Proof of Theorem pntlemg
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | pntlem1.m | . . 3
⊢ 𝑀 =
((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) | 
| 2 |  | pntlem1.x | . . . . . . . . 9
⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) | 
| 3 | 2 | simpld 494 | . . . . . . . 8
⊢ (𝜑 → 𝑋 ∈
ℝ+) | 
| 4 | 3 | rpred 13078 | . . . . . . 7
⊢ (𝜑 → 𝑋 ∈ ℝ) | 
| 5 |  | 1red 11263 | . . . . . . . 8
⊢ (𝜑 → 1 ∈
ℝ) | 
| 6 |  | pntlem1.y | . . . . . . . . . 10
⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤
𝑌)) | 
| 7 | 6 | simpld 494 | . . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈
ℝ+) | 
| 8 | 7 | rpred 13078 | . . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ ℝ) | 
| 9 | 6 | simprd 495 | . . . . . . . 8
⊢ (𝜑 → 1 ≤ 𝑌) | 
| 10 | 2 | simprd 495 | . . . . . . . 8
⊢ (𝜑 → 𝑌 < 𝑋) | 
| 11 | 5, 8, 4, 9, 10 | lelttrd 11420 | . . . . . . 7
⊢ (𝜑 → 1 < 𝑋) | 
| 12 | 4, 11 | rplogcld 26672 | . . . . . 6
⊢ (𝜑 → (log‘𝑋) ∈
ℝ+) | 
| 13 |  | pntlem1.r | . . . . . . . . . 10
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦
((ψ‘𝑎) −
𝑎)) | 
| 14 |  | pntlem1.a | . . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈
ℝ+) | 
| 15 |  | pntlem1.b | . . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈
ℝ+) | 
| 16 |  | pntlem1.l | . . . . . . . . . 10
⊢ (𝜑 → 𝐿 ∈ (0(,)1)) | 
| 17 |  | pntlem1.d | . . . . . . . . . 10
⊢ 𝐷 = (𝐴 + 1) | 
| 18 |  | pntlem1.f | . . . . . . . . . 10
⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) | 
| 19 |  | pntlem1.u | . . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈
ℝ+) | 
| 20 |  | pntlem1.u2 | . . . . . . . . . 10
⊢ (𝜑 → 𝑈 ≤ 𝐴) | 
| 21 |  | pntlem1.e | . . . . . . . . . 10
⊢ 𝐸 = (𝑈 / 𝐷) | 
| 22 |  | pntlem1.k | . . . . . . . . . 10
⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) | 
| 23 | 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 | pntlemc 27640 | . . . . . . . . 9
⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+
∧ (𝐸 ∈ (0(,)1)
∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈
ℝ+))) | 
| 24 | 23 | simp2d 1143 | . . . . . . . 8
⊢ (𝜑 → 𝐾 ∈
ℝ+) | 
| 25 | 24 | rpred 13078 | . . . . . . 7
⊢ (𝜑 → 𝐾 ∈ ℝ) | 
| 26 | 23 | simp3d 1144 | . . . . . . . 8
⊢ (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈
ℝ+)) | 
| 27 | 26 | simp2d 1143 | . . . . . . 7
⊢ (𝜑 → 1 < 𝐾) | 
| 28 | 25, 27 | rplogcld 26672 | . . . . . 6
⊢ (𝜑 → (log‘𝐾) ∈
ℝ+) | 
| 29 | 12, 28 | rpdivcld 13095 | . . . . 5
⊢ (𝜑 → ((log‘𝑋) / (log‘𝐾)) ∈
ℝ+) | 
| 30 | 29 | rprege0d 13085 | . . . 4
⊢ (𝜑 → (((log‘𝑋) / (log‘𝐾)) ∈ ℝ ∧ 0 ≤
((log‘𝑋) /
(log‘𝐾)))) | 
| 31 |  | flge0nn0 13861 | . . . 4
⊢
((((log‘𝑋) /
(log‘𝐾)) ∈
ℝ ∧ 0 ≤ ((log‘𝑋) / (log‘𝐾))) → (⌊‘((log‘𝑋) / (log‘𝐾))) ∈
ℕ0) | 
| 32 |  | nn0p1nn 12567 | . . . 4
⊢
((⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℕ0 →
((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) ∈ ℕ) | 
| 33 | 30, 31, 32 | 3syl 18 | . . 3
⊢ (𝜑 →
((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) ∈ ℕ) | 
| 34 | 1, 33 | eqeltrid 2844 | . 2
⊢ (𝜑 → 𝑀 ∈ ℕ) | 
| 35 | 34 | nnzd 12642 | . . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 36 |  | pntlem1.n | . . . 4
⊢ 𝑁 =
(⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) | 
| 37 |  | pntlem1.c | . . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈
ℝ+) | 
| 38 |  | pntlem1.w | . . . . . . . . . 10
⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) | 
| 39 |  | pntlem1.z | . . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) | 
| 40 | 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 6, 2, 37, 38, 39 | pntlemb 27642 | . . . . . . . . 9
⊢ (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 <
𝑍 ∧ e ≤
(√‘𝑍) ∧
(√‘𝑍) ≤
(𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))))) | 
| 41 | 40 | simp1d 1142 | . . . . . . . 8
⊢ (𝜑 → 𝑍 ∈
ℝ+) | 
| 42 | 41 | relogcld 26666 | . . . . . . 7
⊢ (𝜑 → (log‘𝑍) ∈
ℝ) | 
| 43 | 42, 28 | rerpdivcld 13109 | . . . . . 6
⊢ (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ) | 
| 44 | 43 | rehalfcld 12515 | . . . . 5
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℝ) | 
| 45 | 44 | flcld 13839 | . . . 4
⊢ (𝜑 →
(⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) ∈ ℤ) | 
| 46 | 36, 45 | eqeltrid 2844 | . . 3
⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| 47 |  | 0red 11265 | . . . . 5
⊢ (𝜑 → 0 ∈
ℝ) | 
| 48 |  | 4nn 12350 | . . . . . 6
⊢ 4 ∈
ℕ | 
| 49 |  | nndivre 12308 | . . . . . 6
⊢
((((log‘𝑍) /
(log‘𝐾)) ∈
ℝ ∧ 4 ∈ ℕ) → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ) | 
| 50 | 43, 48, 49 | sylancl 586 | . . . . 5
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ) | 
| 51 | 46 | zred 12724 | . . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℝ) | 
| 52 | 34 | nnred 12282 | . . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℝ) | 
| 53 | 51, 52 | resubcld 11692 | . . . . 5
⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℝ) | 
| 54 | 41 | rpred 13078 | . . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ ℝ) | 
| 55 | 40 | simp2d 1143 | . . . . . . . . . 10
⊢ (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌))) | 
| 56 | 55 | simp1d 1142 | . . . . . . . . 9
⊢ (𝜑 → 1 < 𝑍) | 
| 57 | 54, 56 | rplogcld 26672 | . . . . . . . 8
⊢ (𝜑 → (log‘𝑍) ∈
ℝ+) | 
| 58 | 57, 28 | rpdivcld 13095 | . . . . . . 7
⊢ (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈
ℝ+) | 
| 59 |  | 4re 12351 | . . . . . . . 8
⊢ 4 ∈
ℝ | 
| 60 |  | 4pos 12374 | . . . . . . . 8
⊢ 0 <
4 | 
| 61 | 59, 60 | elrpii 13038 | . . . . . . 7
⊢ 4 ∈
ℝ+ | 
| 62 |  | rpdivcl 13061 | . . . . . . 7
⊢
((((log‘𝑍) /
(log‘𝐾)) ∈
ℝ+ ∧ 4 ∈ ℝ+) →
(((log‘𝑍) /
(log‘𝐾)) / 4) ∈
ℝ+) | 
| 63 | 58, 61, 62 | sylancl 586 | . . . . . 6
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈
ℝ+) | 
| 64 | 63 | rpge0d 13082 | . . . . 5
⊢ (𝜑 → 0 ≤ (((log‘𝑍) / (log‘𝐾)) / 4)) | 
| 65 | 50 | recnd 11290 | . . . . . . . . 9
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℂ) | 
| 66 | 34 | nncnd 12283 | . . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℂ) | 
| 67 |  | 1cnd 11257 | . . . . . . . . 9
⊢ (𝜑 → 1 ∈
ℂ) | 
| 68 | 65, 66, 67 | addassd 11284 | . . . . . . . 8
⊢ (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) + 1) = ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1))) | 
| 69 | 52, 5 | readdcld 11291 | . . . . . . . . . 10
⊢ (𝜑 → (𝑀 + 1) ∈ ℝ) | 
| 70 | 50, 69 | readdcld 11291 | . . . . . . . . 9
⊢ (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ∈ ℝ) | 
| 71 |  | peano2re 11435 | . . . . . . . . . 10
⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈
ℝ) | 
| 72 | 51, 71 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → (𝑁 + 1) ∈ ℝ) | 
| 73 | 29 | rpred 13078 | . . . . . . . . . . . . 13
⊢ (𝜑 → ((log‘𝑋) / (log‘𝐾)) ∈ ℝ) | 
| 74 |  | 2re 12341 | . . . . . . . . . . . . . 14
⊢ 2 ∈
ℝ | 
| 75 | 74 | a1i 11 | . . . . . . . . . . . . 13
⊢ (𝜑 → 2 ∈
ℝ) | 
| 76 | 73, 75 | readdcld 11291 | . . . . . . . . . . . 12
⊢ (𝜑 → (((log‘𝑋) / (log‘𝐾)) + 2) ∈ ℝ) | 
| 77 |  | reflcl 13837 | . . . . . . . . . . . . . . . . 17
⊢
(((log‘𝑋) /
(log‘𝐾)) ∈
ℝ → (⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℝ) | 
| 78 | 73, 77 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 →
(⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℝ) | 
| 79 | 78 | recnd 11290 | . . . . . . . . . . . . . . 15
⊢ (𝜑 →
(⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℂ) | 
| 80 | 79, 67, 67 | addassd 11284 | . . . . . . . . . . . . . 14
⊢ (𝜑 →
(((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) + 1) =
((⌊‘((log‘𝑋) / (log‘𝐾))) + (1 + 1))) | 
| 81 | 1 | oveq1i 7442 | . . . . . . . . . . . . . 14
⊢ (𝑀 + 1) =
(((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) + 1) | 
| 82 |  | df-2 12330 | . . . . . . . . . . . . . . 15
⊢ 2 = (1 +
1) | 
| 83 | 82 | oveq2i 7443 | . . . . . . . . . . . . . 14
⊢
((⌊‘((log‘𝑋) / (log‘𝐾))) + 2) = ((⌊‘((log‘𝑋) / (log‘𝐾))) + (1 + 1)) | 
| 84 | 80, 81, 83 | 3eqtr4g 2801 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝑀 + 1) = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 2)) | 
| 85 |  | flle 13840 | . . . . . . . . . . . . . . 15
⊢
(((log‘𝑋) /
(log‘𝐾)) ∈
ℝ → (⌊‘((log‘𝑋) / (log‘𝐾))) ≤ ((log‘𝑋) / (log‘𝐾))) | 
| 86 | 73, 85 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝜑 →
(⌊‘((log‘𝑋) / (log‘𝐾))) ≤ ((log‘𝑋) / (log‘𝐾))) | 
| 87 | 78, 73, 75, 86 | leadd1dd 11878 | . . . . . . . . . . . . 13
⊢ (𝜑 →
((⌊‘((log‘𝑋) / (log‘𝐾))) + 2) ≤ (((log‘𝑋) / (log‘𝐾)) + 2)) | 
| 88 | 84, 87 | eqbrtrd 5164 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑀 + 1) ≤ (((log‘𝑋) / (log‘𝐾)) + 2)) | 
| 89 | 40 | simp3d 1144 | . . . . . . . . . . . . 13
⊢ (𝜑 → ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) | 
| 90 | 89 | simp2d 1143 | . . . . . . . . . . . 12
⊢ (𝜑 → (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4)) | 
| 91 | 69, 76, 50, 88, 90 | letrd 11419 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑀 + 1) ≤ (((log‘𝑍) / (log‘𝐾)) / 4)) | 
| 92 | 69, 50, 50, 91 | leadd2dd 11879 | . . . . . . . . . 10
⊢ (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ≤ ((((log‘𝑍) / (log‘𝐾)) / 4) + (((log‘𝑍) / (log‘𝐾)) / 4))) | 
| 93 | 43 | recnd 11290 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℂ) | 
| 94 |  | 2cnd 12345 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 2 ∈
ℂ) | 
| 95 |  | 2ne0 12371 | . . . . . . . . . . . . . . 15
⊢ 2 ≠
0 | 
| 96 | 95 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 2 ≠ 0) | 
| 97 | 93, 94, 94, 96, 96 | divdiv1d 12075 | . . . . . . . . . . . . 13
⊢ (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 2) / 2) = (((log‘𝑍) / (log‘𝐾)) / (2 · 2))) | 
| 98 |  | 2t2e4 12431 | . . . . . . . . . . . . . 14
⊢ (2
· 2) = 4 | 
| 99 | 98 | oveq2i 7443 | . . . . . . . . . . . . 13
⊢
(((log‘𝑍) /
(log‘𝐾)) / (2
· 2)) = (((log‘𝑍) / (log‘𝐾)) / 4) | 
