MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3rp Structured version   Visualization version   GIF version

Theorem 3rp 12985
Description: 3 is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
3rp 3 ∈ ℝ+

Proof of Theorem 3rp
StepHypRef Expression
1 3re 12297 . 2 3 ∈ ℝ
2 3pos 12322 . 2 0 < 3
31, 2elrpii 12982 1 3 ∈ ℝ+
Colors of variables: wff setvar class
Syntax hints:  wcel 2105  3c3 12273  +crp 12979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-2 12280  df-3 12281  df-rp 12980
This theorem is referenced by:  01sqrexlem7  15200  caurcvgr  15625  vitalilem4  25361  pige3ALT  26266  2logb9irrALT  26540  log2cnv  26686  cht3  26914  bposlem9  27032  chto1ub  27216  dchrvmasumiflem1  27241  pntibndlem1  27329  pntibndlem2  27331  pntlema  27336  pntlemb  27337  hgt750lemd  33959  hgt750lem  33962  hgt750lem2  33963  hgt750leme  33969  itg2addnclem3  36845  3lexlogpow2ineq2  41231  3lexlogpow5ineq5  41232  fourierdlem87  45208  lighneallem2  46573
  Copyright terms: Public domain W3C validator