MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1lem3 Structured version   Visualization version   GIF version

Theorem chebbnd1lem3 26324
Description: Lemma for chebbnd1 26325: get a lower bound on π(𝑁) / (𝑁 / log(𝑁)) that is independent of 𝑁. (Contributed by Mario Carneiro, 21-Sep-2014.)
Hypothesis
Ref Expression
chebbnd1lem2.1 𝑀 = (⌊‘(𝑁 / 2))
Assertion
Ref Expression
chebbnd1lem3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) / 2) < ((π𝑁) · ((log‘𝑁) / 𝑁)))

Proof of Theorem chebbnd1lem3
StepHypRef Expression
1 2rp 12574 . . . . . 6 2 ∈ ℝ+
2 relogcl 25436 . . . . . 6 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
31, 2ax-mp 5 . . . . 5 (log‘2) ∈ ℝ
4 1re 10816 . . . . . 6 1 ∈ ℝ
5 2re 11887 . . . . . . 7 2 ∈ ℝ
6 ere 15631 . . . . . . 7 e ∈ ℝ
75, 6remulcli 10832 . . . . . 6 (2 · e) ∈ ℝ
8 2pos 11916 . . . . . . . 8 0 < 2
9 epos 15749 . . . . . . . 8 0 < e
105, 6, 8, 9mulgt0ii 10948 . . . . . . 7 0 < (2 · e)
117, 10gt0ne0ii 11351 . . . . . 6 (2 · e) ≠ 0
124, 7, 11redivcli 11582 . . . . 5 (1 / (2 · e)) ∈ ℝ
133, 12resubcli 11123 . . . 4 ((log‘2) − (1 / (2 · e))) ∈ ℝ
14 2ne0 11917 . . . 4 2 ≠ 0
1513, 5, 14redivcli 11582 . . 3 (((log‘2) − (1 / (2 · e))) / 2) ∈ ℝ
1615a1i 11 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) / 2) ∈ ℝ)
175a1i 11 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ∈ ℝ)
18 8re 11909 . . . . . . . 8 8 ∈ ℝ
1918a1i 11 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 8 ∈ ℝ)
20 simpl 486 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ∈ ℝ)
21 2lt8 12010 . . . . . . . . 9 2 < 8
225, 18, 21ltleii 10938 . . . . . . . 8 2 ≤ 8
2322a1i 11 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ≤ 8)
24 simpr 488 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 8 ≤ 𝑁)
2517, 19, 20, 23, 24letrd 10972 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ≤ 𝑁)
26 ppinncl 26028 . . . . . 6 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → (π𝑁) ∈ ℕ)
2725, 26syldan 594 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π𝑁) ∈ ℕ)
2827nnred 11828 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π𝑁) ∈ ℝ)
29 chebbnd1lem2.1 . . . . . . . . . 10 𝑀 = (⌊‘(𝑁 / 2))
30 rehalfcl 12039 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (𝑁 / 2) ∈ ℝ)
3130adantr 484 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) ∈ ℝ)
3231flcld 13356 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (⌊‘(𝑁 / 2)) ∈ ℤ)
3329, 32eqeltrid 2838 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℤ)
3433zred 12265 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℝ)
35 remulcl 10797 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (2 · 𝑀) ∈ ℝ)
365, 34, 35sylancr 590 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℝ)
374a1i 11 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 1 ∈ ℝ)
38 1lt2 11984 . . . . . . . . 9 1 < 2
3938a1i 11 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 1 < 2)
40 2t1e2 11976 . . . . . . . . 9 (2 · 1) = 2
41 4nn 11896 . . . . . . . . . . . 12 4 ∈ ℕ
42 4z 12194 . . . . . . . . . . . . . 14 4 ∈ ℤ
4342a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ∈ ℤ)
44 4t2e8 11981 . . . . . . . . . . . . . . . . 17 (4 · 2) = 8
4544, 24eqbrtrid 5078 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (4 · 2) ≤ 𝑁)
46 4re 11897 . . . . . . . . . . . . . . . . . 18 4 ∈ ℝ
4746a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ∈ ℝ)
488a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 2)
49 lemuldiv 11695 . . . . . . . . . . . . . . . . 17 ((4 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((4 · 2) ≤ 𝑁 ↔ 4 ≤ (𝑁 / 2)))
5047, 20, 17, 48, 49syl112anc 1376 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((4 · 2) ≤ 𝑁 ↔ 4 ≤ (𝑁 / 2)))
5145, 50mpbid 235 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ (𝑁 / 2))
52 flge 13363 . . . . . . . . . . . . . . . 16 (((𝑁 / 2) ∈ ℝ ∧ 4 ∈ ℤ) → (4 ≤ (𝑁 / 2) ↔ 4 ≤ (⌊‘(𝑁 / 2))))
