Proof of Theorem pntlemg
Step | Hyp | Ref
| Expression |
1 | | pntlem1.m |
. . 3
⊢ 𝑀 =
((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) |
2 | | pntlem1.x |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋)) |
3 | 2 | simpld 495 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈
ℝ+) |
4 | 3 | rpred 12771 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ ℝ) |
5 | | 1red 10977 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℝ) |
6 | | pntlem1.y |
. . . . . . . . . 10
⊢ (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤
𝑌)) |
7 | 6 | simpld 495 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈
ℝ+) |
8 | 7 | rpred 12771 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ ℝ) |
9 | 6 | simprd 496 |
. . . . . . . 8
⊢ (𝜑 → 1 ≤ 𝑌) |
10 | 2 | simprd 496 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 < 𝑋) |
11 | 5, 8, 4, 9, 10 | lelttrd 11133 |
. . . . . . 7
⊢ (𝜑 → 1 < 𝑋) |
12 | 4, 11 | rplogcld 25782 |
. . . . . 6
⊢ (𝜑 → (log‘𝑋) ∈
ℝ+) |
13 | | pntlem1.r |
. . . . . . . . . 10
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦
((ψ‘𝑎) −
𝑎)) |
14 | | pntlem1.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
15 | | pntlem1.b |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈
ℝ+) |
16 | | pntlem1.l |
. . . . . . . . . 10
⊢ (𝜑 → 𝐿 ∈ (0(,)1)) |
17 | | pntlem1.d |
. . . . . . . . . 10
⊢ 𝐷 = (𝐴 + 1) |
18 | | pntlem1.f |
. . . . . . . . . 10
⊢ 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (;32 · 𝐵)) / (𝐷↑2))) |
19 | | pntlem1.u |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈
ℝ+) |
20 | | pntlem1.u2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ≤ 𝐴) |
21 | | pntlem1.e |
. . . . . . . . . 10
⊢ 𝐸 = (𝑈 / 𝐷) |
22 | | pntlem1.k |
. . . . . . . . . 10
⊢ 𝐾 = (exp‘(𝐵 / 𝐸)) |
23 | 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 | pntlemc 26741 |
. . . . . . . . 9
⊢ (𝜑 → (𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+
∧ (𝐸 ∈ (0(,)1)
∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈
ℝ+))) |
24 | 23 | simp2d 1142 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈
ℝ+) |
25 | 24 | rpred 12771 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ ℝ) |
26 | 23 | simp3d 1143 |
. . . . . . . 8
⊢ (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈 − 𝐸) ∈
ℝ+)) |
27 | 26 | simp2d 1142 |
. . . . . . 7
⊢ (𝜑 → 1 < 𝐾) |
28 | 25, 27 | rplogcld 25782 |
. . . . . 6
⊢ (𝜑 → (log‘𝐾) ∈
ℝ+) |
29 | 12, 28 | rpdivcld 12788 |
. . . . 5
⊢ (𝜑 → ((log‘𝑋) / (log‘𝐾)) ∈
ℝ+) |
30 | 29 | rprege0d 12778 |
. . . 4
⊢ (𝜑 → (((log‘𝑋) / (log‘𝐾)) ∈ ℝ ∧ 0 ≤
((log‘𝑋) /
(log‘𝐾)))) |
31 | | flge0nn0 13538 |
. . . 4
⊢
((((log‘𝑋) /
(log‘𝐾)) ∈
ℝ ∧ 0 ≤ ((log‘𝑋) / (log‘𝐾))) → (⌊‘((log‘𝑋) / (log‘𝐾))) ∈
ℕ0) |
32 | | nn0p1nn 12272 |
. . . 4
⊢
((⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℕ0 →
((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) ∈ ℕ) |
33 | 30, 31, 32 | 3syl 18 |
. . 3
⊢ (𝜑 →
((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) ∈ ℕ) |
34 | 1, 33 | eqeltrid 2845 |
. 2
⊢ (𝜑 → 𝑀 ∈ ℕ) |
35 | 34 | nnzd 12424 |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
36 | | pntlem1.n |
. . . 4
⊢ 𝑁 =
(⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) |
37 | | pntlem1.c |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
38 | | pntlem1.w |
. . . . . . . . . 10
⊢ 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((;32 · 𝐵) / ((𝑈 − 𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) |
39 | | pntlem1.z |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ (𝑊[,)+∞)) |
40 | 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 6, 2, 37, 38, 39 | pntlemb 26743 |
. . . . . . . . 9
⊢ (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 <
𝑍 ∧ e ≤
(√‘𝑍) ∧
(√‘𝑍) ≤
(𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍))))) |
41 | 40 | simp1d 1141 |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈
ℝ+) |
42 | 41 | relogcld 25776 |
. . . . . . 7
⊢ (𝜑 → (log‘𝑍) ∈
ℝ) |
43 | 42, 28 | rerpdivcld 12802 |
. . . . . 6
⊢ (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ) |
44 | 43 | rehalfcld 12220 |
. . . . 5
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℝ) |
45 | 44 | flcld 13516 |
. . . 4
⊢ (𝜑 →
(⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) ∈ ℤ) |
46 | 36, 45 | eqeltrid 2845 |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℤ) |
47 | | 0red 10979 |
. . . . 5
⊢ (𝜑 → 0 ∈
ℝ) |
48 | | 4nn 12056 |
. . . . . 6
⊢ 4 ∈
ℕ |
49 | | nndivre 12014 |
. . . . . 6
⊢
((((log‘𝑍) /
(log‘𝐾)) ∈
ℝ ∧ 4 ∈ ℕ) → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ) |
50 | 43, 48, 49 | sylancl 586 |
. . . . 5
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ) |
51 | 46 | zred 12425 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℝ) |
52 | 34 | nnred 11988 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℝ) |
53 | 51, 52 | resubcld 11403 |
. . . . 5
⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℝ) |
54 | 41 | rpred 12771 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ ℝ) |
55 | 40 | simp2d 1142 |
. . . . . . . . . 10
⊢ (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌))) |
56 | 55 | simp1d 1141 |
. . . . . . . . 9
⊢ (𝜑 → 1 < 𝑍) |
57 | 54, 56 | rplogcld 25782 |
. . . . . . . 8
⊢ (𝜑 → (log‘𝑍) ∈
ℝ+) |
58 | 57, 28 | rpdivcld 12788 |
. . . . . . 7
⊢ (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈
ℝ+) |
59 | | 4re 12057 |
. . . . . . . 8
⊢ 4 ∈
ℝ |
60 | | 4pos 12080 |
. . . . . . . 8
⊢ 0 <
4 |
61 | 59, 60 | elrpii 12732 |
. . . . . . 7
⊢ 4 ∈
ℝ+ |
62 | | rpdivcl 12754 |
. . . . . . 7
⊢
((((log‘𝑍) /
(log‘𝐾)) ∈
ℝ+ ∧ 4 ∈ ℝ+) →
(((log‘𝑍) /
(log‘𝐾)) / 4) ∈
ℝ+) |
63 | 58, 61, 62 | sylancl 586 |
. . . . . 6
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈
ℝ+) |
64 | 63 | rpge0d 12775 |
. . . . 5
⊢ (𝜑 → 0 ≤ (((log‘𝑍) / (log‘𝐾)) / 4)) |
65 | 50 | recnd 11004 |
. . . . . . . . 9
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℂ) |
66 | 34 | nncnd 11989 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℂ) |
67 | | 1cnd 10971 |
. . . . . . . . 9
⊢ (𝜑 → 1 ∈
ℂ) |
68 | 65, 66, 67 | addassd 10998 |
. . . . . . . 8
⊢ (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) + 1) = ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1))) |
69 | 52, 5 | readdcld 11005 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 + 1) ∈ ℝ) |
70 | 50, 69 | readdcld 11005 |
. . . . . . . . 9
⊢ (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ∈ ℝ) |
71 | | peano2re 11148 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈
ℝ) |
72 | 51, 71 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 + 1) ∈ ℝ) |
73 | 29 | rpred 12771 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((log‘𝑋) / (log‘𝐾)) ∈ ℝ) |
74 | | 2re 12047 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℝ |
75 | 74 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 2 ∈
ℝ) |
76 | 73, 75 | readdcld 11005 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((log‘𝑋) / (log‘𝐾)) + 2) ∈ ℝ) |
77 | | reflcl 13514 |
. . . . . . . . . . . . . . . . 17
⊢
(((log‘𝑋) /
(log‘𝐾)) ∈
ℝ → (⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℝ) |
