MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1lem3 Structured version   Visualization version   GIF version

Theorem chebbnd1lem3 27380
Description: Lemma for chebbnd1 27381: get a lower bound on π(𝑁) / (𝑁 / log(𝑁)) that is independent of 𝑁. (Contributed by Mario Carneiro, 21-Sep-2014.)
Hypothesis
Ref Expression
chebbnd1lem2.1 𝑀 = (⌊‘(𝑁 / 2))
Assertion
Ref Expression
chebbnd1lem3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) / 2) < ((π𝑁) · ((log‘𝑁) / 𝑁)))

Proof of Theorem chebbnd1lem3
StepHypRef Expression
1 2rp 12898 . . . . . 6 2 ∈ ℝ+
2 relogcl 26482 . . . . . 6 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
31, 2ax-mp 5 . . . . 5 (log‘2) ∈ ℝ
4 1re 11115 . . . . . 6 1 ∈ ℝ
5 2re 12202 . . . . . . 7 2 ∈ ℝ
6 ere 15996 . . . . . . 7 e ∈ ℝ
75, 6remulcli 11131 . . . . . 6 (2 · e) ∈ ℝ
8 2pos 12231 . . . . . . . 8 0 < 2
9 epos 16116 . . . . . . . 8 0 < e
105, 6, 8, 9mulgt0ii 11249 . . . . . . 7 0 < (2 · e)
117, 10gt0ne0ii 11656 . . . . . 6 (2 · e) ≠ 0
124, 7, 11redivcli 11891 . . . . 5 (1 / (2 · e)) ∈ ℝ
133, 12resubcli 11426 . . . 4 ((log‘2) − (1 / (2 · e))) ∈ ℝ
14 2ne0 12232 . . . 4 2 ≠ 0
1513, 5, 14redivcli 11891 . . 3 (((log‘2) − (1 / (2 · e))) / 2) ∈ ℝ
1615a1i 11 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) / 2) ∈ ℝ)
175a1i 11 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ∈ ℝ)
18 8re 12224 . . . . . . . 8 8 ∈ ℝ
1918a1i 11 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 8 ∈ ℝ)
20 simpl 482 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ∈ ℝ)
21 2lt8 12320 . . . . . . . . 9 2 < 8
225, 18, 21ltleii 11239 . . . . . . . 8 2 ≤ 8
2322a1i 11 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ≤ 8)
24 simpr 484 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 8 ≤ 𝑁)
2517, 19, 20, 23, 24letrd 11273 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ≤ 𝑁)
26 ppinncl 27082 . . . . . 6 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → (π𝑁) ∈ ℕ)
2725, 26syldan 591 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π𝑁) ∈ ℕ)
2827nnred 12143 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π𝑁) ∈ ℝ)
29 chebbnd1lem2.1 . . . . . . . . . 10 𝑀 = (⌊‘(𝑁 / 2))
30 rehalfcl 12351 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (𝑁 / 2) ∈ ℝ)
3130adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑁 / 2) ∈ ℝ)
3231flcld 13702 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (⌊‘(𝑁 / 2)) ∈ ℤ)
3329, 32eqeltrid 2832 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℤ)
3433zred 12580 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℝ)
35 remulcl 11094 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (2 · 𝑀) ∈ ℝ)
365, 34, 35sylancr 587 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℝ)
374a1i 11 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 1 ∈ ℝ)
38 1lt2 12294 . . . . . . . . 9 1 < 2
3938a1i 11 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 1 < 2)
40 2t1e2 12286 . . . . . . . . 9 (2 · 1) = 2
41 4nn 12211 . . . . . . . . . . . 12 4 ∈ ℕ
42 4z 12509 . . . . . . . . . . . . . 14 4 ∈ ℤ
4342a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ∈ ℤ)
44 4t2e8 12291 . . . . . . . . . . . . . . . . 17 (4 · 2) = 8
4544, 24eqbrtrid 5127 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (4 · 2) ≤ 𝑁)
46 4re 12212 . . . . . . . . . . . . . . . . . 18 4 ∈ ℝ
4746a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ∈ ℝ)
488a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 2)
49 lemuldiv 12005 . . . . . . . . . . . . . . . . 17 ((4 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((4 · 2) ≤ 𝑁 ↔ 4 ≤ (𝑁 / 2)))