5331, 42, 52sylancl 589 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (4 ≤ (𝑁 / 2) ↔ 4 ≤ (⌊‘(𝑁 / 2))))
5451, 53mpbid 235 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ (⌊‘(𝑁 / 2)))
5554, 29breqtrrdi 5085 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ 𝑀)
56 eluz2 12427 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 4 ≤ 𝑀))
5743, 33, 55, 56syl3anbrc 1345 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ (ℤ‘4))
58 eluznn 12497 . . . . . . . . . . . 12 ((4 ∈ ℕ ∧ 𝑀 ∈ (ℤ‘4)) → 𝑀 ∈ ℕ)
5941, 57, 58sylancr 590 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℕ)
6059nnge1d 11861 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 1 ≤ 𝑀)
61 lemul2 11668 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (1 ≤ 𝑀 ↔ (2 · 1) ≤ (2 · 𝑀)))
6237, 34, 17, 48, 61syl112anc 1376 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (1 ≤ 𝑀 ↔ (2 · 1) ≤ (2 · 𝑀)))
6360, 62mpbid 235 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 1) ≤ (2 · 𝑀))
6440, 63eqbrtrrid 5079 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ≤ (2 · 𝑀))
6537, 17, 36, 39, 64ltletrd 10975 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 1 < (2 · 𝑀))
6636, 65rplogcld 25489 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(2 · 𝑀)) ∈ ℝ+)
6766rpred 12611 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(2 · 𝑀)) ∈ ℝ)
68 2nn 11886 . . . . . 6 2 ∈ ℕ
69 nnmulcl 11837 . . . . . 6 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
7068, 59, 69sylancr 590 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℕ)
7167, 70nndivred 11867 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) ∈ ℝ)
7228, 71remulcld 10846 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ∈ ℝ)
73 rehalfcl 12039 . . 3 (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ∈ ℝ → (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2) ∈ ℝ)
7472, 73syl 17 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2) ∈ ℝ)
75 0red 10819 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 ∈ ℝ)
76 8pos 11925 . . . . . . . 8 0 < 8
7776a1i 11 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 8)
7875, 19, 20, 77, 24ltletrd 10975 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 𝑁)
7920, 78elrpd 12608 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ∈ ℝ+)
8079relogcld 25483 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘𝑁) ∈ ℝ)
8180, 79rerpdivcld 12642 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) / 𝑁) ∈ ℝ)
8228, 81remulcld 10846 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π𝑁) · ((log‘𝑁) / 𝑁)) ∈ ℝ)
8313a1i 11 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘2) − (1 / (2 · e))) ∈ ℝ)
84 ppinncl 26028 . . . . . . 7 (((2 · 𝑀) ∈ ℝ ∧ 2 ≤ (2 · 𝑀)) → (π‘(2 · 𝑀)) ∈ ℕ)
8536, 64, 84syl2anc 587 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π‘(2 · 𝑀)) ∈ ℕ)
8685nnred 11828 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π‘(2 · 𝑀)) ∈ ℝ)
8786, 71remulcld 10846 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π‘(2 · 𝑀)) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ∈ ℝ)
88 remulcl 10797 . . . . . . . 8 ((((log‘2) − (1 / (2 · e))) ∈ ℝ ∧ (2 · 𝑀) ∈ ℝ) → (((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) ∈ ℝ)
8913, 36, 88sylancr 590 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) ∈ ℝ)
90 4pos 11920 . . . . . . . . . . 11 0 < 4
9146, 90elrpii 12572 . . . . . . . . . 10 4 ∈ ℝ+
92 rpexpcl 13637 . . . . . . . . . 10 ((4 ∈ ℝ+𝑀 ∈ ℤ) → (4↑𝑀) ∈ ℝ+)
9391, 33, 92sylancr 590 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (4↑𝑀) ∈ ℝ+)
9459nnrpd 12609 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℝ+)
9593, 94rpdivcld 12628 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((4↑𝑀) / 𝑀) ∈ ℝ+)
9695relogcld 25483 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘((4↑𝑀) / 𝑀)) ∈ ℝ)
