![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > heiborlem7 | Structured version Visualization version GIF version |
Description: Lemma for heibor 37781. Since the sizes of the balls decrease exponentially, the sequence converges to zero. (Contributed by Jeff Madsen, 23-Jan-2014.) |
Ref | Expression |
---|---|
heibor.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
heibor.3 | ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} |
heibor.4 | ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} |
heibor.5 | ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) |
heibor.6 | ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
heibor.7 | ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) |
heibor.8 | ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) |
heibor.9 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) |
heibor.10 | ⊢ (𝜑 → 𝐶𝐺0) |
heibor.11 | ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) |
heibor.12 | ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) |
Ref | Expression |
---|---|
heiborlem7 | ⊢ ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 12373 | . . . . . . 7 ⊢ 3 ∈ ℝ | |
2 | 3pos 12398 | . . . . . . 7 ⊢ 0 < 3 | |
3 | 1, 2 | elrpii 13060 | . . . . . 6 ⊢ 3 ∈ ℝ+ |
4 | rpdivcl 13082 | . . . . . 6 ⊢ ((𝑟 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑟 / 3) ∈ ℝ+) | |
5 | 3, 4 | mpan2 690 | . . . . 5 ⊢ (𝑟 ∈ ℝ+ → (𝑟 / 3) ∈ ℝ+) |
6 | 2re 12367 | . . . . . 6 ⊢ 2 ∈ ℝ | |
7 | 1lt2 12464 | . . . . . 6 ⊢ 1 < 2 | |
8 | expnlbnd 14282 | . . . . . 6 ⊢ (((𝑟 / 3) ∈ ℝ+ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3)) | |
9 | 6, 7, 8 | mp3an23 1453 | . . . . 5 ⊢ ((𝑟 / 3) ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3)) |
10 | 5, 9 | syl 17 | . . . 4 ⊢ (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3)) |
11 | 2nn 12366 | . . . . . . . . . . 11 ⊢ 2 ∈ ℕ | |
12 | nnnn0 12560 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
13 | nnexpcl 14125 | . . . . . . . . . . 11 ⊢ ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ) | |
14 | 11, 12, 13 | sylancr 586 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ → (2↑𝑘) ∈ ℕ) |
15 | 14 | nnrpd 13097 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℕ → (2↑𝑘) ∈ ℝ+) |
16 | rpcn 13067 | . . . . . . . . . 10 ⊢ ((2↑𝑘) ∈ ℝ+ → (2↑𝑘) ∈ ℂ) | |
17 | rpne0 13073 | . . . . . . . . . 10 ⊢ ((2↑𝑘) ∈ ℝ+ → (2↑𝑘) ≠ 0) | |
18 | 3cn 12374 | . . . . . . . . . . 11 ⊢ 3 ∈ ℂ | |
19 | divrec 11965 | . . . . . . . . . . 11 ⊢ ((3 ∈ ℂ ∧ (2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘)))) | |
20 | 18, 19 | mp3an1 1448 | . . . . . . . . . 10 ⊢ (((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘)))) |
21 | 16, 17, 20 | syl2anc 583 | . . . . . . . . 9 ⊢ ((2↑𝑘) ∈ ℝ+ → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘)))) |
22 | 15, 21 | syl 17 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘)))) |
23 | 22 | adantl 481 | . . . . . . 7 ⊢ ((𝑟 ∈ ℝ+ ∧ 𝑘 ∈ ℕ) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘)))) |
24 | 23 | breq1d 5176 | . . . . . 6 ⊢ ((𝑟 ∈ ℝ+ ∧ 𝑘 ∈ ℕ) → ((3 / (2↑𝑘)) < 𝑟 ↔ (3 · (1 / (2↑𝑘))) < 𝑟)) |