5047, 20, 17, 48, 49syl112anc 1376 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((4 · 2) ≤ 𝑁 ↔ 4 ≤ (𝑁 / 2)))
5145, 50mpbid 232 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ (𝑁 / 2))
52 flge 13709 . . . . . . . . . . . . . . . 16 (((𝑁 / 2) ∈ ℝ ∧ 4 ∈ ℤ) → (4 ≤ (𝑁 / 2) ↔ 4 ≤ (⌊‘(𝑁 / 2))))
5331, 42, 52sylancl 586 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (4 ≤ (𝑁 / 2) ↔ 4 ≤ (⌊‘(𝑁 / 2))))
5451, 53mpbid 232 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ (⌊‘(𝑁 / 2)))
5554, 29breqtrrdi 5134 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 4 ≤ 𝑀)
56 eluz2 12741 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 4 ≤ 𝑀))
5743, 33, 55, 56syl3anbrc 1344 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ (ℤ‘4))
58 eluznn 12819 . . . . . . . . . . . 12 ((4 ∈ ℕ ∧ 𝑀 ∈ (ℤ‘4)) → 𝑀 ∈ ℕ)
5941, 57, 58sylancr 587 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℕ)
6059nnge1d 12176 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 1 ≤ 𝑀)
61 lemul2 11977 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (1 ≤ 𝑀 ↔ (2 · 1) ≤ (2 · 𝑀)))
6237, 34, 17, 48, 61syl112anc 1376 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (1 ≤ 𝑀 ↔ (2 · 1) ≤ (2 · 𝑀)))
6360, 62mpbid 232 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 1) ≤ (2 · 𝑀))
6440, 63eqbrtrrid 5128 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ≤ (2 · 𝑀))
6537, 17, 36, 39, 64ltletrd 11276 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 1 < (2 · 𝑀))
6636, 65rplogcld 26536 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(2 · 𝑀)) ∈ ℝ+)
6766rpred 12937 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(2 · 𝑀)) ∈ ℝ)
68 2nn 12201 . . . . . 6 2 ∈ ℕ
69 nnmulcl 12152 . . . . . 6 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
7068, 59, 69sylancr 587 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℕ)
7167, 70nndivred 12182 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) ∈ ℝ)
7228, 71remulcld 11145 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ∈ ℝ)
73 rehalfcl 12351 . . 3 (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ∈ ℝ → (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2) ∈ ℝ)
7472, 73syl 17 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2) ∈ ℝ)
75 0red 11118 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 ∈ ℝ)
76 8pos 12240 . . . . . . . 8 0 < 8
7776a1i 11 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 8)
7875, 19, 20, 77, 24ltletrd 11276 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 𝑁)
7920, 78elrpd 12934 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑁 ∈ ℝ+)
8079relogcld 26530 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘𝑁) ∈ ℝ)
8180, 79rerpdivcld 12968 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) / 𝑁) ∈ ℝ)
8228, 81remulcld 11145 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π𝑁) · ((log‘𝑁) / 𝑁)) ∈ ℝ)
8313a1i 11 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘2) − (1 / (2 · e))) ∈ ℝ)
84 ppinncl 27082 . . . . . . 7 (((2 · 𝑀) ∈ ℝ ∧ 2 ≤ (2 · 𝑀)) → (π‘(2 · 𝑀)) ∈ ℕ)
8536, 64, 84syl2anc 584 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π‘(2 · 𝑀)) ∈ ℕ)
8685nnred 12143 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π‘(2 · 𝑀)) ∈ ℝ)
8786, 71remulcld 11145 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π‘(2 · 𝑀)) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ∈ ℝ)
88 remulcl 11094 . . . . . . . 8 ((((log‘2) − (1 / (2 · e))) ∈ ℝ ∧ (2 · 𝑀) ∈ ℝ) → (((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) ∈ ℝ)
8913, 36, 88sylancr 587 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) ∈ ℝ)