9786, 67remulcld 10846 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))) ∈ ℝ)
9894relogcld 25483 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘𝑀) ∈ ℝ)
99 epr 15750 . . . . . . . . . 10 e ∈ ℝ+
100 rerpdivcl 12599 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ e ∈ ℝ+) → (𝑀 / e) ∈ ℝ)
10134, 99, 100sylancl 589 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑀 / e) ∈ ℝ)
10293relogcld 25483 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(4↑𝑀)) ∈ ℝ)
1036a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ∈ ℝ)
104 egt2lt3 15748 . . . . . . . . . . . . . . . . . 18 (2 < e ∧ e < 3)
105104simpri 489 . . . . . . . . . . . . . . . . 17 e < 3
106 3lt4 11987 . . . . . . . . . . . . . . . . 17 3 < 4
107 3re 11893 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
1086, 107, 46lttri 10941 . . . . . . . . . . . . . . . . 17 ((e < 3 ∧ 3 < 4) → e < 4)
109105, 106, 108mp2an 692 . . . . . . . . . . . . . . . 16 e < 4
110109a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e < 4)
111103, 47, 34, 110, 55ltletrd 10975 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e < 𝑀)
112103, 34, 111ltled 10963 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ≤ 𝑀)
1136leidi 11349 . . . . . . . . . . . . . . . 16 e ≤ e
114 logdivlt 25481 . . . . . . . . . . . . . . . 16 (((e ∈ ℝ ∧ e ≤ e) ∧ (𝑀 ∈ ℝ ∧ e ≤ 𝑀)) → (e < 𝑀 ↔ ((log‘𝑀) / 𝑀) < ((log‘e) / e)))
1156, 113, 114mpanl12 702 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℝ ∧ e ≤ 𝑀) → (e < 𝑀 ↔ ((log‘𝑀) / 𝑀) < ((log‘e) / e)))
11634, 112, 115syl2anc 587 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (e < 𝑀 ↔ ((log‘𝑀) / 𝑀) < ((log‘e) / e)))
117111, 116mpbid 235 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑀) / 𝑀) < ((log‘e) / e))
118 loge 25447 . . . . . . . . . . . . . 14 (log‘e) = 1
119118oveq1i 7212 . . . . . . . . . . . . 13 ((log‘e) / e) = (1 / e)
120117, 119breqtrdi 5084 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑀) / 𝑀) < (1 / e))
1216, 9pm3.2i 474 . . . . . . . . . . . . . 14 (e ∈ ℝ ∧ 0 < e)
122121a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (e ∈ ℝ ∧ 0 < e))
12359nngt0d 11862 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 𝑀)
12434, 123jca 515 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑀 ∈ ℝ ∧ 0 < 𝑀))
125 lt2mul2div 11693 . . . . . . . . . . . . 13 ((((log‘𝑀) ∈ ℝ ∧ (e ∈ ℝ ∧ 0 < e)) ∧ (1 ∈ ℝ ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀))) → (((log‘𝑀) · e) < (1 · 𝑀) ↔ ((log‘𝑀) / 𝑀) < (1 / e)))
12698, 122, 37, 124, 125syl22anc 839 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘𝑀) · e) < (1 · 𝑀) ↔ ((log‘𝑀) / 𝑀) < (1 / e)))
127120, 126mpbird 260 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑀) · e) < (1 · 𝑀))
12834recnd 10844 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℂ)
129128mulid2d 10834 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (1 · 𝑀) = 𝑀)
130127, 129breqtrd 5069 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑀) · e) < 𝑀)
131 ltmuldiv 11688 . . . . . . . . . . 11 (((log‘𝑀) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (e ∈ ℝ ∧ 0 < e)) → (((log‘𝑀) · e) < 𝑀 ↔ (log‘𝑀) < (𝑀 / e)))
13298, 34, 122, 131syl3anc 1373 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘𝑀) · e) < 𝑀 ↔ (log‘𝑀) < (𝑀 / e)))
133130, 132mpbid 235 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘𝑀) < (𝑀 / e))
13498, 101, 102, 133ltsub2dd 11428 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(4↑𝑀)) − (𝑀 / e)) < ((log‘(4↑𝑀)) − (log‘𝑀)))
1353recni 10830 . . . . . . . . . . 11 (log‘2) ∈ ℂ
136135a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘2) ∈ ℂ)
13712recni 10830 . . . . . . . . . . 11 (1 / (2 · e)) ∈ ℂ
138137a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (1 / (2 · e)) ∈ ℂ)
13970nnrpd 12609 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℝ+)
140139rpcnd 12613 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℂ)
