MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1lem3 Structured version   Visualization version   GIF version

Theorem chebbnd1lem3 27533
Description: Lemma for chebbnd1 27534: get a lower bound on π(𝑁) / (𝑁 / log(𝑁)) that is independent of 𝑁. (Contributed by Mario Carneiro, 21-Sep-2014.)
Hypothesis
Ref Expression
chebbnd1lem2.1 𝑀 = (⌊‘(𝑁 / 2))
Assertion
Ref Expression
chebbnd1lem3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) / 2) < ((π𝑁) · ((log‘𝑁) / 𝑁)))

Proof of Theorem chebbnd1lem3
StepHypRef Expression
1 2rp 13062 . . . . . 6 2 ∈ ℝ+
2 relogcl 26635 . . . . . 6 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
31, 2ax-mp 5 . . . . 5 (log‘2) ∈ ℝ
4 1re 11290 . . . . . 6 1 ∈ ℝ
5 2re 12367 . . . . . . 7 2 ∈ ℝ
6 ere 16137 . . . . . . 7 e ∈ ℝ
75, 6remulcli 11306 . . . . . 6 (2 · e) ∈ ℝ
8 2pos 12396 . . . . . . . 8 0 < 2
9 epos 16255 . . . . . . . 8 0 < e
105, 6, 8, 9mulgt0ii 11423 . . . . . . 7 0 < (2 · e)
117, 10gt0ne0ii 11826 . . . . . 6 (2 · e) ≠ 0
124, 7, 11redivcli 12061 . . . . 5 (1 / (2 · e)) ∈ ℝ
133, 12resubcli 11598 . . . 4 ((log‘2) − (1 / (2 · e))) ∈ ℝ
14 2ne0 12397 . . . 4 2 ≠ 0
1513, 5, 14redivcli 12061 . . 3 (((log‘2) − (1 / (2 · e))) / 2) ∈ ℝ
1615a1i 11 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) / 2) ∈ ℝ)
175a1i 11 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ∈ ℝ)
18 8re 12389 . . . . . . . 8 8 ∈ ℝ
1918a1i 11 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 8 ∈ ℝ)
20 simpl 482 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ∈ ℝ)
21 2lt8 12490 . . . . . . . . 9 2 < 8
225, 18, 21ltleii 11413 . . . . . . . 8 2 ≤ 8
2322a1i 11 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ≤ 8)
24 simpr 484 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 8 ≤ 𝑁)
2517, 19, 20, 23, 24letrd 11447 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ≤ 𝑁)
26 ppinncl 27235 . . . . . 6 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → (π𝑁) ∈ ℕ)
2725, 26syldan 590 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π𝑁) ∈ ℕ)
2827nnred 12308 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π𝑁) ∈ ℝ)
29 chebbnd1lem2.1 . . . . . . . . . 10 𝑀 = (⌊‘(𝑁 / 2))
30 rehalfcl 12519 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (𝑁 / 2) ∈ ℝ)
3130adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) ∈ ℝ)
3231flcld 13849 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (⌊‘(𝑁 / 2)) ∈ ℤ)
3329, 32eqeltrid 2848 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℤ)
3433zred 12747 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℝ)
35 remulcl 11269 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (2 · 𝑀) ∈ ℝ)
365, 34, 35sylancr 586 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℝ)
374a1i 11 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 1 ∈ ℝ)
38 1lt2 12464 . . . . . . . . 9 1 < 2
3938a1i 11 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 1 < 2)
40 2t1e2 12456 . . . . . . . . 9 (2 · 1) = 2
41 4nn 12376 . . . . . . . . . . . 12 4 ∈ ℕ
42 4z 12677 . . . . . . . . . . . . . 14 4 ∈ ℤ
4342a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ∈ ℤ)
44 4t2e8 12461 . . . . . . . . . . . . . . . . 17 (4 · 2) = 8
4544, 24eqbrtrid 5201 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (4 · 2) ≤ 𝑁)
46 4re 12377 . . . . . . . . . . . . . . . . . 18 4 ∈ ℝ
4746a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ∈ ℝ)
488a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 2)
49 lemuldiv 12175 . . . . . . . . . . . . . . . . 17 ((4 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((4 · 2) ≤ 𝑁 ↔ 4 ≤ (𝑁 / 2)))