90 4pos 12235 . . . . . . . . . . 11 0 < 4
9146, 90elrpii 12896 . . . . . . . . . 10 4 ∈ ℝ+
92 rpexpcl 13987 . . . . . . . . . 10 ((4 ∈ ℝ+𝑀 ∈ ℤ) → (4↑𝑀) ∈ ℝ+)
9391, 33, 92sylancr 587 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (4↑𝑀) ∈ ℝ+)
9459nnrpd 12935 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℝ+)
9593, 94rpdivcld 12954 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((4↑𝑀) / 𝑀) ∈ ℝ+)
9695relogcld 26530 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘((4↑𝑀) / 𝑀)) ∈ ℝ)
9786, 67remulcld 11145 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))) ∈ ℝ)
9894relogcld 26530 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘𝑀) ∈ ℝ)
99 epr 16117 . . . . . . . . . 10 e ∈ ℝ+
100 rerpdivcl 12925 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ e ∈ ℝ+) → (𝑀 / e) ∈ ℝ)
10134, 99, 100sylancl 586 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑀 / e) ∈ ℝ)
10293relogcld 26530 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(4↑𝑀)) ∈ ℝ)
1036a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ∈ ℝ)
104 egt2lt3 16115 . . . . . . . . . . . . . . . . . 18 (2 < e ∧ e < 3)
105104simpri 485 . . . . . . . . . . . . . . . . 17 e < 3
106 3lt4 12297 . . . . . . . . . . . . . . . . 17 3 < 4
107 3re 12208 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
1086, 107, 46lttri 11242 . . . . . . . . . . . . . . . . 17 ((e < 3 ∧ 3 < 4) → e < 4)
109105, 106, 108mp2an 692 . . . . . . . . . . . . . . . 16 e < 4
110109a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e < 4)
111103, 47, 34, 110, 55ltletrd 11276 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e < 𝑀)
112103, 34, 111ltled 11264 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ≤ 𝑀)
1136leidi 11654 . . . . . . . . . . . . . . . 16 e ≤ e
114 logdivlt 26528 . . . . . . . . . . . . . . . 16 (((e ∈ ℝ ∧ e ≤ e) ∧ (𝑀 ∈ ℝ ∧ e ≤ 𝑀)) → (e < 𝑀 ↔ ((log‘𝑀) / 𝑀) < ((log‘e) / e)))
1156, 113, 114mpanl12 702 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℝ ∧ e ≤ 𝑀) → (e < 𝑀 ↔ ((log‘𝑀) / 𝑀) < ((log‘e) / e)))
11634, 112, 115syl2anc 584 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (e < 𝑀 ↔ ((log‘𝑀) / 𝑀) < ((log‘e) / e)))
117111, 116mpbid 232 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑀) / 𝑀) < ((log‘e) / e))
118 loge 26493 . . . . . . . . . . . . . 14 (log‘e) = 1
119118oveq1i 7359 . . . . . . . . . . . . 13 ((log‘e) / e) = (1 / e)
120117, 119breqtrdi 5133 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑀) / 𝑀) < (1 / e))
1216, 9pm3.2i 470 . . . . . . . . . . . . . 14 (e ∈ ℝ ∧ 0 < e)
122121a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (e ∈ ℝ ∧ 0 < e))
12359nngt0d 12177 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < 𝑀)
12434, 123jca 511 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (𝑀 ∈ ℝ ∧ 0 < 𝑀))
125 lt2mul2div 12003 . . . . . . . . . . . . 13 ((((log‘𝑀) ∈ ℝ ∧ (e ∈ ℝ ∧ 0 < e)) ∧ (1 ∈ ℝ ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀))) → (((log‘𝑀) · e) < (1 · 𝑀) ↔ ((log‘𝑀) / 𝑀) < (1 / e)))
12698, 122, 37, 124, 125syl22anc 838 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘𝑀) · e) < (1 · 𝑀) ↔ ((log‘𝑀) / 𝑀) < (1 / e)))
127120, 126mpbird 257 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑀) · e) < (1 · 𝑀))
12834recnd 11143 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℂ)
129128mullidd 11133 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (1 · 𝑀) = 𝑀)
130127, 129breqtrd 5118 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑀) · e) < 𝑀)
131 ltmuldiv 11998 . . . . . . . . . . 11 (((log‘𝑀) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (e ∈ ℝ ∧ 0 < e)) → (((log‘𝑀) · e) < 𝑀 ↔ (log‘𝑀) < (𝑀 / e)))
13298, 34, 122, 131syl3anc 1373 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘𝑀) · e) < 𝑀 ↔ (log‘𝑀) < (𝑀 / e)))
133130, 132mpbid 232 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘𝑀) < (𝑀 / e))
13498, 101, 102, 133ltsub2dd 11733 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(4↑𝑀)) − (𝑀 / e)) < ((log‘(4↑𝑀)) − (log‘𝑀)))
1353recni 11129 . . . . . . . . . . 11 (log‘2) ∈ ℂ
136135a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘2) ∈ ℂ)
13712recni 11129 . . . . . . . . . . 11 (1 / (2 · e)) ∈ ℂ
138137a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (1 / (2 · e)) ∈ ℂ)
13970nnrpd 12935 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℝ+)
140139rpcnd 12939 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℂ)
141136, 138, 140subdird 11577 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) = (((log‘2) · (2 · 𝑀)) − ((1 / (2 · e)) · (2 · 𝑀))))
142136, 140mulcomd 11136 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘2) · (2 · 𝑀)) = ((2 · 𝑀) · (log‘2)))
143 2z 12507 . . . . . . . . . . . . 13 2 ∈ ℤ
144 zmulcl 12524 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 · 𝑀) ∈ ℤ)
145143, 33, 144sylancr 587 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ∈ ℤ)
146 relogexp 26503 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ (2 · 𝑀) ∈ ℤ) → (log‘(2↑(2 · 𝑀))) = ((2 · 𝑀) · (log‘2)))
1471, 145, 146sylancr 587 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(2↑(2 · 𝑀))) = ((2 · 𝑀) · (log‘2)))
148 2cnd 12206 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ∈ ℂ)
14959nnnn0d 12445 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ∈ ℕ0)
150 2nn0 12401 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
151150a1i 11 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ∈ ℕ0)
152148, 149, 151expmuld 14056 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2↑(2 · 𝑀)) = ((2↑2)↑𝑀))
153 sq2 14104 . . . . . . . . . . . . . 14 (2↑2) = 4
154153oveq1i 7359 . . . . . . . . . . . . 13 ((2↑2)↑𝑀) = (4↑𝑀)
155152, 154eqtrdi 2780 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2↑(2 · 𝑀)) = (4↑𝑀))
156155fveq2d 6826 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(2↑(2 · 𝑀))) = (log‘(4↑𝑀)))
157142, 147, 1563eqtr2d 2770 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘2) · (2 · 𝑀)) = (log‘(4↑𝑀)))
1587recni 11129 . . . . . . . . . . . . 13 (2 · e) ∈ ℂ
159158a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · e) ∈ ℂ)
16011a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · e) ≠ 0)
161140, 159, 160divrec2d 11904 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((2 · 𝑀) / (2 · e)) = ((1 / (2 · e)) · (2 · 𝑀)))
1626recni 11129 . . . . . . . . . . . . 13 e ∈ ℂ
163162a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ∈ ℂ)
1646, 9gt0ne0ii 11656 . . . . . . . . . . . . 13 e ≠ 0
165164a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → e ≠ 0)
16614a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 2 ≠ 0)
167128, 163, 148, 165, 166divcan5d 11926 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((2 · 𝑀) / (2 · e)) = (𝑀 / e))
168161, 167eqtr3d 2766 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((1 / (2 · e)) · (2 · 𝑀)) = (𝑀 / e))
169157, 168oveq12d 7367 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) · (2 · 𝑀)) − ((1 / (2 · e)) · (2 · 𝑀))) = ((log‘(4↑𝑀)) − (𝑀 / e)))
170141, 169eqtrd 2764 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) = ((log‘(4↑𝑀)) − (𝑀 / e)))
17193, 94relogdivd 26533 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘((4↑𝑀) / 𝑀)) = ((log‘(4↑𝑀)) − (log‘𝑀)))
172134, 170, 1713brtr4d 5124 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) < (log‘((4↑𝑀) / 𝑀)))
173 eqid 2729 . . . . . . . . 9 if((2 · 𝑀) ≤ ((2 · 𝑀)C𝑀), (2 · 𝑀), ((2 · 𝑀)C𝑀)) = if((2 · 𝑀) ≤ ((2 · 𝑀)C𝑀), (2 · 𝑀), ((2 · 𝑀)C𝑀))
174173chebbnd1lem1 27378 . . . . . . . 8 (𝑀 ∈ (ℤ‘4) → (log‘((4↑𝑀) / 𝑀)) < ((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))))
17557, 174syl 17 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘((4↑𝑀) / 𝑀)) < ((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))))
17689, 96, 97, 172, 175lttrd 11277 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) < ((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))))
17783, 97, 139ltmuldivd 12984 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((((log‘2) − (1 / (2 · e))) · (2 · 𝑀)) < ((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))) ↔ ((log‘2) − (1 / (2 · e))) < (((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))) / (2 · 𝑀))))
178176, 177mpbid 232 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘2) − (1 / (2 · e))) < (((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))) / (2 · 𝑀)))
17986recnd 11143 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π‘(2 · 𝑀)) ∈ ℂ)
18066rpcnd 12939 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (log‘(2 · 𝑀)) ∈ ℂ)
181139rpcnne0d 12946 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((2 · 𝑀) ∈ ℂ ∧ (2 · 𝑀) ≠ 0))
182 divass 11797 . . . . . 6 (((π‘(2 · 𝑀)) ∈ ℂ ∧ (log‘(2 · 𝑀)) ∈ ℂ ∧ ((2 · 𝑀) ∈ ℂ ∧ (2 · 𝑀) ≠ 0)) → (((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))) / (2 · 𝑀)) = ((π‘(2 · 𝑀)) · ((log‘(2 · 𝑀)) / (2 · 𝑀))))
183179, 180, 181, 182syl3anc 1373 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((π‘(2 · 𝑀)) · (log‘(2 · 𝑀))) / (2 · 𝑀)) = ((π‘(2 · 𝑀)) · ((log‘(2 · 𝑀)) / (2 · 𝑀))))
184178, 183breqtrd 5118 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘2) − (1 / (2 · e))) < ((π‘(2 · 𝑀)) · ((log‘(2 · 𝑀)) / (2 · 𝑀))))
185 flle 13703 . . . . . . . . 9 ((𝑁 / 2) ∈ ℝ → (⌊‘(𝑁 / 2)) ≤ (𝑁 / 2))
18631, 185syl 17 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (⌊‘(𝑁 / 2)) ≤ (𝑁 / 2))
18729, 186eqbrtrid 5127 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 𝑀 ≤ (𝑁 / 2))
188 lemuldiv2 12006 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑀) ≤ 𝑁𝑀 ≤ (𝑁 / 2)))
18934, 20, 17, 48, 188syl112anc 1376 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((2 · 𝑀) ≤ 𝑁𝑀 ≤ (𝑁 / 2)))
190187, 189mpbird 257 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · 𝑀) ≤ 𝑁)
191 ppiwordi 27070 . . . . . 6 (((2 · 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 · 𝑀) ≤ 𝑁) → (π‘(2 · 𝑀)) ≤ (π𝑁))
19236, 20, 190, 191syl3anc 1373 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π‘(2 · 𝑀)) ≤ (π𝑁))
19366, 139rpdivcld 12954 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) ∈ ℝ+)
19486, 28, 193lemul1d 12980 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π‘(2 · 𝑀)) ≤ (π𝑁) ↔ ((π‘(2 · 𝑀)) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ≤ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀)))))
195192, 194mpbid 232 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π‘(2 · 𝑀)) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ≤ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))))
19683, 87, 72, 184, 195ltletrd 11276 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘2) − (1 / (2 · e))) < ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))))
197 ltdiv1 11989 . . . 4 ((((log‘2) − (1 / (2 · e))) ∈ ℝ ∧ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((log‘2) − (1 / (2 · e))) < ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ↔ (((log‘2) − (1 / (2 · e))) / 2) < (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2)))
19883, 72, 17, 48, 197syl112anc 1376 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) < ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ↔ (((log‘2) − (1 / (2 · e))) / 2) < (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2)))
199196, 198mpbid 232 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) / 2) < (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2))
20029chebbnd1lem2 27379 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘(2 · 𝑀)) / (2 · 𝑀)) < (2 · ((log‘𝑁) / 𝑁)))
201 remulcl 11094 . . . . . . 7 ((2 ∈ ℝ ∧ ((log‘𝑁) / 𝑁) ∈ ℝ) → (2 · ((log‘𝑁) / 𝑁)) ∈ ℝ)
2025, 81, 201sylancr 587 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (2 · ((log‘𝑁) / 𝑁)) ∈ ℝ)
20327nngt0d 12177 . . . . . 6 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → 0 < (π𝑁))
204 ltmul2 11975 . . . . . 6 ((((log‘(2 · 𝑀)) / (2 · 𝑀)) ∈ ℝ ∧ (2 · ((log‘𝑁) / 𝑁)) ∈ ℝ ∧ ((π𝑁) ∈ ℝ ∧ 0 < (π𝑁))) → (((log‘(2 · 𝑀)) / (2 · 𝑀)) < (2 · ((log‘𝑁) / 𝑁)) ↔ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) < ((π𝑁) · (2 · ((log‘𝑁) / 𝑁)))))
20571, 202, 28, 203, 204syl112anc 1376 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘(2 · 𝑀)) / (2 · 𝑀)) < (2 · ((log‘𝑁) / 𝑁)) ↔ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) < ((π𝑁) · (2 · ((log‘𝑁) / 𝑁)))))
206200, 205mpbid 232 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) < ((π𝑁) · (2 · ((log‘𝑁) / 𝑁))))
20728recnd 11143 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (π𝑁) ∈ ℂ)
20881recnd 11143 . . . . 5 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((log‘𝑁) / 𝑁) ∈ ℂ)
209207, 148, 208mul12d 11325 . . . 4 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π𝑁) · (2 · ((log‘𝑁) / 𝑁))) = (2 · ((π𝑁) · ((log‘𝑁) / 𝑁))))
210206, 209breqtrd 5118 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) < (2 · ((π𝑁) · ((log‘𝑁) / 𝑁))))
211 ltdivmul 12000 . . . 4 ((((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) ∈ ℝ ∧ ((π𝑁) · ((log‘𝑁) / 𝑁)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2) < ((π𝑁) · ((log‘𝑁) / 𝑁)) ↔ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) < (2 · ((π𝑁) · ((log‘𝑁) / 𝑁)))))
21272, 82, 17, 48, 211syl112anc 1376 . . 3 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → ((((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2) < ((π𝑁) · ((log‘𝑁) / 𝑁)) ↔ ((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) < (2 · ((π𝑁) · ((log‘𝑁) / 𝑁)))))
213210, 212mpbird 257 . 2 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((π𝑁) · ((log‘(2 · 𝑀)) / (2 · 𝑀))) / 2) < ((π𝑁) · ((log‘𝑁) / 𝑁)))
21416, 74, 82, 199, 213lttrd 11277 1 ((𝑁 ∈ ℝ ∧ 8 ≤ 𝑁) → (((log‘2) − (1 / (2 · e))) / 2) < ((π𝑁) · ((log‘𝑁) / 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  ifcif 4476   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   · cmul 11014   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  cn 12128  2c2 12183  3c3 12184  4c4 12185  8c8 12189  0cn0 12384  cz 12471  cuz 12735  +crp 12893  cfl 13694  cexp 13968  Ccbc 14209  eceu 15969  logclog 26461  πcppi 27002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-e 15975  df-sin 15976  df-cos 15977  df-pi 15979  df-dvds 16164  df-gcd 16406  df-prm 16583  df-pc 16749  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463  df-ppi 27008
This theorem is referenced by:  chebbnd1  27381
  Copyright terms: Public domain W3C validator