141136, 138, 140subdird 11272 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) = (((log‘2) · (2 · 𝑀)) − ((1 / (2 · e)) · (2 · 𝑀))))
142136, 140mulcomd 10837 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘2) · (2 · 𝑀)) = ((2 · 𝑀) · (log‘2)))
143 2z 12192 . . . . . . . . . . . . 13 2 ∈ ℤ
144 zmulcl 12209 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 · 𝑀) ∈ ℤ)
145143, 33, 144sylancr 590 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℤ)
146 relogexp 25456 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ (2 · 𝑀) ∈ ℤ) → (log‘(2↑(2 · 𝑀))) = ((2 · 𝑀) · (log‘2)))
1471, 145, 146sylancr 590 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(2↑(2 · 𝑀))) = ((2 · 𝑀) · (log‘2)))
148 2cnd 11891 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ∈ ℂ)
14959nnnn0d 12133 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℕ0)
150 2nn0 12090 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
151150a1i 11 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ∈ ℕ0)
152148, 149, 151expmuld 13702 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2↑(2 · 𝑀)) = ((2↑2)↑𝑀))
153 sq2 13749 . . . . . . . . . . . . . 14 (2↑2) = 4
154153oveq1i 7212 . . . . . . . . . . . . 13 ((2↑2)↑𝑀) = (4↑𝑀)
155152, 154eqtrdi 2790 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2↑(2 · 𝑀)) = (4↑𝑀))
156155fveq2d 6710 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(2↑(2 · 𝑀))) = (log‘(4↑𝑀)))
157142, 147, 1563eqtr2d 2780 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘2) · (2 · 𝑀)) = (log‘(4↑𝑀)))
1587recni 10830 . . . . . . . . . . . . 13 (2 · e) ∈ ℂ
159158a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · e) ∈ ℂ)
16011a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · e) ≠ 0)
161140, 159, 160divrec2d 11595 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((2 · 𝑀) / (2 · e)) = ((1 / (2 · e)) · (2 · 𝑀)))
1626recni 10830 . . . . . . . . . . . . 13 e ∈ ℂ
163162a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ∈ ℂ)
1646, 9gt0ne0ii 11351 . . . . . . . . . . . . 13 e ≠ 0
165164a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ≠ 0)
16614a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ≠ 0)
167128, 163, 148, 165, 166divcan5d 11617 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((2 · 𝑀) / (2 · e)) = (𝑀 / e))
168161, 167eqtr3d 2776 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((1 / (2 · e)) · (2 · 𝑀)) = (𝑀 / e))
169157, 168oveq12d 7220 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) · (2 · 𝑀)) − ((1 / (2 · e)) · (2 · 𝑀))) = ((log‘(4↑𝑀)) − (𝑀 / e)))
170141, 169eqtrd 2774 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) = ((log‘(4↑𝑀)) − (𝑀 / e)))
17193, 94relogdivd 25486 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘((4↑𝑀) / 𝑀)) = ((log‘(4↑𝑀)) − (log‘𝑀)))
172134, 170, 1713brtr4d 5075 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) < (log‘((4↑𝑀) / 𝑀)))
173 eqid 2734 . . . . . . . . 9 if((2 · 𝑀) ≤ ((2 · 𝑀)C𝑀), (2 · 𝑀), ((2 · 𝑀)C𝑀)) = if((2 · 𝑀) ≤ ((2 · 𝑀)C𝑀), (2 · 𝑀), ((2 · 𝑀)C𝑀))
174173chebbnd1lem1 26322 . . . . . . . 8 (𝑀 ∈ (ℤ‘4) → (log‘((4↑𝑀) / 𝑀)) < ((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))))
17557, 174syl 17 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘((4↑𝑀) / 𝑀)) < ((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))))
17689, 96, 97, 172, 175lttrd 10976 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) < ((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))))
17783, 97, 139ltmuldivd 12658 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) < ((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))) ↔ ((log‘2) − (1 / (2 · e))) < (((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))) / (2 · 𝑀))))
178176, 177mpbid 235 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘2) − (1 / (2 · e))) < (((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))) / (2 · 𝑀)))