5047, 20, 17, 48, 49syl112anc 1374 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((4 · 2) ≤ 𝑁 ↔ 4 ≤ (𝑁 / 2)))
5145, 50mpbid 232 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ (𝑁 / 2))
52 flge 13856 . . . . . . . . . . . . . . . 16 (((𝑁 / 2) ∈ ℝ ∧ 4 ∈ ℤ) → (4 ≤ (𝑁 / 2) ↔ 4 ≤ (⌊‘(𝑁 / 2))))
5331, 42, 52sylancl 585 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (4 ≤ (𝑁 / 2) ↔ 4 ≤ (⌊‘(𝑁 / 2))))
5451, 53mpbid 232 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ (⌊‘(𝑁 / 2)))
5554, 29breqtrrdi 5208 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ 𝑀)
56 eluz2 12909 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 4 ≤ 𝑀))
5743, 33, 55, 56syl3anbrc 1343 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ (ℤ‘4))
58 eluznn 12983 . . . . . . . . . . . 12 ((4 ∈ ℕ ∧ 𝑀 ∈ (ℤ‘4)) → 𝑀 ∈ ℕ)
5941, 57, 58sylancr 586 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℕ)
6059nnge1d 12341 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 1 ≤ 𝑀)
61 lemul2 12147 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (1 ≤ 𝑀 ↔ (2 · 1) ≤ (2 · 𝑀)))
6237, 34, 17, 48, 61syl112anc 1374 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (1 ≤ 𝑀 ↔ (2 · 1) ≤ (2 · 𝑀)))
6360, 62mpbid 232 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 1) ≤ (2 · 𝑀))
6440, 63eqbrtrrid 5202 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ≤ (2 · 𝑀))
6537, 17, 36, 39, 64ltletrd 11450 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 1 < (2 · 𝑀))
6636, 65rplogcld 26689 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(2 · 𝑀)) ∈ ℝ+)
6766rpred 13099 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(2 · 𝑀)) ∈ ℝ)
68 2nn 12366 . . . . . 6 2 ∈ ℕ
69 nnmulcl 12317 . . . . . 6 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
7068, 59, 69sylancr 586 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℕ)
7167, 70nndivred 12347 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) ∈ ℝ)
7228, 71remulcld 11320 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ∈ ℝ)
73 rehalfcl 12519 . . 3 (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ∈ ℝ → (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2) ∈ ℝ)
7472, 73syl 17 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2) ∈ ℝ)
75 0red 11293 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 ∈ ℝ)
76 8pos 12405 . . . . . . . 8 0 < 8
7776a1i 11 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 8)
7875, 19, 20, 77, 24ltletrd 11450 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 𝑁)
7920, 78elrpd 13096 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ∈ ℝ+)
8079relogcld 26683 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘𝑁) ∈ ℝ)
8180, 79rerpdivcld 13130 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) / 𝑁) ∈ ℝ)
8228, 81remulcld 11320 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π𝑁) · ((log‘𝑁) / 𝑁)) ∈ ℝ)
8313a1i 11 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘2) − (1 / (2 · e))) ∈ ℝ)
84 ppinncl 27235 . . . . . . 7 (((2 · 𝑀) ∈ ℝ ∧ 2 ≤ (2 · 𝑀)) → (π‘(2 · 𝑀)) ∈ ℕ)
8536, 64, 84syl2anc 583 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π‘(2 · 𝑀)) ∈ ℕ)
8685nnred 12308 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π‘(2 · 𝑀)) ∈ ℝ)
8786, 71remulcld 11320 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π‘(2 · 𝑀)) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ∈ ℝ)
88 remulcl 11269 . . . . . . . 8 ((((log‘2) − (1 / (2 · e))) ∈ ℝ ∧ (2 · 𝑀) ∈ ℝ) → (((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) ∈ ℝ)
