MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemg Structured version   Visualization version   GIF version

Theorem pntlemg 26946
Description: Lemma for pnt 26962. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑀 is j^* and 𝑁 is ĵ. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
Assertion
Ref Expression
pntlemg (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
Distinct variable group:   𝐸,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝐵(𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑅(𝑎)   𝑈(𝑎)   𝐹(𝑎)   𝐾(𝑎)   𝐿(𝑎)   𝑀(𝑎)   𝑁(𝑎)   𝑊(𝑎)   𝑋(𝑎)   𝑌(𝑎)   𝑍(𝑎)

Proof of Theorem pntlemg
StepHypRef Expression
1 pntlem1.m . . 3 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
2 pntlem1.x . . . . . . . . 9 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
32simpld 495 . . . . . . . 8 (𝜑𝑋 ∈ ℝ+)
43rpred 12957 . . . . . . 7 (𝜑𝑋 ∈ ℝ)
5 1red 11156 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
6 pntlem1.y . . . . . . . . . 10 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
76simpld 495 . . . . . . . . 9 (𝜑𝑌 ∈ ℝ+)
87rpred 12957 . . . . . . . 8 (𝜑𝑌 ∈ ℝ)
96simprd 496 . . . . . . . 8 (𝜑 → 1 ≤ 𝑌)
102simprd 496 . . . . . . . 8 (𝜑𝑌 < 𝑋)
115, 8, 4, 9, 10lelttrd 11313 . . . . . . 7 (𝜑 → 1 < 𝑋)
124, 11rplogcld 25984 . . . . . 6 (𝜑 → (log‘𝑋) ∈ ℝ+)
13 pntlem1.r . . . . . . . . . 10 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
14 pntlem1.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ+)
15 pntlem1.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ+)
16 pntlem1.l . . . . . . . . . 10 (𝜑𝐿 ∈ (0(,)1))
17 pntlem1.d . . . . . . . . . 10 𝐷 = (𝐴 + 1)
18 pntlem1.f . . . . . . . . . 10 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
19 pntlem1.u . . . . . . . . . 10 (𝜑𝑈 ∈ ℝ+)
20 pntlem1.u2 . . . . . . . . . 10 (𝜑𝑈𝐴)
21 pntlem1.e . . . . . . . . . 10 𝐸 = (𝑈 / 𝐷)
22 pntlem1.k . . . . . . . . . 10 𝐾 = (exp‘(𝐵 / 𝐸))
2313, 14, 15, 16, 17, 18, 19, 20, 21, 22pntlemc 26943 . . . . . . . . 9 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
2423simp2d 1143 . . . . . . . 8 (𝜑𝐾 ∈ ℝ+)
2524rpred 12957 . . . . . . 7 (𝜑𝐾 ∈ ℝ)
2623simp3d 1144 . . . . . . . 8 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
2726simp2d 1143 . . . . . . 7 (𝜑 → 1 < 𝐾)
2825, 27rplogcld 25984 . . . . . 6 (𝜑 → (log‘𝐾) ∈ ℝ+)
2912, 28rpdivcld 12974 . . . . 5 (𝜑 → ((log‘𝑋) / (log‘𝐾)) ∈ ℝ+)
3029rprege0d 12964 . . . 4 (𝜑 → (((log‘𝑋) / (log‘𝐾)) ∈ ℝ ∧ 0 ≤ ((log‘𝑋) / (log‘𝐾))))
31 flge0nn0 13725 . . . 4 ((((log‘𝑋) / (log‘𝐾)) ∈ ℝ ∧ 0 ≤ ((log‘𝑋) / (log‘𝐾))) → (⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℕ0)
32 nn0p1nn 12452 . . . 4 ((⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℕ0 → ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) ∈ ℕ)
3330, 31, 323syl 18 . . 3 (𝜑 → ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) ∈ ℕ)
341, 33eqeltrid 2842 . 2 (𝜑𝑀 ∈ ℕ)
3534nnzd 12526 . . 3 (𝜑𝑀 ∈ ℤ)
36 pntlem1.n . . . 4 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
37 pntlem1.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
38 pntlem1.w . . . . . . . . . 10 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
39 pntlem1.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝑊[,)+∞))
4013, 14, 15, 16, 17, 18, 19, 20, 21, 22, 6, 2, 37, 38, 39pntlemb 26945 . . . . . . . . 9 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
4140simp1d 1142 . . . . . . . 8 (𝜑𝑍 ∈ ℝ+)
4241relogcld 25978 . . . . . . 7 (𝜑 → (log‘𝑍) ∈ ℝ)
4342, 28rerpdivcld 12988 . . . . . 6 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ)
4443rehalfcld 12400 . . . . 5 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℝ)
4544flcld 13703 . . . 4 (𝜑 → (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) ∈ ℤ)
4636, 45eqeltrid 2842 . . 3 (𝜑𝑁 ∈ ℤ)
47 0red 11158 . . . . 5 (𝜑 → 0 ∈ ℝ)
48 4nn 12236 . . . . . 6 4 ∈ ℕ
49 nndivre 12194 . . . . . 6 ((((log‘𝑍) / (log‘𝐾)) ∈ ℝ ∧ 4 ∈ ℕ) → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ)