17986recnd 10844 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π‘(2 · 𝑀)) ∈ ℂ)
18066rpcnd 12613 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(2 · 𝑀)) ∈ ℂ)
181139rpcnne0d 12620 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((2 · 𝑀) ∈ ℂ ∧ (2 · 𝑀) ≠ 0))
182 divass 11491 . . . . . 6 (((π‘(2 · 𝑀)) ∈ ℂ ∧ (log‘(2 · 𝑀)) ∈ ℂ ∧ ((2 · 𝑀) ∈ ℂ ∧ (2 · 𝑀) ≠ 0)) → (((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))) / (2 · 𝑀)) = ((π‘(2 · 𝑀)) · ((log‘(2 · 𝑀)) / (2 · 𝑀))))
183179, 180, 181, 182syl3anc 1373 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))) / (2 · 𝑀)) = ((π‘(2 · 𝑀)) · ((log‘(2 · 𝑀)) / (2 · 𝑀))))
184178, 183breqtrd 5069 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘2) − (1 / (2 · e))) < ((π‘(2 · 𝑀)) · ((log‘(2 · 𝑀)) / (2 · 𝑀))))
185 flle 13357 . . . . . . . . 9 ((𝑁 / 2) ∈ ℝ → (⌊‘(𝑁 / 2)) ≤ (𝑁 / 2))
18631, 185syl 17 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (⌊‘(𝑁 / 2)) ≤ (𝑁 / 2))
18729, 186eqbrtrid 5078 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ≤ (𝑁 / 2))
188 lemuldiv2 11696 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑀) ≤ 𝑁𝑀 ≤ (𝑁 / 2)))
18934, 20, 17, 48, 188syl112anc 1376 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((2 · 𝑀) ≤ 𝑁𝑀 ≤ (𝑁 / 2)))
190187, 189mpbird 260 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ≤ 𝑁)
191 ppiwordi 26016 . . . . . 6 (((2 · 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 · 𝑀) ≤ 𝑁) → (π‘(2 · 𝑀)) ≤ (π𝑁))
19236, 20, 190, 191syl3anc 1373 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π‘(2 · 𝑀)) ≤ (π𝑁))
19366, 139rpdivcld 12628 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) ∈ ℝ+)
19486, 28, 193lemul1d 12654 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π‘(2 · 𝑀)) ≤ (π𝑁) ↔ ((π‘(2 · 𝑀)) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ≤ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀)))))
195192, 194mpbid 235 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π‘(2 · 𝑀)) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ≤ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))))
19683, 87, 72, 184, 195ltletrd 10975 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘2) − (1 / (2 · e))) < ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))))
197 ltdiv1 11679 . . . 4 ((((log‘2) − (1 / (2 · e))) ∈ ℝ ∧ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((log‘2) − (1 / (2 · e))) < ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ↔ (((log‘2) − (1 / (2 · e))) / 2) < (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2)))
19883, 72, 17, 48, 197syl112anc 1376 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) < ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ↔ (((log‘2) − (1 / (2 · e))) / 2) < (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2)))
199196, 198mpbid 235 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) / 2) < (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2))
20029chebbnd1lem2 26323 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) < (2 · ((log‘𝑁) / 𝑁)))
201 remulcl 10797 . . . . . . 7 ((2 ∈ ℝ ∧ ((log‘𝑁) / 𝑁) ∈ ℝ) → (2 · ((log‘𝑁) / 𝑁)) ∈ ℝ)
2025, 81, 201sylancr 590 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · ((log‘𝑁) / 𝑁)) ∈ ℝ)
20327nngt0d 11862 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < (π𝑁))
204 ltmul2 11666 . . . . . 6 ((((log‘(2 · 𝑀)) / (2 · 𝑀)) ∈ ℝ ∧ (2 · ((log‘𝑁) / 𝑁)) ∈ ℝ ∧ ((π𝑁) ∈ ℝ ∧ 0 < (π𝑁))) → (((log‘(2 · 𝑀)) / (2 · 𝑀)) < (2 · ((log‘𝑁) / 𝑁)) ↔ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) < ((π𝑁) · (2 · ((log‘𝑁) / 𝑁)))))
20571, 202, 28, 203, 204syl112anc 1376 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘(2 · 𝑀)) / (2 · 𝑀)) < (2 · ((log‘𝑁) / 𝑁)) ↔ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) < ((π𝑁) · (2 · ((log‘𝑁) / 𝑁)))))
