Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem7 Structured version   Visualization version   GIF version

Theorem heiborlem7 37804
Description: Lemma for heibor 37808. Since the sizes of the balls decrease exponentially, the sequence converges to zero. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
heibor.9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
heibor.10 (𝜑𝐶𝐺0)
heibor.11 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
heibor.12 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
Assertion
Ref Expression
heiborlem7 𝑟 ∈ ℝ+𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟
Distinct variable groups:   𝑥,𝑛,𝑦,𝑘,𝑟,𝑢,𝐹   𝑘,𝐺,𝑥   𝜑,𝑘,𝑟,𝑥   𝑘,𝑚,𝑣,𝑧,𝐷,𝑛,𝑟,𝑢,𝑥,𝑦   𝑘,𝑀,𝑚,𝑟,𝑢,𝑥,𝑦,𝑧   𝑇,𝑚,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛,𝑢,𝑣,𝑦   𝑘,𝐽,𝑚,𝑛,𝑟,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑆,𝑘,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑘,𝑋,𝑚,𝑛,𝑟,𝑢,𝑣,𝑥,𝑦,𝑧   𝐶,𝑚,𝑛,𝑢,𝑣,𝑦   𝑛,𝐾,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑘,𝑚,𝑟)   𝐶(𝑥,𝑧,𝑘,𝑟)   𝑆(𝑟)   𝑇(𝑣,𝑢,𝑘,𝑟)   𝑈(𝑘,𝑚,𝑟)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛,𝑟)   𝐾(𝑣,𝑢,𝑘,𝑚,𝑟)   𝑀(𝑣,𝑛)

Proof of Theorem heiborlem7
StepHypRef Expression
1 3re 12344 . . . . . . 7 3 ∈ ℝ
2 3pos 12369 . . . . . . 7 0 < 3
31, 2elrpii 13035 . . . . . 6 3 ∈ ℝ+
4 rpdivcl 13058 . . . . . 6 ((𝑟 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑟 / 3) ∈ ℝ+)
53, 4mpan2 691 . . . . 5 (𝑟 ∈ ℝ+ → (𝑟 / 3) ∈ ℝ+)
6 2re 12338 . . . . . 6 2 ∈ ℝ
7 1lt2 12435 . . . . . 6 1 < 2
8 expnlbnd 14269 . . . . . 6 (((𝑟 / 3) ∈ ℝ+ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3))
96, 7, 8mp3an23 1452 . . . . 5 ((𝑟 / 3) ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3))
105, 9syl 17 . . . 4 (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3))
11 2nn 12337 . . . . . . . . . . 11 2 ∈ ℕ
12 nnnn0 12531 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
13 nnexpcl 14112 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
1411, 12, 13sylancr 587 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2↑𝑘) ∈ ℕ)
1514nnrpd 13073 . . . . . . . . 9 (𝑘 ∈ ℕ → (2↑𝑘) ∈ ℝ+)
16 rpcn 13043 . . . . . . . . . 10 ((2↑𝑘) ∈ ℝ+ → (2↑𝑘) ∈ ℂ)
17 rpne0 13049 . . . . . . . . . 10 ((2↑𝑘) ∈ ℝ+ → (2↑𝑘) ≠ 0)
18 3cn 12345 . . . . . . . . . . 11 3 ∈ ℂ
19 divrec 11936 . . . . . . . . . . 11 ((3 ∈ ℂ ∧ (2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘))))
2018, 19mp3an1 1447 . . . . . . . . . 10 (((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘))))
2116, 17, 20syl2anc 584 . . . . . . . . 9 ((2↑𝑘) ∈ ℝ+ → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘))))
2215, 21syl 17 . . . . . . . 8 (𝑘 ∈ ℕ → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘))))
2322adantl 481 . . . . . . 7 ((𝑟 ∈ ℝ+𝑘 ∈ ℕ) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘))))
2423breq1d 5158 . . . . . 6 ((𝑟 ∈ ℝ+𝑘 ∈ ℕ) → ((3 / (2↑𝑘)) < 𝑟 ↔ (3 · (1 / (2↑𝑘))) < 𝑟))