| 100 | 97, 99 | eqtrdi 2792 | . . . . . . . . . . . 12
⊢ (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 2) / 2) = (((log‘𝑍) / (log‘𝐾)) / 4)) | 
| 101 | 100 | oveq2d 7448 | . . . . . . . . . . 11
⊢ (𝜑 → (2 ·
((((log‘𝑍) /
(log‘𝐾)) / 2) / 2)) =
(2 · (((log‘𝑍)
/ (log‘𝐾)) /
4))) | 
| 102 | 44 | recnd 11290 | . . . . . . . . . . . 12
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℂ) | 
| 103 | 102, 94, 96 | divcan2d 12046 | . . . . . . . . . . 11
⊢ (𝜑 → (2 ·
((((log‘𝑍) /
(log‘𝐾)) / 2) / 2)) =
(((log‘𝑍) /
(log‘𝐾)) /
2)) | 
| 104 | 65 | 2timesd 12511 | . . . . . . . . . . 11
⊢ (𝜑 → (2 ·
(((log‘𝑍) /
(log‘𝐾)) / 4)) =
((((log‘𝑍) /
(log‘𝐾)) / 4) +
(((log‘𝑍) /
(log‘𝐾)) /
4))) | 
| 105 | 101, 103,
104 | 3eqtr3d 2784 | . . . . . . . . . 10
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) = ((((log‘𝑍) / (log‘𝐾)) / 4) + (((log‘𝑍) / (log‘𝐾)) / 4))) | 
| 106 | 92, 105 | breqtrrd 5170 | . . . . . . . . 9
⊢ (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ≤ (((log‘𝑍) / (log‘𝐾)) / 2)) | 
| 107 |  | fllep1 13842 | . . . . . . . . . . 11
⊢
((((log‘𝑍) /
(log‘𝐾)) / 2) ∈
ℝ → (((log‘𝑍) / (log‘𝐾)) / 2) ≤
((⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) + 1)) | 
| 108 | 44, 107 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ≤
((⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) + 1)) | 
| 109 | 36 | oveq1i 7442 | . . . . . . . . . 10
⊢ (𝑁 + 1) =
((⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) + 1) | 
| 110 | 108, 109 | breqtrrdi 5184 | . . . . . . . . 9
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ≤ (𝑁 + 1)) | 
| 111 | 70, 44, 72, 106, 110 | letrd 11419 | . . . . . . . 8
⊢ (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ≤ (𝑁 + 1)) | 
| 112 | 68, 111 | eqbrtrd 5164 | . . . . . . 7
⊢ (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) + 1) ≤ (𝑁 + 1)) | 
| 113 | 50, 52 | readdcld 11291 | . . . . . . . 8
⊢ (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ∈ ℝ) | 
| 114 | 113, 51, 5 | leadd1d 11858 | . . . . . . 7
⊢ (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁 ↔ (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) + 1) ≤ (𝑁 + 1))) | 
| 115 | 112, 114 | mpbird 257 | . . . . . 6
⊢ (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁) | 
| 116 |  | leaddsub 11740 | . . . . . . 7
⊢
(((((log‘𝑍) /
(log‘𝐾)) / 4) ∈
ℝ ∧ 𝑀 ∈
ℝ ∧ 𝑁 ∈
ℝ) → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁 ↔ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁 − 𝑀))) | 
| 117 | 50, 52, 51, 116 | syl3anc 1372 | . . . . . 6
⊢ (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁 ↔ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁 − 𝑀))) | 
| 118 | 115, 117 | mpbid 232 | . . . . 5
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁 − 𝑀)) | 
| 119 | 47, 50, 53, 64, 118 | letrd 11419 | . . . 4
⊢ (𝜑 → 0 ≤ (𝑁 − 𝑀)) | 
| 120 | 51, 52 | subge0d 11854 | . . . 4
⊢ (𝜑 → (0 ≤ (𝑁 − 𝑀) ↔ 𝑀 ≤ 𝑁)) | 
| 121 | 119, 120 | mpbid 232 | . . 3
⊢ (𝜑 → 𝑀 ≤ 𝑁) | 
| 122 |  | eluz2 12885 | . . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | 
| 123 | 35, 46, 121, 122 | syl3anbrc 1343 | . 2
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | 
| 124 | 34, 123, 118 | 3jca 1128 | 1
⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁 − 𝑀))) |