Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem7 Structured version   Visualization version   GIF version

Theorem heiborlem7 35213
Description: Lemma for heibor 35217. Since the sizes of the balls decrease exponentially, the sequence converges to zero. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
heibor.9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
heibor.10 (𝜑𝐶𝐺0)
heibor.11 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
heibor.12 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
Assertion
Ref Expression
heiborlem7 𝑟 ∈ ℝ+𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟
Distinct variable groups:   𝑥,𝑛,𝑦,𝑘,𝑟,𝑢,𝐹   𝑘,𝐺,𝑥   𝜑,𝑘,𝑟,𝑥   𝑘,𝑚,𝑣,𝑧,𝐷,𝑛,𝑟,𝑢,𝑥,𝑦   𝑘,𝑀,𝑚,𝑟,𝑢,𝑥,𝑦,𝑧   𝑇,𝑚,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛,𝑢,𝑣,𝑦   𝑘,𝐽,𝑚,𝑛,𝑟,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑆,𝑘,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑘,𝑋,𝑚,𝑛,𝑟,𝑢,𝑣,𝑥,𝑦,𝑧   𝐶,𝑚,𝑛,𝑢,𝑣,𝑦   𝑛,𝐾,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑘,𝑚,𝑟)   𝐶(𝑥,𝑧,𝑘,𝑟)   𝑆(𝑟)   𝑇(𝑣,𝑢,𝑘,𝑟)   𝑈(𝑘,𝑚,𝑟)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛,𝑟)   𝐾(𝑣,𝑢,𝑘,𝑚,𝑟)   𝑀(𝑣,𝑛)

Proof of Theorem heiborlem7
StepHypRef Expression
1 3re 11705 . . . . . . 7 3 ∈ ℝ
2 3pos 11730 . . . . . . 7 0 < 3
31, 2elrpii 12380 . . . . . 6 3 ∈ ℝ+
4 rpdivcl 12402 . . . . . 6 ((𝑟 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑟 / 3) ∈ ℝ+)
53, 4mpan2 690 . . . . 5 (𝑟 ∈ ℝ+ → (𝑟 / 3) ∈ ℝ+)
6 2re 11699 . . . . . 6 2 ∈ ℝ
7 1lt2 11796 . . . . . 6 1 < 2
8 expnlbnd 13590 . . . . . 6 (((𝑟 / 3) ∈ ℝ+ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3))
96, 7, 8mp3an23 1450 . . . . 5 ((𝑟 / 3) ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3))
105, 9syl 17 . . . 4 (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3))
11 2nn 11698 . . . . . . . . . . 11 2 ∈ ℕ
12 nnnn0 11892 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
13 nnexpcl 13438 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
1411, 12, 13sylancr 590 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2↑𝑘) ∈ ℕ)
1514nnrpd 12417 . . . . . . . . 9 (𝑘 ∈ ℕ → (2↑𝑘) ∈ ℝ+)
16 rpcn 12387 . . . . . . . . . 10 ((2↑𝑘) ∈ ℝ+ → (2↑𝑘) ∈ ℂ)
17 rpne0 12393 . . . . . . . . . 10 ((2↑𝑘) ∈ ℝ+ → (2↑𝑘) ≠ 0)
18 3cn 11706 . . . . . . . . . . 11 3 ∈ ℂ
19 divrec 11303 . . . . . . . . . . 11 ((3 ∈ ℂ ∧ (2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘))))
2018, 19mp3an1 1445 . . . . . . . . . 10 (((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘))))
2116, 17, 20syl2anc 587 . . . . . . . . 9 ((2↑𝑘) ∈ ℝ+ → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘))))
2215, 21syl 17 . . . . . . . 8 (𝑘 ∈ ℕ → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘))))
2322adantl 485 . . . . . . 7 ((𝑟 ∈ ℝ+𝑘 ∈ ℕ) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘))))
2423breq1d 5052 . . . . . 6 ((𝑟 ∈ ℝ+𝑘 ∈ ℕ) → ((3 / (2↑𝑘)) < 𝑟 ↔ (3 · (1 / (2↑𝑘))) < 𝑟))