8913, 36, 88sylancr 586 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) ∈ ℝ)
90 4pos 12400 . . . . . . . . . . 11 0 < 4
9146, 90elrpii 13060 . . . . . . . . . 10 4 ∈ ℝ+
92 rpexpcl 14131 . . . . . . . . . 10 ((4 ∈ ℝ+𝑀 ∈ ℤ) → (4↑𝑀) ∈ ℝ+)
9391, 33, 92sylancr 586 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (4↑𝑀) ∈ ℝ+)
9459nnrpd 13097 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℝ+)
9593, 94rpdivcld 13116 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((4↑𝑀) / 𝑀) ∈ ℝ+)
9695relogcld 26683 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘((4↑𝑀) / 𝑀)) ∈ ℝ)
9786, 67remulcld 11320 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))) ∈ ℝ)
9894relogcld 26683 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘𝑀) ∈ ℝ)
99 epr 16256 . . . . . . . . . 10 e ∈ ℝ+
100 rerpdivcl 13087 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ e ∈ ℝ+) → (𝑀 / e) ∈ ℝ)
10134, 99, 100sylancl 585 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑀 / e) ∈ ℝ)
10293relogcld 26683 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(4↑𝑀)) ∈ ℝ)
1036a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ∈ ℝ)
104 egt2lt3 16254 . . . . . . . . . . . . . . . . . 18 (2 < e ∧ e < 3)
105104simpri 485 . . . . . . . . . . . . . . . . 17 e < 3
106 3lt4 12467 . . . . . . . . . . . . . . . . 17 3 < 4
107 3re 12373 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
1086, 107, 46lttri 11416 . . . . . . . . . . . . . . . . 17 ((e < 3 ∧ 3 < 4) → e < 4)
109105, 106, 108mp2an 691 . . . . . . . . . . . . . . . 16 e < 4
110109a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e < 4)
111103, 47, 34, 110, 55ltletrd 11450 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e < 𝑀)
112103, 34, 111ltled 11438 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ≤ 𝑀)
1136leidi 11824 . . . . . . . . . . . . . . . 16 e ≤ e
114 logdivlt 26681 . . . . . . . . . . . . . . . 16 (((e ∈ ℝ ∧ e ≤ e) ∧ (𝑀 ∈ ℝ ∧ e ≤ 𝑀)) → (e < 𝑀 ↔ ((log‘𝑀) / 𝑀) < ((log‘e) / e)))
1156, 113, 114mpanl12 701 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℝ ∧ e ≤ 𝑀) → (e < 𝑀 ↔ ((log‘𝑀) / 𝑀) < ((log‘e) / e)))
11634, 112, 115syl2anc 583 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (e < 𝑀 ↔ ((log‘𝑀) / 𝑀) < ((log‘e) / e)))
117111, 116mpbid 232 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑀) / 𝑀) < ((log‘e) / e))
118 loge 26646 . . . . . . . . . . . . . 14 (log‘e) = 1
119118oveq1i 7458 . . . . . . . . . . . . 13 ((log‘e) / e) = (1 / e)
120117, 119breqtrdi 5207 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑀) / 𝑀) < (1 / e))
1216, 9pm3.2i 470 . . . . . . . . . . . . . 14 (e ∈ ℝ ∧ 0 < e)
122121a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (e ∈ ℝ ∧ 0 < e))
12359nngt0d 12342 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 𝑀)
12434, 123jca 511 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑀 ∈ ℝ ∧ 0 < 𝑀))
125 lt2mul2div 12173 . . . . . . . . . . . . 13 ((((log‘𝑀) ∈ ℝ ∧ (e ∈ ℝ ∧ 0 < e)) ∧ (1 ∈ ℝ ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀))) → (((log‘𝑀) · e) < (1 · 𝑀) ↔ ((log‘𝑀) / 𝑀) < (1 / e)))
12698, 122, 37, 124, 125syl22anc 838 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘𝑀) · e) < (1 · 𝑀) ↔ ((log‘𝑀) / 𝑀) < (1 / e)))
127120, 126mpbird 257 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑀) · e) < (1 · 𝑀))
12834recnd 11318 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℂ)
129128mullidd 11308 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (1 · 𝑀) = 𝑀)
