| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > heiborlem7 | Structured version Visualization version GIF version | ||
| Description: Lemma for heibor 37808. Since the sizes of the balls decrease exponentially, the sequence converges to zero. (Contributed by Jeff Madsen, 23-Jan-2014.) |
| Ref | Expression |
|---|---|
| heibor.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| heibor.3 | ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} |
| heibor.4 | ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} |
| heibor.5 | ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) |
| heibor.6 | ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
| heibor.7 | ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) |
| heibor.8 | ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) |
| heibor.9 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) |
| heibor.10 | ⊢ (𝜑 → 𝐶𝐺0) |
| heibor.11 | ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) |
| heibor.12 | ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) |
| Ref | Expression |
|---|---|
| heiborlem7 | ⊢ ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 12242 | . . . . . . 7 ⊢ 3 ∈ ℝ | |
| 2 | 3pos 12267 | . . . . . . 7 ⊢ 0 < 3 | |
| 3 | 1, 2 | elrpii 12930 | . . . . . 6 ⊢ 3 ∈ ℝ+ |
| 4 | rpdivcl 12954 | . . . . . 6 ⊢ ((𝑟 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑟 / 3) ∈ ℝ+) | |
| 5 | 3, 4 | mpan2 691 | . . . . 5 ⊢ (𝑟 ∈ ℝ+ → (𝑟 / 3) ∈ ℝ+) |
| 6 | 2re 12236 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 7 | 1lt2 12328 | . . . . . 6 ⊢ 1 < 2 | |
| 8 | expnlbnd 14174 | . . . . . 6 ⊢ (((𝑟 / 3) ∈ ℝ+ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3)) | |
| 9 | 6, 7, 8 | mp3an23 1455 | . . . . 5 ⊢ ((𝑟 / 3) ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3)) |
| 10 | 5, 9 | syl 17 | . . . 4 ⊢ (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3)) |
| 11 | 2nn 12235 | . . . . . . . . . . 11 ⊢ 2 ∈ ℕ | |
| 12 | nnnn0 12425 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
| 13 | nnexpcl 14015 | . . . . . . . . . . 11 ⊢ ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ) | |
| 14 | 11, 12, 13 | sylancr 587 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ → (2↑𝑘) ∈ ℕ) |
| 15 | 14 | nnrpd 12969 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℕ → (2↑𝑘) ∈ ℝ+) |
| 16 | rpcn 12938 | . . . . . . . . . 10 ⊢ ((2↑𝑘) ∈ ℝ+ → (2↑𝑘) ∈ ℂ) | |
| 17 | rpne0 12944 | . . . . . . . . . 10 ⊢ ((2↑𝑘) ∈ ℝ+ → (2↑𝑘) ≠ 0) | |
| 18 | 3cn 12243 | . . . . . . . . . . 11 ⊢ 3 ∈ ℂ | |
| 19 | divrec 11829 | . . . . . . . . . . 11 ⊢ ((3 ∈ ℂ ∧ (2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘)))) | |
| 20 | 18, 19 | mp3an1 1450 | . . . . . . . . . 10 ⊢ (((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘)))) |
| 21 | 16, 17, 20 | syl2anc 584 | . . . . . . . . 9 ⊢ ((2↑𝑘) ∈ ℝ+ → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘)))) |
| 22 | 15, 21 | syl 17 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘)))) |
| 23 | 22 | adantl 481 | . . . . . . 7 ⊢ ((𝑟 ∈ ℝ+ ∧ 𝑘 ∈ ℕ) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘)))) |
| 24 | 23 | breq1d 5112 | . . . . . 6 ⊢ ((𝑟 ∈ ℝ+ ∧ 𝑘 ∈ ℕ) → ((3 / (2↑𝑘)) < 𝑟 ↔ (3 · (1 / (2↑𝑘))) < 𝑟)) |
