MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3rp Structured version   Visualization version   GIF version

Theorem 3rp 12441
Description: 3 is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
3rp 3 ∈ ℝ+

Proof of Theorem 3rp
StepHypRef Expression
1 3re 11759 . 2 3 ∈ ℝ
2 3pos 11784 . 2 0 < 3
31, 2elrpii 12438 1 3 ∈ ℝ+
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  3c3 11735  +crp 12435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-po 5446  df-so 5447  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-er 8304  df-en 8533  df-dom 8534  df-sdom 8535  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-2 11742  df-3 11743  df-rp 12436
This theorem is referenced by:  sqrlem7  14661  caurcvgr  15083  vitalilem4  24316  pige3ALT  25216  2logb9irrALT  25488  log2cnv  25634  cht3  25862  bposlem9  25980  chto1ub  26164  dchrvmasumiflem1  26189  pntibndlem1  26277  pntibndlem2  26279  pntlema  26284  pntlemb  26285  hgt750lemd  32151  hgt750lem  32154  hgt750lem2  32155  hgt750leme  32161  itg2addnclem3  35416  3lexlogpow2ineq2  39652  3lexlogpow5ineq5  39653  fourierdlem87  43229  lighneallem2  44519
  Copyright terms: Public domain W3C validator