Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem7 Structured version   Visualization version   GIF version

Theorem heiborlem7 35902
Description: Lemma for heibor 35906. Since the sizes of the balls decrease exponentially, the sequence converges to zero. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
heibor.9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
heibor.10 (𝜑𝐶𝐺0)
heibor.11 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
heibor.12 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
Assertion
Ref Expression
heiborlem7 𝑟 ∈ ℝ+𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟
Distinct variable groups:   𝑥,𝑛,𝑦,𝑘,𝑟,𝑢,𝐹   𝑘,𝐺,𝑥   𝜑,𝑘,𝑟,𝑥   𝑘,𝑚,𝑣,𝑧,𝐷,𝑛,𝑟,𝑢,𝑥,𝑦   𝑘,𝑀,𝑚,𝑟,𝑢,𝑥,𝑦,𝑧   𝑇,𝑚,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛,𝑢,𝑣,𝑦   𝑘,𝐽,𝑚,𝑛,𝑟,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑆,𝑘,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑘,𝑋,𝑚,𝑛,𝑟,𝑢,𝑣,𝑥,𝑦,𝑧   𝐶,𝑚,𝑛,𝑢,𝑣,𝑦   𝑛,𝐾,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑘,𝑚,𝑟)   𝐶(𝑥,𝑧,𝑘,𝑟)   𝑆(𝑟)   𝑇(𝑣,𝑢,𝑘,𝑟)   𝑈(𝑘,𝑚,𝑟)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛,𝑟)   𝐾(𝑣,𝑢,𝑘,𝑚,𝑟)   𝑀(𝑣,𝑛)

Proof of Theorem heiborlem7
StepHypRef Expression
1 3re 11983 . . . . . . 7 3 ∈ ℝ
2 3pos 12008 . . . . . . 7 0 < 3
31, 2elrpii 12662 . . . . . 6 3 ∈ ℝ+
4 rpdivcl 12684 . . . . . 6 ((𝑟 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑟 / 3) ∈ ℝ+)
53, 4mpan2 687 . . . . 5 (𝑟 ∈ ℝ+ → (𝑟 / 3) ∈ ℝ+)
6 2re 11977 . . . . . 6 2 ∈ ℝ
7 1lt2 12074 . . . . . 6 1 < 2
8 expnlbnd 13876 . . . . . 6 (((𝑟 / 3) ∈ ℝ+ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3))
96, 7, 8mp3an23 1451 . . . . 5 ((𝑟 / 3) ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3))
105, 9syl 17 . . . 4 (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3))
11 2nn 11976 . . . . . . . . . . 11 2 ∈ ℕ
12 nnnn0 12170 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
13 nnexpcl 13723 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
1411, 12, 13sylancr 586 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2↑𝑘) ∈ ℕ)
1514nnrpd 12699 . . . . . . . . 9 (𝑘 ∈ ℕ → (2↑𝑘) ∈ ℝ+)
16 rpcn 12669 . . . . . . . . . 10 ((2↑𝑘) ∈ ℝ+ → (2↑𝑘) ∈ ℂ)
17 rpne0 12675 . . . . . . . . . 10 ((2↑𝑘) ∈ ℝ+ → (2↑𝑘) ≠ 0)
18 3cn 11984 . . . . . . . . . . 11 3 ∈ ℂ
19 divrec 11579 . . . . . . . . . . 11 ((3 ∈ ℂ ∧ (2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘))))
2018, 19mp3an1 1446 . . . . . . . . . 10 (((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘))))
2116, 17, 20syl2anc 583 . . . . . . . . 9 ((2↑𝑘) ∈ ℝ+ → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘))))
2215, 21syl 17 . . . . . . . 8 (𝑘 ∈ ℕ → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘))))
2322adantl 481 . . . . . . 7 ((𝑟 ∈ ℝ+𝑘 ∈ ℕ) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘))))
2423breq1d 5080 . . . . . 6 ((𝑟 ∈ ℝ+𝑘 ∈ ℕ) → ((3 / (2↑𝑘)) < 𝑟 ↔ (3 · (1 / (2↑𝑘))) < 𝑟))
2514nnrecred 11954 . . . . . . 7 (𝑘 ∈ ℕ → (1 / (2↑𝑘)) ∈ ℝ)
26 rpre 12667 . . . . . . 7 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
271, 2pm3.2i 470 . . . . . . . 8 (3 ∈ ℝ ∧ 0 < 3)
28 ltmuldiv2 11779 . . . . . . . 8 (((1 / (2↑𝑘)) ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3)))
2927, 28mp3an3 1448 . . . . . . 7 (((1 / (2↑𝑘)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3)))
3025, 26, 29syl2anr 596 . . . . . 6 ((𝑟 ∈ ℝ+𝑘 ∈ ℕ) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3)))
3124, 30bitrd 278 . . . . 5 ((𝑟 ∈ ℝ+𝑘 ∈ ℕ) → ((3 / (2↑𝑘)) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3)))
3231rexbidva 3224 . . . 4 (𝑟 ∈ ℝ+ → (∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟 ↔ ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3)))
3310, 32mpbird 256 . . 3 (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟)
34 fveq2 6756 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑆𝑛) = (𝑆𝑘))
35 oveq2 7263 . . . . . . . . . 10 (𝑛 = 𝑘 → (2↑𝑛) = (2↑𝑘))
3635oveq2d 7271 . . . . . . . . 9 (𝑛 = 𝑘 → (3 / (2↑𝑛)) = (3 / (2↑𝑘)))
3734, 36opeq12d 4809 . . . . . . . 8 (𝑛 = 𝑘 → ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ = ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩)
38 heibor.12 . . . . . . . 8 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
39 opex 5373 . . . . . . . 8 ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩ ∈ V
4037, 38, 39fvmpt 6857 . . . . . . 7 (𝑘 ∈ ℕ → (𝑀𝑘) = ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩)
4140fveq2d 6760 . . . . . 6 (𝑘 ∈ ℕ → (2nd ‘(𝑀𝑘)) = (2nd ‘⟨(𝑆𝑘), (3 / (2↑𝑘))⟩))
42 fvex 6769 . . . . . . 7 (𝑆𝑘) ∈ V
43 ovex 7288 . . . . . . 7 (3 / (2↑𝑘)) ∈ V
4442, 43op2nd 7813 . . . . . 6 (2nd ‘⟨(𝑆𝑘), (3 / (2↑𝑘))⟩) = (3 / (2↑𝑘))
4541, 44eqtrdi 2795 . . . . 5 (𝑘 ∈ ℕ → (2nd ‘(𝑀𝑘)) = (3 / (2↑𝑘)))
4645breq1d 5080 . . . 4 (𝑘 ∈ ℕ → ((2nd ‘(𝑀𝑘)) < 𝑟 ↔ (3 / (2↑𝑘)) < 𝑟))
4746rexbiia 3176 . . 3 (∃𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟 ↔ ∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟)
4833, 47sylibr 233 . 2 (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟)
4948rgen 3073 1 𝑟 ∈ ℝ+𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  cin 3882  wss 3883  ifcif 4456  𝒫 cpw 4530  cop 4564   cuni 4836   ciun 4921   class class class wbr 5070  {copab 5132  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  2nd c2nd 7803  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  3c3 11959  0cn0 12163  +crp 12659  seqcseq 13649  cexp 13710  ballcbl 20497  MetOpencmopn 20500  CMetccmet 24323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fl 13440  df-seq 13650  df-exp 13711
This theorem is referenced by:  heiborlem8  35903  heiborlem9  35904
  Copyright terms: Public domain W3C validator