130127, 129breqtrd 5192 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑀) · e) < 𝑀)
131 ltmuldiv 12168 . . . . . . . . . . 11 (((log‘𝑀) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (e ∈ ℝ ∧ 0 < e)) → (((log‘𝑀) · e) < 𝑀 ↔ (log‘𝑀) < (𝑀 / e)))
13298, 34, 122, 131syl3anc 1371 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘𝑀) · e) < 𝑀 ↔ (log‘𝑀) < (𝑀 / e)))
133130, 132mpbid 232 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘𝑀) < (𝑀 / e))
13498, 101, 102, 133ltsub2dd 11903 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(4↑𝑀)) − (𝑀 / e)) < ((log‘(4↑𝑀)) − (log‘𝑀)))
1353recni 11304 . . . . . . . . . . 11 (log‘2) ∈ ℂ
136135a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘2) ∈ ℂ)
13712recni 11304 . . . . . . . . . . 11 (1 / (2 · e)) ∈ ℂ
138137a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (1 / (2 · e)) ∈ ℂ)
13970nnrpd 13097 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℝ+)
140139rpcnd 13101 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℂ)
141136, 138, 140subdird 11747 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) = (((log‘2) · (2 · 𝑀)) − ((1 / (2 · e)) · (2 · 𝑀))))
142136, 140mulcomd 11311 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘2) · (2 · 𝑀)) = ((2 · 𝑀) · (log‘2)))
143 2z 12675 . . . . . . . . . . . . 13 2 ∈ ℤ
144 zmulcl 12692 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 · 𝑀) ∈ ℤ)
145143, 33, 144sylancr 586 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℤ)
146 relogexp 26656 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ (2 · 𝑀) ∈ ℤ) → (log‘(2↑(2 · 𝑀))) = ((2 · 𝑀) · (log‘2)))
1471, 145, 146sylancr 586 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(2↑(2 · 𝑀))) = ((2 · 𝑀) · (log‘2)))
148 2cnd 12371 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ∈ ℂ)
14959nnnn0d 12613 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℕ0)
150 2nn0 12570 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
151150a1i 11 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ∈ ℕ0)
152148, 149, 151expmuld 14199 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2↑(2 · 𝑀)) = ((2↑2)↑𝑀))
153 sq2 14246 . . . . . . . . . . . . . 14 (2↑2) = 4
154153oveq1i 7458 . . . . . . . . . . . . 13 ((2↑2)↑𝑀) = (4↑𝑀)
155152, 154eqtrdi 2796 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2↑(2 · 𝑀)) = (4↑𝑀))
156155fveq2d 6924 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(2↑(2 · 𝑀))) = (log‘(4↑𝑀)))
157142, 147, 1563eqtr2d 2786 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘2) · (2 · 𝑀)) = (log‘(4↑𝑀)))
1587recni 11304 . . . . . . . . . . . . 13 (2 · e) ∈ ℂ
159158a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · e) ∈ ℂ)
16011a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · e) ≠ 0)
161140, 159, 160divrec2d 12074 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((2 · 𝑀) / (2 · e)) = ((1 / (2 · e)) · (2 · 𝑀)))
1626recni 11304 . . . . . . . . . . . . 13 e ∈ ℂ
163162a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ∈ ℂ)
1646, 9gt0ne0ii 11826 . . . . . . . . . . . . 13 e ≠ 0
165164a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ≠ 0)
16614a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ≠ 0)
167128, 163, 148, 165, 166divcan5d 12096 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((2 · 𝑀) / (2 · e)) = (𝑀 / e))
168161, 167eqtr3d 2782 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((1 / (2 · e)) · (2 · 𝑀)) = (𝑀 / e))
169157, 168oveq12d 7466 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) · (2 · 𝑀)) − ((1 / (2 · e)) · (2 · 𝑀))) = ((log‘(4↑𝑀)) − (𝑀 / e)))
170141, 169eqtrd 2780 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) = ((log‘(4↑𝑀)) − (𝑀 / e)))
17193, 94relogdivd 26686 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘((4↑𝑀) / 𝑀)) = ((log‘(4↑𝑀)) − (log‘𝑀)))
172134, 170, 1713brtr4d 5198 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) < (log‘((4↑𝑀) / 𝑀)))
173 eqid 2740 . . . . . . . . 9 if((2 · 𝑀) ≤ ((2 · 𝑀)C𝑀), (2 · 𝑀), ((2 · 𝑀)C𝑀)) = if((2 · 𝑀) ≤ ((2 · 𝑀)C𝑀), (2 · 𝑀), ((2 · 𝑀)C𝑀))
174173chebbnd1lem1 27531 . . . . . . . 8 (𝑀 ∈ (ℤ‘4) → (log‘((4↑𝑀) / 𝑀)) < ((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))))
17557, 174syl 17 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘((4↑𝑀) / 𝑀)) < ((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))))
17689, 96, 97, 172, 175lttrd 11451 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) < ((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))))
17783, 97, 139ltmuldivd 13146 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) < ((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))) ↔ ((log‘2) − (1 / (2 · e))) < (((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))) / (2 · 𝑀))))
178176, 177mpbid 232 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘2) − (1 / (2 · e))) < (((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))) / (2 · 𝑀)))
17986recnd 11318 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π‘(2 · 𝑀)) ∈ ℂ)
18066rpcnd 13101 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(2 · 𝑀)) ∈ ℂ)
181139rpcnne0d 13108 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((2 · 𝑀) ∈ ℂ ∧ (2 · 𝑀) ≠ 0))
182 divass 11967 . . . . . 6 (((π‘(2 · 𝑀)) ∈ ℂ ∧ (log‘(2 · 𝑀)) ∈ ℂ ∧ ((2 · 𝑀) ∈ ℂ ∧ (2 · 𝑀) ≠ 0)) → (((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))) / (2 · 𝑀)) = ((π‘(2 · 𝑀)) · ((log‘(2 · 𝑀)) / (2 · 𝑀))))
183179, 180, 181, 182syl3anc 1371 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))) / (2 · 𝑀)) = ((π‘(2 · 𝑀)) · ((log‘(2 · 𝑀)) / (2 · 𝑀))))
184178, 183breqtrd 5192 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘2) − (1 / (2 · e))) < ((π‘(2 · 𝑀)) · ((log‘(2 · 𝑀)) / (2 · 𝑀))))
185 flle 13850 . . . . . . . . 9 ((𝑁 / 2) ∈ ℝ → (⌊‘(𝑁 / 2)) ≤ (𝑁 / 2))
18631, 185syl 17 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (⌊‘(𝑁 / 2)) ≤ (𝑁 / 2))
18729, 186eqbrtrid 5201 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ≤ (𝑁 / 2))
188 lemuldiv2 12176 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑀) ≤ 𝑁𝑀 ≤ (𝑁 / 2)))
18934, 20, 17, 48, 188syl112anc 1374 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((2 · 𝑀) ≤ 𝑁𝑀 ≤ (𝑁 / 2)))
190187, 189mpbird 257 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ≤ 𝑁)
191 ppiwordi 27223 . . . . . 6 (((2 · 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 · 𝑀) ≤ 𝑁) → (π‘(2 · 𝑀)) ≤ (π𝑁))
19236, 20, 190, 191syl3anc 1371 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π‘(2 · 𝑀)) ≤ (π𝑁))
19366, 139rpdivcld 13116 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) ∈ ℝ+)
19486, 28, 193lemul1d 13142 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π‘(2 · 𝑀)) ≤ (π𝑁) ↔ ((π‘(2 · 𝑀)) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ≤ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀)))))
195192, 194mpbid 232 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π‘(2 · 𝑀)) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ≤ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))))
19683, 87, 72, 184, 195ltletrd 11450 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘2) − (1 / (2 · e))) < ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))))
197 ltdiv1 12159 . . . 4 ((((log‘2) − (1 / (2 · e))) ∈ ℝ ∧ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((log‘2) − (1 / (2 · e))) < ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ↔ (((log‘2) − (1 / (2 · e))) / 2) < (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2)))
19883, 72, 17, 48, 197syl112anc 1374 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) < ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ↔ (((log‘2) − (1 / (2 · e))) / 2) < (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2)))
199196, 198mpbid 232 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) / 2) < (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2))
20029chebbnd1lem2 27532 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) < (2 · ((log‘𝑁) / 𝑁)))
201 remulcl 11269 . . . . . . 7 ((2 ∈ ℝ ∧ ((log‘𝑁) / 𝑁) ∈ ℝ) → (2 · ((log‘𝑁) / 𝑁)) ∈ ℝ)
2025, 81, 201sylancr 586 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · ((log‘𝑁) / 𝑁)) ∈ ℝ)
20327nngt0d 12342 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < (π𝑁))
204 ltmul2 12145 . . . . . 6 ((((log‘(2 · 𝑀)) / (2 · 𝑀)) ∈ ℝ ∧ (2 · ((log‘𝑁) / 𝑁)) ∈ ℝ ∧ ((π𝑁) ∈ ℝ ∧ 0 < (π𝑁))) → (((log‘(2 · 𝑀)) / (2 · 𝑀)) < (2 · ((log‘𝑁) / 𝑁)) ↔ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) < ((π𝑁) · (2 · ((log‘𝑁) / 𝑁)))))
20571, 202, 28, 203, 204syl112anc 1374 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘(2 · 𝑀)) / (2 · 𝑀)) < (2 · ((log‘𝑁) / 𝑁)) ↔ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) < ((π𝑁) · (2 · ((log‘𝑁) / 𝑁)))))
206200, 205mpbid 232 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) < ((π𝑁) · (2 · ((log‘𝑁) / 𝑁))))
20728recnd 11318 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π𝑁) ∈ ℂ)
20881recnd 11318 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) / 𝑁) ∈ ℂ)
209207, 148, 208mul12d 11499 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π𝑁) · (2 · ((log‘𝑁) / 𝑁))) = (2 · ((π𝑁) · ((log‘𝑁) / 𝑁))))
210206, 209breqtrd 5192 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) < (2 · ((π𝑁) · ((log‘𝑁) / 𝑁))))
211 ltdivmul 12170 . . . 4 ((((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ∈ ℝ ∧ ((π𝑁) · ((log‘𝑁) / 𝑁)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2) < ((π𝑁) · ((log‘𝑁) / 𝑁)) ↔ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) < (2 · ((π𝑁) · ((log‘𝑁) / 𝑁)))))
21272, 82, 17, 48, 211syl112anc 1374 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2) < ((π𝑁) · ((log‘𝑁) / 𝑁)) ↔ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) < (2 · ((π𝑁) · ((log‘𝑁) / 𝑁)))))
213210, 212mpbird 257 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2) < ((π𝑁) · ((log‘𝑁) / 𝑁)))
21416, 74, 82, 199, 213lttrd 11451 1 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) / 2) < ((π𝑁) · ((log‘𝑁) / 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  ifcif 4548   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   · cmul 11189   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  3c3 12349  4c4 12350  8c8 12354  0cn0 12553  cz 12639  cuz 12903  +crp 13057  cfl 13841  cexp 14112  Ccbc 14351  eceu 16110  logclog 26614  πcppi 27155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-e 16116  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-gcd 16541  df-prm 16719  df-pc 16884  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-ppi 27161
This theorem is referenced by:  chebbnd1  27534
  Copyright terms: Public domain W3C validator