5043, 48, 49sylancl 586 . . . . 5 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ)
5146zred 12607 . . . . . 6 (𝜑𝑁 ∈ ℝ)
5234nnred 12168 . . . . . 6 (𝜑𝑀 ∈ ℝ)
5351, 52resubcld 11583 . . . . 5 (𝜑 → (𝑁𝑀) ∈ ℝ)
5441rpred 12957 . . . . . . . . 9 (𝜑𝑍 ∈ ℝ)
5540simp2d 1143 . . . . . . . . . 10 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
5655simp1d 1142 . . . . . . . . 9 (𝜑 → 1 < 𝑍)
5754, 56rplogcld 25984 . . . . . . . 8 (𝜑 → (log‘𝑍) ∈ ℝ+)
5857, 28rpdivcld 12974 . . . . . . 7 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ+)
59 4re 12237 . . . . . . . 8 4 ∈ ℝ
60 4pos 12260 . . . . . . . 8 0 < 4
6159, 60elrpii 12918 . . . . . . 7 4 ∈ ℝ+
62 rpdivcl 12940 . . . . . . 7 ((((log‘𝑍) / (log‘𝐾)) ∈ ℝ+ ∧ 4 ∈ ℝ+) → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ+)
6358, 61, 62sylancl 586 . . . . . 6 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ+)
6463rpge0d 12961 . . . . 5 (𝜑 → 0 ≤ (((log‘𝑍) / (log‘𝐾)) / 4))
6550recnd 11183 . . . . . . . . 9 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℂ)
6634nncnd 12169 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
67 1cnd 11150 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
6865, 66, 67addassd 11177 . . . . . . . 8 (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) + 1) = ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)))
6952, 5readdcld 11184 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ ℝ)
7050, 69readdcld 11184 . . . . . . . . 9 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ∈ ℝ)
71 peano2re 11328 . . . . . . . . . 10 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
7251, 71syl 17 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℝ)
7329rpred 12957 . . . . . . . . . . . . 13 (𝜑 → ((log‘𝑋) / (log‘𝐾)) ∈ ℝ)
74 2re 12227 . . . . . . . . . . . . . 14 2 ∈ ℝ
7574a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℝ)
7673, 75readdcld 11184 . . . . . . . . . . . 12 (𝜑 → (((log‘𝑋) / (log‘𝐾)) + 2) ∈ ℝ)
77 reflcl 13701 . . . . . . . . . . . . . . . . 17 (((log‘𝑋) / (log‘𝐾)) ∈ ℝ → (⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℝ)
7873, 77syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℝ)
7978recnd 11183 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℂ)
8079, 67, 67addassd 11177 . . . . . . . . . . . . . 14 (𝜑 → (((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) + 1) = ((⌊‘((log‘𝑋) / (log‘𝐾))) + (1 + 1)))
811oveq1i 7367 . . . . . . . . . . . . . 14 (𝑀 + 1) = (((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) + 1)
82 df-2 12216 . . . . . . . . . . . . . . 15 2 = (1 + 1)
8382oveq2i 7368 . . . . . . . . . . . . . 14 ((⌊‘((log‘𝑋) / (log‘𝐾))) + 2) = ((⌊‘((log‘𝑋) / (log‘𝐾))) + (1 + 1))
8480, 81, 833eqtr4g 2801 . . . . . . . . . . . . 13 (𝜑 → (𝑀 + 1) = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 2))
85 flle 13704 . . . . . . . . . . . . . . 15 (((log‘𝑋) / (log‘𝐾)) ∈ ℝ → (⌊‘((log‘𝑋) / (log‘𝐾))) ≤ ((log‘𝑋) / (log‘𝐾)))
8673, 85syl 17 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘((log‘𝑋) / (log‘𝐾))) ≤ ((log‘𝑋) / (log‘𝐾)))
8778, 73, 75, 86leadd1dd 11769 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘((log‘𝑋) / (log‘𝐾))) + 2) ≤ (((log‘𝑋) / (log‘𝐾)) + 2))
8884, 87eqbrtrd 5127 . . . . . . . . . . . 12 (𝜑 → (𝑀 + 1) ≤ (((log‘𝑋) / (log‘𝐾)) + 2))
8940simp3d 1144 . . . . . . . . . . . . 13 (𝜑 → ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
9089simp2d 1143 . . . . . . . . . . . 12 (𝜑 → (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4))
9169, 76, 50, 88, 90letrd 11312 . . . . . . . . . . 11 (𝜑 → (𝑀 + 1) ≤ (((log‘𝑍) / (log‘𝐾)) / 4))
9269, 50, 50, 91leadd2dd 11770 . . . . . . . . . 10 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ≤ ((((log‘𝑍) / (log‘𝐾)) / 4) + (((log‘𝑍) / (log‘𝐾)) / 4)))
9343recnd 11183 . . . . . . . . . . . . . 14 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℂ)