2514nnrecred 11676 . . . . . . 7 (𝑘 ∈ ℕ → (1 / (2↑𝑘)) ∈ ℝ)
26 rpre 12385 . . . . . . 7 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
271, 2pm3.2i 474 . . . . . . . 8 (3 ∈ ℝ ∧ 0 < 3)
28 ltmuldiv2 11503 . . . . . . . 8 (((1 / (2↑𝑘)) ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3)))
2927, 28mp3an3 1447 . . . . . . 7 (((1 / (2↑𝑘)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3)))
3025, 26, 29syl2anr 599 . . . . . 6 ((𝑟 ∈ ℝ+𝑘 ∈ ℕ) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3)))
3124, 30bitrd 282 . . . . 5 ((𝑟 ∈ ℝ+𝑘 ∈ ℕ) → ((3 / (2↑𝑘)) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3)))
3231rexbidva 3282 . . . 4 (𝑟 ∈ ℝ+ → (∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟 ↔ ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3)))
3310, 32mpbird 260 . . 3 (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟)
34 fveq2 6652 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑆𝑛) = (𝑆𝑘))
35 oveq2 7148 . . . . . . . . . 10 (𝑛 = 𝑘 → (2↑𝑛) = (2↑𝑘))
3635oveq2d 7156 . . . . . . . . 9 (𝑛 = 𝑘 → (3 / (2↑𝑛)) = (3 / (2↑𝑘)))
3734, 36opeq12d 4786 . . . . . . . 8 (𝑛 = 𝑘 → ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ = ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩)
38 heibor.12 . . . . . . . 8 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
39 opex 5333 . . . . . . . 8 ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩ ∈ V
4037, 38, 39fvmpt 6750 . . . . . . 7 (𝑘 ∈ ℕ → (𝑀𝑘) = ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩)
4140fveq2d 6656 . . . . . 6 (𝑘 ∈ ℕ → (2nd ‘(𝑀𝑘)) = (2nd ‘⟨(𝑆𝑘), (3 / (2↑𝑘))⟩))
42 fvex 6665 . . . . . . 7 (𝑆𝑘) ∈ V
43 ovex 7173 . . . . . . 7 (3 / (2↑𝑘)) ∈ V
4442, 43op2nd 7684 . . . . . 6 (2nd ‘⟨(𝑆𝑘), (3 / (2↑𝑘))⟩) = (3 / (2↑𝑘))
4541, 44syl6eq 2873 . . . . 5 (𝑘 ∈ ℕ → (2nd ‘(𝑀𝑘)) = (3 / (2↑𝑘)))
4645breq1d 5052 . . . 4 (𝑘 ∈ ℕ → ((2nd ‘(𝑀𝑘)) < 𝑟 ↔ (3 / (2↑𝑘)) < 𝑟))
4746rexbiia 3234 . . 3 (∃𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟 ↔ ∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟)
4833, 47sylibr 237 . 2 (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟)
4948rgen 3140 1 𝑟 ∈ ℝ+𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2114  {cab 2800  wne 3011  wral 3130  wrex 3131  cin 3907  wss 3908  ifcif 4439  𝒫 cpw 4511  cop 4545   cuni 4813   ciun 4894   class class class wbr 5042  {copab 5104  cmpt 5122  wf 6330  cfv 6334  (class class class)co 7140  cmpo 7142  2nd c2nd 7674  Fincfn 8496  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  3c3 11681  0cn0 11885  +crp 12377  seqcseq 13364  cexp 13425  ballcbl 20076  MetOpencmopn 20079  CMetccmet 23856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13157  df-seq 13365  df-exp 13426
This theorem is referenced by:  heiborlem8  35214  heiborlem9  35215
  Copyright terms: Public domain W3C validator