Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > heiborlem7 | Structured version Visualization version GIF version |
Description: Lemma for heibor 35979. Since the sizes of the balls decrease exponentially, the sequence converges to zero. (Contributed by Jeff Madsen, 23-Jan-2014.) |
Ref | Expression |
---|---|
heibor.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
heibor.3 | ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} |
heibor.4 | ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} |
heibor.5 | ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) |
heibor.6 | ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
heibor.7 | ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) |
heibor.8 | ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) |
heibor.9 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) |
heibor.10 | ⊢ (𝜑 → 𝐶𝐺0) |
heibor.11 | ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) |
heibor.12 | ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) |
Ref | Expression |
---|---|
heiborlem7 | ⊢ ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 12053 | . . . . . . 7 ⊢ 3 ∈ ℝ | |
2 | 3pos 12078 | . . . . . . 7 ⊢ 0 < 3 | |
3 | 1, 2 | elrpii 12733 | . . . . . 6 ⊢ 3 ∈ ℝ+ |
4 | rpdivcl 12755 | . . . . . 6 ⊢ ((𝑟 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑟 / 3) ∈ ℝ+) | |
5 | 3, 4 | mpan2 688 | . . . . 5 ⊢ (𝑟 ∈ ℝ+ → (𝑟 / 3) ∈ ℝ+) |
6 | 2re 12047 | . . . . . 6 ⊢ 2 ∈ ℝ | |
7 | 1lt2 12144 | . . . . . 6 ⊢ 1 < 2 | |
8 | expnlbnd 13948 | . . . . . 6 ⊢ (((𝑟 / 3) ∈ ℝ+ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3)) | |
9 | 6, 7, 8 | mp3an23 1452 | . . . . 5 ⊢ ((𝑟 / 3) ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3)) |
10 | 5, 9 | syl 17 | . . . 4 ⊢ (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3)) |
11 | 2nn 12046 | . . . . . . . . . . 11 ⊢ 2 ∈ ℕ | |
12 | nnnn0 12240 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
13 | nnexpcl 13795 | . . . . . . . . . . 11 ⊢ ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ) | |
14 | 11, 12, 13 | sylancr 587 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ → (2↑𝑘) ∈ ℕ) |
15 | 14 | nnrpd 12770 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℕ → (2↑𝑘) ∈ ℝ+) |
16 | rpcn 12740 | . . . . . . . . . 10 ⊢ ((2↑𝑘) ∈ ℝ+ → (2↑𝑘) ∈ ℂ) | |
17 | rpne0 12746 | . . . . . . . . . 10 ⊢ ((2↑𝑘) ∈ ℝ+ → (2↑𝑘) ≠ 0) | |
18 | 3cn 12054 | . . . . . . . . . . 11 ⊢ 3 ∈ ℂ | |
19 | divrec 11649 | . . . . . . . . . . 11 ⊢ ((3 ∈ ℂ ∧ (2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘)))) | |
20 | 18, 19 | mp3an1 1447 | . . . . . . . . . 10 ⊢ (((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘)))) |
21 | 16, 17, 20 | syl2anc 584 | . . . . . . . . 9 ⊢ ((2↑𝑘) ∈ ℝ+ → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘)))) |
22 | 15, 21 | syl 17 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘)))) |
23 | 22 | adantl 482 | . . . . . . 7 ⊢ ((𝑟 ∈ ℝ+ ∧ 𝑘 ∈ ℕ) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘)))) |
24 | 23 | breq1d 5084 | . . . . . 6 ⊢ ((𝑟 ∈ ℝ+ ∧ 𝑘 ∈ ℕ) → ((3 / (2↑𝑘)) < 𝑟 ↔ (3 · (1 / (2↑𝑘))) < 𝑟)) |
25 | 14 | nnrecred 12024 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ → (1 / (2↑𝑘)) ∈ ℝ) |
26 | rpre 12738 | . . . . . . 7 ⊢ (𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ) | |
27 | 1, 2 | pm3.2i 471 | . . . . . . . 8 ⊢ (3 ∈ ℝ ∧ 0 < 3) |
28 | ltmuldiv2 11849 | . . . . . . . 8 ⊢ (((1 / (2↑𝑘)) ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3))) | |
29 | 27, 28 | mp3an3 1449 | . . . . . . 7 ⊢ (((1 / (2↑𝑘)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3))) |
30 | 25, 26, 29 | syl2anr 597 | . . . . . 6 ⊢ ((𝑟 ∈ ℝ+ ∧ 𝑘 ∈ ℕ) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3))) |
31 | 24, 30 | bitrd 278 | . . . . 5 ⊢ ((𝑟 ∈ ℝ+ ∧ 𝑘 ∈ ℕ) → ((3 / (2↑𝑘)) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3))) |
32 | 31 | rexbidva 3225 | . . . 4 ⊢ (𝑟 ∈ ℝ+ → (∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟 ↔ ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3))) |
33 | 10, 32 | mpbird 256 | . . 3 ⊢ (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟) |
34 | fveq2 6774 | . . . . . . . . 9 ⊢ (𝑛 = 𝑘 → (𝑆‘𝑛) = (𝑆‘𝑘)) | |
35 | oveq2 7283 | . . . . . . . . . 10 ⊢ (𝑛 = 𝑘 → (2↑𝑛) = (2↑𝑘)) | |
36 | 35 | oveq2d 7291 | . . . . . . . . 9 ⊢ (𝑛 = 𝑘 → (3 / (2↑𝑛)) = (3 / (2↑𝑘))) |
37 | 34, 36 | opeq12d 4812 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 = 〈(𝑆‘𝑘), (3 / (2↑𝑘))〉) |
38 | heibor.12 | . . . . . . . 8 ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) | |
39 | opex 5379 | . . . . . . . 8 ⊢ 〈(𝑆‘𝑘), (3 / (2↑𝑘))〉 ∈ V | |
40 | 37, 38, 39 | fvmpt 6875 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ → (𝑀‘𝑘) = 〈(𝑆‘𝑘), (3 / (2↑𝑘))〉) |
41 | 40 | fveq2d 6778 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → (2nd ‘(𝑀‘𝑘)) = (2nd ‘〈(𝑆‘𝑘), (3 / (2↑𝑘))〉)) |
42 | fvex 6787 | . . . . . . 7 ⊢ (𝑆‘𝑘) ∈ V | |
43 | ovex 7308 | . . . . . . 7 ⊢ (3 / (2↑𝑘)) ∈ V | |
44 | 42, 43 | op2nd 7840 | . . . . . 6 ⊢ (2nd ‘〈(𝑆‘𝑘), (3 / (2↑𝑘))〉) = (3 / (2↑𝑘)) |
45 | 41, 44 | eqtrdi 2794 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (2nd ‘(𝑀‘𝑘)) = (3 / (2↑𝑘))) |
46 | 45 | breq1d 5084 | . . . 4 ⊢ (𝑘 ∈ ℕ → ((2nd ‘(𝑀‘𝑘)) < 𝑟 ↔ (3 / (2↑𝑘)) < 𝑟)) |
47 | 46 | rexbiia 3180 | . . 3 ⊢ (∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟 ↔ ∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟) |
48 | 33, 47 | sylibr 233 | . 2 ⊢ (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟) |
49 | 48 | rgen 3074 | 1 ⊢ ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {cab 2715 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 ∩ cin 3886 ⊆ wss 3887 ifcif 4459 𝒫 cpw 4533 〈cop 4567 ∪ cuni 4839 ∪ ciun 4924 class class class wbr 5074 {copab 5136 ↦ cmpt 5157 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 2nd c2nd 7830 Fincfn 8733 ℂcc 10869 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 < clt 11009 − cmin 11205 / cdiv 11632 ℕcn 11973 2c2 12028 3c3 12029 ℕ0cn0 12233 ℝ+crp 12730 seqcseq 13721 ↑cexp 13782 ballcbl 20584 MetOpencmopn 20587 CMetccmet 24418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fl 13512 df-seq 13722 df-exp 13783 |
This theorem is referenced by: heiborlem8 35976 heiborlem9 35977 |
Copyright terms: Public domain | W3C validator |