94 2cnd 12231 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℂ)
95 2ne0 12257 . . . . . . . . . . . . . . 15 2 ≠ 0
9695a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 0)
9793, 94, 94, 96, 96divdiv1d 11962 . . . . . . . . . . . . 13 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 2) / 2) = (((log‘𝑍) / (log‘𝐾)) / (2 · 2)))
98 2t2e4 12317 . . . . . . . . . . . . . 14 (2 · 2) = 4
9998oveq2i 7368 . . . . . . . . . . . . 13 (((log‘𝑍) / (log‘𝐾)) / (2 · 2)) = (((log‘𝑍) / (log‘𝐾)) / 4)
10097, 99eqtrdi 2792 . . . . . . . . . . . 12 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 2) / 2) = (((log‘𝑍) / (log‘𝐾)) / 4))
101100oveq2d 7373 . . . . . . . . . . 11 (𝜑 → (2 · ((((log‘𝑍) / (log‘𝐾)) / 2) / 2)) = (2 · (((log‘𝑍) / (log‘𝐾)) / 4)))
10244recnd 11183 . . . . . . . . . . . 12 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℂ)
103102, 94, 96divcan2d 11933 . . . . . . . . . . 11 (𝜑 → (2 · ((((log‘𝑍) / (log‘𝐾)) / 2) / 2)) = (((log‘𝑍) / (log‘𝐾)) / 2))
104652timesd 12396 . . . . . . . . . . 11 (𝜑 → (2 · (((log‘𝑍) / (log‘𝐾)) / 4)) = ((((log‘𝑍) / (log‘𝐾)) / 4) + (((log‘𝑍) / (log‘𝐾)) / 4)))
105101, 103, 1043eqtr3d 2784 . . . . . . . . . 10 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) = ((((log‘𝑍) / (log‘𝐾)) / 4) + (((log‘𝑍) / (log‘𝐾)) / 4)))
10692, 105breqtrrd 5133 . . . . . . . . 9 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ≤ (((log‘𝑍) / (log‘𝐾)) / 2))
107 fllep1 13706 . . . . . . . . . . 11 ((((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℝ → (((log‘𝑍) / (log‘𝐾)) / 2) ≤ ((⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) + 1))
10844, 107syl 17 . . . . . . . . . 10 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ≤ ((⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) + 1))
10936oveq1i 7367 . . . . . . . . . 10 (𝑁 + 1) = ((⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) + 1)
110108, 109breqtrrdi 5147 . . . . . . . . 9 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ≤ (𝑁 + 1))
11170, 44, 72, 106, 110letrd 11312 . . . . . . . 8 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ≤ (𝑁 + 1))
11268, 111eqbrtrd 5127 . . . . . . 7 (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) + 1) ≤ (𝑁 + 1))
11350, 52readdcld 11184 . . . . . . . 8 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ∈ ℝ)
114113, 51, 5leadd1d 11749 . . . . . . 7 (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁 ↔ (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) + 1) ≤ (𝑁 + 1)))
115112, 114mpbird 256 . . . . . 6 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁)
116 leaddsub 11631 . . . . . . 7 (((((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁 ↔ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
11750, 52, 51, 116syl3anc 1371 . . . . . 6 (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁 ↔ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
118115, 117mpbid 231 . . . . 5 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀))
11947, 50, 53, 64, 118letrd 11312 . . . 4 (𝜑 → 0 ≤ (𝑁𝑀))
12051, 52subge0d 11745 . . . 4 (𝜑 → (0 ≤ (𝑁𝑀) ↔ 𝑀𝑁))
121119, 120mpbid 231 . . 3 (𝜑𝑀𝑁)
122 eluz2 12769 . . 3 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
12335, 46, 121, 122syl3anbrc 1343 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
12434, 123, 1183jca 1128 1 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  +∞cpnf 11186   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  3c3 12209  4c4 12210  0cn0 12413  cz 12499  cdc 12618  cuz 12763  +crp 12915  (,)cioo 13264  [,)cico 13266  cfl 13695  cexp 13967  csqrt 15118  expce 15944  eceu 15945  logclog 25910  ψcchp 26442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-e 15951  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912
This theorem is referenced by:  pntlemh  26947  pntlemq  26949  pntlemr  26950  pntlemj  26951  pntlemf  26953
  Copyright terms: Public domain W3C validator