25 | 14 | nnrecred 12344 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ → (1 / (2↑𝑘)) ∈ ℝ) |
26 | rpre 13065 | . . . . . . 7 ⊢ (𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ) | |
27 | 1, 2 | pm3.2i 470 | . . . . . . . 8 ⊢ (3 ∈ ℝ ∧ 0 < 3) |
28 | ltmuldiv2 12169 | . . . . . . . 8 ⊢ (((1 / (2↑𝑘)) ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3))) | |
29 | 27, 28 | mp3an3 1450 | . . . . . . 7 ⊢ (((1 / (2↑𝑘)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3))) |
30 | 25, 26, 29 | syl2anr 596 | . . . . . 6 ⊢ ((𝑟 ∈ ℝ+ ∧ 𝑘 ∈ ℕ) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3))) |
31 | 24, 30 | bitrd 279 | . . . . 5 ⊢ ((𝑟 ∈ ℝ+ ∧ 𝑘 ∈ ℕ) → ((3 / (2↑𝑘)) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3))) |
32 | 31 | rexbidva 3183 | . . . 4 ⊢ (𝑟 ∈ ℝ+ → (∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟 ↔ ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3))) |
33 | 10, 32 | mpbird 257 | . . 3 ⊢ (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟) |
34 | fveq2 6920 | . . . . . . . . 9 ⊢ (𝑛 = 𝑘 → (𝑆‘𝑛) = (𝑆‘𝑘)) | |
35 | oveq2 7456 | . . . . . . . . . 10 ⊢ (𝑛 = 𝑘 → (2↑𝑛) = (2↑𝑘)) | |
36 | 35 | oveq2d 7464 | . . . . . . . . 9 ⊢ (𝑛 = 𝑘 → (3 / (2↑𝑛)) = (3 / (2↑𝑘))) |
37 | 34, 36 | opeq12d 4905 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 = 〈(𝑆‘𝑘), (3 / (2↑𝑘))〉) |
38 | heibor.12 | . . . . . . . 8 ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) | |
39 | opex 5484 | . . . . . . . 8 ⊢ 〈(𝑆‘𝑘), (3 / (2↑𝑘))〉 ∈ V | |
40 | 37, 38, 39 | fvmpt 7029 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ → (𝑀‘𝑘) = 〈(𝑆‘𝑘), (3 / (2↑𝑘))〉) |
41 | 40 | fveq2d 6924 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → (2nd ‘(𝑀‘𝑘)) = (2nd ‘〈(𝑆‘𝑘), (3 / (2↑𝑘))〉)) |
42 | fvex 6933 | . . . . . . 7 ⊢ (𝑆‘𝑘) ∈ V | |
43 | ovex 7481 | . . . . . . 7 ⊢ (3 / (2↑𝑘)) ∈ V | |
44 | 42, 43 | op2nd 8039 | . . . . . 6 ⊢ (2nd ‘〈(𝑆‘𝑘), (3 / (2↑𝑘))〉) = (3 / (2↑𝑘)) |
45 | 41, 44 | eqtrdi 2796 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (2nd ‘(𝑀‘𝑘)) = (3 / (2↑𝑘))) |
46 | 45 | breq1d 5176 | . . . 4 ⊢ (𝑘 ∈ ℕ → ((2nd ‘(𝑀‘𝑘)) < 𝑟 ↔ (3 / (2↑𝑘)) < 𝑟)) |
47 | 46 | rexbiia 3098 | . . 3 ⊢ (∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟 ↔ ∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟) |
48 | 33, 47 | sylibr 234 | . 2 ⊢ (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟) |
49 | 48 | rgen 3069 | 1 ⊢ ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {cab 2717 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 ∩ cin 3975 ⊆ wss 3976 ifcif 4548 𝒫 cpw 4622 〈cop 4654 ∪ cuni 4931 ∪ ciun 5015 class class class wbr 5166 {copab 5228 ↦ cmpt 5249 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 2nd c2nd 8029 Fincfn 9003 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 < clt 11324 − cmin 11520 / cdiv 11947 ℕcn 12293 2c2 12348 3c3 12349 ℕ0cn0 12553 ℝ+crp 13057 seqcseq 14052 ↑cexp 14112 ballcbl 21374 MetOpencmopn 21377 CMetccmet 25307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fl 13843 df-seq 14053 df-exp 14113 |
This theorem is referenced by: heiborlem8 37778 heiborlem9 37779 |
Copyright terms: Public domain | W3C validator |