn 19780  df-psmet 21335  df-xmet 21336  df-met 21337  df-bl 21338  df-mopn 21339  df-fbas 21340  df-fg 21341  df-cnfld 21344  df-top 22887  df-topon 22904  df-topsp 22926  df-bases 22940  df-cld 23014  df-ntr 23015  df-cls 23016  df-nei 23093  df-lp 23131  df-perf 23132  df-cn 23222  df-cnp 23223  df-haus 23310  df-tx 23557  df-hmeo 23750  df-fil 23841  df-fm 23933  df-flim 23934  df-flf 23935  df-xms 24317  df-ms 24318  df-tms 24319  df-cncf 24889  df-limc 25886  df-dv 25887  df-log 26583  df-ppi 27128
This theorem is referenced by:  chebbnd1  27501
  Copyright terms: Public domain W3C validator