MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3rp Structured version   Visualization version   GIF version

Theorem 3rp 12896
Description: 3 is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
3rp 3 ∈ ℝ+

Proof of Theorem 3rp
StepHypRef Expression
1 3re 12205 . 2 3 ∈ ℝ
2 3pos 12230 . 2 0 < 3
31, 2elrpii 12893 1 3 ∈ ℝ+
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  3c3 12181  +crp 12890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-2 12188  df-3 12189  df-rp 12891
This theorem is referenced by:  01sqrexlem7  15155  caurcvgr  15581  vitalilem4  25539  pige3ALT  26456  2logb9irrALT  26735  log2cnv  26881  cht3  27110  bposlem9  27230  chto1ub  27414  dchrvmasumiflem1  27439  pntibndlem1  27527  pntibndlem2  27529  pntlema  27534  pntlemb  27535  hgt750lemd  34661  hgt750lem  34664  hgt750lem2  34665  hgt750leme  34671  itg2addnclem3  37712  3lexlogpow2ineq2  42151  3lexlogpow5ineq5  42152  fourierdlem87  46290  lighneallem2  47705  gpg3kgrtriexlem2  48183
  Copyright terms: Public domain W3C validator