2514nnrecred 12315 . . . . . . 7 (𝑘 ∈ ℕ → (1 / (2↑𝑘)) ∈ ℝ)
26 rpre 13041 . . . . . . 7 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
271, 2pm3.2i 470 . . . . . . . 8 (3 ∈ ℝ ∧ 0 < 3)
28 ltmuldiv2 12140 . . . . . . . 8 (((1 / (2↑𝑘)) ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3)))
2927, 28mp3an3 1449 . . . . . . 7 (((1 / (2↑𝑘)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3)))
3025, 26, 29syl2anr 597 . . . . . 6 ((𝑟 ∈ ℝ+𝑘 ∈ ℕ) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3)))
3124, 30bitrd 279 . . . . 5 ((𝑟 ∈ ℝ+𝑘 ∈ ℕ) → ((3 / (2↑𝑘)) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3)))
3231rexbidva 3175 . . . 4 (𝑟 ∈ ℝ+ → (∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟 ↔ ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3)))
3310, 32mpbird 257 . . 3 (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟)
34 fveq2 6907 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑆𝑛) = (𝑆𝑘))
35 oveq2 7439 . . . . . . . . . 10 (𝑛 = 𝑘 → (2↑𝑛) = (2↑𝑘))
3635oveq2d 7447 . . . . . . . . 9 (𝑛 = 𝑘 → (3 / (2↑𝑛)) = (3 / (2↑𝑘)))
3734, 36opeq12d 4886 . . . . . . . 8 (𝑛 = 𝑘 → ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ = ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩)
38 heibor.12 . . . . . . . 8 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
39 opex 5475 . . . . . . . 8 ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩ ∈ V
4037, 38, 39fvmpt 7016 . . . . . . 7 (𝑘 ∈ ℕ → (𝑀𝑘) = ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩)
4140fveq2d 6911 . . . . . 6 (𝑘 ∈ ℕ → (2nd ‘(𝑀𝑘)) = (2nd ‘⟨(𝑆𝑘), (3 / (2↑𝑘))⟩))
42 fvex 6920 . . . . . . 7 (𝑆𝑘) ∈ V
43 ovex 7464 . . . . . . 7 (3 / (2↑𝑘)) ∈ V
4442, 43op2nd 8022 . . . . . 6 (2nd ‘⟨(𝑆𝑘), (3 / (2↑𝑘))⟩) = (3 / (2↑𝑘))
4541, 44eqtrdi 2791 . . . . 5 (𝑘 ∈ ℕ → (2nd ‘(𝑀𝑘)) = (3 / (2↑𝑘)))
4645breq1d 5158 . . . 4 (𝑘 ∈ ℕ → ((2nd ‘(𝑀𝑘)) < 𝑟 ↔ (3 / (2↑𝑘)) < 𝑟))
4746rexbiia 3090 . . 3 (∃𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟 ↔ ∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟)
4833, 47sylibr 234 . 2 (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟)
4948rgen 3061 1 𝑟 ∈ ℝ+𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  {cab 2712  wne 2938  wral 3059  wrex 3068  cin 3962  wss 3963  ifcif 4531  𝒫 cpw 4605  cop 4637   cuni 4912   ciun 4996   class class class wbr 5148  {copab 5210  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  cmpo 7433  2nd c2nd 8012  Fincfn 8984  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cmin 11490   / cdiv 11918  cn 12264  2c2 12319  3c3 12320  0cn0 12524  +crp 13032  seqcseq 14039  cexp 14099  ballcbl 21369  MetOpencmopn 21372  CMetccmet 25302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829  df-seq 14040  df-exp 14100
This theorem is referenced by:  heiborlem8  37805  heiborlem9  37806
  Copyright terms: Public domain W3C validator