206200, 205mpbid 235 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) < ((π𝑁) · (2 · ((log‘𝑁) / 𝑁))))
20728recnd 10844 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π𝑁) ∈ ℂ)
20881recnd 10844 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) / 𝑁) ∈ ℂ)
209207, 148, 208mul12d 11024 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π𝑁) · (2 · ((log‘𝑁) / 𝑁))) = (2 · ((π𝑁) · ((log‘𝑁) / 𝑁))))
210206, 209breqtrd 5069 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) < (2 · ((π𝑁) · ((log‘𝑁) / 𝑁))))
211 ltdivmul 11690 . . . 4 ((((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ∈ ℝ ∧ ((π𝑁) · ((log‘𝑁) / 𝑁)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2) < ((π𝑁) · ((log‘𝑁) / 𝑁)) ↔ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) < (2 · ((π𝑁) · ((log‘𝑁) / 𝑁)))))
21272, 82, 17, 48, 211syl112anc 1376 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2) < ((π𝑁) · ((log‘𝑁) / 𝑁)) ↔ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) < (2 · ((π𝑁) · ((log‘𝑁) / 𝑁)))))
213210, 212mpbird 260 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2) < ((π𝑁) · ((log‘𝑁) / 𝑁)))
21416, 74, 82, 199, 213lttrd 10976 1 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) / 2) < ((π𝑁) · ((log‘𝑁) / 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2935  ifcif 4429   class class class wbr 5043  cfv 6369  (class class class)co 7202  cc 10710  cr 10711  0cc0 10712  1c1 10713   · cmul 10717   < clt 10850  cle 10851  cmin 11045   / cdiv 11472  cn 11813  2c2 11868  3c3 11869  4c4 11870  8c8 11874  0cn0 12073  cz 12159  cuz 12421  +crp 12569  cfl 13348  cexp 13618  Ccbc 13851  eceu 15605  logclog 25415  πcppi 25948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790  ax-addf 10791  ax-mulf 10792
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-iin 4897  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-supp 7893  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-2o 8192  df-oadd 8195  df-er 8380  df-map 8499  df-pm 8500  df-ixp 8568  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fsupp 8975  df-fi 9016  df-sup 9047  df-inf 9048  df-oi 9115  df-dju 9500  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-xnn0 12146  df-z 12160  df-dec 12277  df-uz 12422  df-q 12528  df-rp 12570  df-xneg 12687  df-xadd 12688  df-xmul 12689  df-ioo 12922  df-ioc 12923  df-ico 12924  df-icc 12925  df-fz 13079  df-fzo 13222  df-fl 13350  df-mod 13426  df-seq 13558  df-exp 13619  df-fac 13823  df-bc 13852  df-hash 13880  df-shft 14613  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-limsup 15015  df-clim 15032  df-rlim 15033  df-sum 15233  df-ef 15610  df-e 15611  df-sin 15612  df-cos 15613  df-pi 15615  df-dvds 15797  df-gcd 16035  df-prm 16210  df-pc 16371  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-starv 16782  df-sca 16783  df-vsca 16784  df-ip 16785  df-tset 16786  df-ple 16787  df-ds 16789  df-unif 16790  df-hom 16791  df-cco 16792  df-rest 16899  df-topn 16900  df-0g 16918  df-gsum 16919  df-topgen 16920  df-pt 16921  df-prds 16924  df-xrs 16979  df-qtop 16984  df-imas 16985  df-xps 16987  df-mre 17061  df-mrc 17062  df-acs 17064  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-submnd 18191  df-mulg 18461  df-cntz 18683  df-cmn 19144  df-psmet 20327  df-xmet 20328  df-met 20329  df-bl 20330  df-mopn 20331  df-fbas 20332  df-fg 20333  df-cnfld 20336  df-top 21763  df-topon 21780  df-topsp 21802  df-bases 21815  df-cld 21888  df-ntr 21889  df-cls 21890  df-nei 21967  df-lp 22005  df-perf 22006  df-cn 22096  df-cnp 22097  df-haus 22184  df-tx 22431  df-hmeo 22624  df-fil 22715  df-fm 22807  df-flim 22808  df-flf 22809  df-xms 23190  df-ms 23191  df-tms 23192  df-cncf 23747  df-limc 24735  df-dv 24736  df-log 25417  df-ppi 25954
This theorem is referenced by:  chebbnd1  26325
  Copyright terms: Public domain W3C validator