| 25 | 14 | nnrecred 12213 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ → (1 / (2↑𝑘)) ∈ ℝ) |
| 26 | rpre 12936 | . . . . . . 7 ⊢ (𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ) | |
| 27 | 1, 2 | pm3.2i 470 | . . . . . . . 8 ⊢ (3 ∈ ℝ ∧ 0 < 3) |
| 28 | ltmuldiv2 12033 | . . . . . . . 8 ⊢ (((1 / (2↑𝑘)) ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3))) | |
| 29 | 27, 28 | mp3an3 1452 | . . . . . . 7 ⊢ (((1 / (2↑𝑘)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3))) |
| 30 | 25, 26, 29 | syl2anr 597 | . . . . . 6 ⊢ ((𝑟 ∈ ℝ+ ∧ 𝑘 ∈ ℕ) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3))) |
| 31 | 24, 30 | bitrd 279 | . . . . 5 ⊢ ((𝑟 ∈ ℝ+ ∧ 𝑘 ∈ ℕ) → ((3 / (2↑𝑘)) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3))) |
| 32 | 31 | rexbidva 3155 | . . . 4 ⊢ (𝑟 ∈ ℝ+ → (∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟 ↔ ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3))) |
| 33 | 10, 32 | mpbird 257 | . . 3 ⊢ (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟) |
| 34 | fveq2 6840 | . . . . . . . . 9 ⊢ (𝑛 = 𝑘 → (𝑆‘𝑛) = (𝑆‘𝑘)) | |
| 35 | oveq2 7377 | . . . . . . . . . 10 ⊢ (𝑛 = 𝑘 → (2↑𝑛) = (2↑𝑘)) | |
| 36 | 35 | oveq2d 7385 | . . . . . . . . 9 ⊢ (𝑛 = 𝑘 → (3 / (2↑𝑛)) = (3 / (2↑𝑘))) |
| 37 | 34, 36 | opeq12d 4841 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 = 〈(𝑆‘𝑘), (3 / (2↑𝑘))〉) |
| 38 | heibor.12 | . . . . . . . 8 ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) | |
| 39 | opex 5419 | . . . . . . . 8 ⊢ 〈(𝑆‘𝑘), (3 / (2↑𝑘))〉 ∈ V | |
| 40 | 37, 38, 39 | fvmpt 6950 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ → (𝑀‘𝑘) = 〈(𝑆‘𝑘), (3 / (2↑𝑘))〉) |
| 41 | 40 | fveq2d 6844 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → (2nd ‘(𝑀‘𝑘)) = (2nd ‘〈(𝑆‘𝑘), (3 / (2↑𝑘))〉)) |
| 42 | fvex 6853 | . . . . . . 7 ⊢ (𝑆‘𝑘) ∈ V | |
| 43 | ovex 7402 | . . . . . . 7 ⊢ (3 / (2↑𝑘)) ∈ V | |
| 44 | 42, 43 | op2nd 7956 | . . . . . 6 ⊢ (2nd ‘〈(𝑆‘𝑘), (3 / (2↑𝑘))〉) = (3 / (2↑𝑘)) |
| 45 | 41, 44 | eqtrdi 2780 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (2nd ‘(𝑀‘𝑘)) = (3 / (2↑𝑘))) |
| 46 | 45 | breq1d 5112 | . . . 4 ⊢ (𝑘 ∈ ℕ → ((2nd ‘(𝑀‘𝑘)) < 𝑟 ↔ (3 / (2↑𝑘)) < 𝑟)) |
| 47 | 46 | rexbiia 3074 | . . 3 ⊢ (∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟 ↔ ∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟) |
| 48 | 33, 47 | sylibr 234 | . 2 ⊢ (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟) |
| 49 | 48 | rgen 3046 | 1 ⊢ ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2707 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ∩ cin 3910 ⊆ wss 3911 ifcif 4484 𝒫 cpw 4559 〈cop 4591 ∪ cuni 4867 ∪ ciun 4951 class class class wbr 5102 {copab 5164 ↦ cmpt 5183 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 2nd c2nd 7946 Fincfn 8895 ℂcc 11042 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 < clt 11184 − cmin 11381 / cdiv 11811 ℕcn 12162 2c2 12217 3c3 12218 ℕ0cn0 12418 ℝ+crp 12927 seqcseq 13942 ↑cexp 14002 ballcbl 21283 MetOpencmopn 21286 CMetccmet 25187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fl 13730 df-seq 13943 df-exp 14003 |
| This theorem is referenced by: heiborlem8 37805 heiborlem9 37806 |
| Copyright terms: Public domain | W3C validator |