78 | 73, 77 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 →
(⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℝ) |
79 | 78 | recnd 11004 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 →
(⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℂ) |
80 | 79, 67, 67 | addassd 10998 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) + 1) =
((⌊‘((log‘𝑋) / (log‘𝐾))) + (1 + 1))) |
81 | 1 | oveq1i 7281 |
. . . . . . . . . . . . . 14
⊢ (𝑀 + 1) =
(((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) + 1) |
82 | | df-2 12036 |
. . . . . . . . . . . . . . 15
⊢ 2 = (1 +
1) |
83 | 82 | oveq2i 7282 |
. . . . . . . . . . . . . 14
⊢
((⌊‘((log‘𝑋) / (log‘𝐾))) + 2) = ((⌊‘((log‘𝑋) / (log‘𝐾))) + (1 + 1)) |
84 | 80, 81, 83 | 3eqtr4g 2805 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑀 + 1) = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 2)) |
85 | | flle 13517 |
. . . . . . . . . . . . . . 15
⊢
(((log‘𝑋) /
(log‘𝐾)) ∈
ℝ → (⌊‘((log‘𝑋) / (log‘𝐾))) ≤ ((log‘𝑋) / (log‘𝐾))) |
86 | 73, 85 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(⌊‘((log‘𝑋) / (log‘𝐾))) ≤ ((log‘𝑋) / (log‘𝐾))) |
87 | 78, 73, 75, 86 | leadd1dd 11589 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
((⌊‘((log‘𝑋) / (log‘𝐾))) + 2) ≤ (((log‘𝑋) / (log‘𝐾)) + 2)) |
88 | 84, 87 | eqbrtrd 5101 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑀 + 1) ≤ (((log‘𝑋) / (log‘𝐾)) + 2)) |
89 | 40 | simp3d 1143 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈 − 𝐸) · ((𝐿 · (𝐸↑2)) / (;32 · 𝐵))) · (log‘𝑍)))) |
90 | 89 | simp2d 1142 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4)) |
91 | 69, 76, 50, 88, 90 | letrd 11132 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 + 1) ≤ (((log‘𝑍) / (log‘𝐾)) / 4)) |
92 | 69, 50, 50, 91 | leadd2dd 11590 |
. . . . . . . . . 10
⊢ (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ≤ ((((log‘𝑍) / (log‘𝐾)) / 4) + (((log‘𝑍) / (log‘𝐾)) / 4))) |
93 | 43 | recnd 11004 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℂ) |
94 | | 2cnd 12051 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 2 ∈
ℂ) |
95 | | 2ne0 12077 |
. . . . . . . . . . . . . . 15
⊢ 2 ≠
0 |
96 | 95 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 2 ≠ 0) |
97 | 93, 94, 94, 96, 96 | divdiv1d 11782 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 2) / 2) = (((log‘𝑍) / (log‘𝐾)) / (2 · 2))) |
98 | | 2t2e4 12137 |
. . . . . . . . . . . . . 14
⊢ (2
· 2) = 4 |
99 | 98 | oveq2i 7282 |
. . . . . . . . . . . . 13
⊢
(((log‘𝑍) /
(log‘𝐾)) / (2
· 2)) = (((log‘𝑍) / (log‘𝐾)) / 4) |
100 | 97, 99 | eqtrdi 2796 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 2) / 2) = (((log‘𝑍) / (log‘𝐾)) / 4)) |
101 | 100 | oveq2d 7287 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 ·
((((log‘𝑍) /
(log‘𝐾)) / 2) / 2)) =
(2 · (((log‘𝑍)
/ (log‘𝐾)) /
4))) |
102 | 44 | recnd 11004 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℂ) |
103 | 102, 94, 96 | divcan2d 11753 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 ·
((((log‘𝑍) /
(log‘𝐾)) / 2) / 2)) =
(((log‘𝑍) /
(log‘𝐾)) /
2)) |
104 | 65 | 2timesd 12216 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 ·
(((log‘𝑍) /
(log‘𝐾)) / 4)) =
((((log‘𝑍) /
(log‘𝐾)) / 4) +
(((log‘𝑍) /
(log‘𝐾)) /
4))) |
105 | 101, 103,
104 | 3eqtr3d 2788 |
. . . . . . . . . 10
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) = ((((log‘𝑍) / (log‘𝐾)) / 4) + (((log‘𝑍) / (log‘𝐾)) / 4))) |
106 | 92, 105 | breqtrrd 5107 |
. . . . . . . . 9
⊢ (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ≤ (((log‘𝑍) / (log‘𝐾)) / 2)) |
107 | | fllep1 13519 |
. . . . . . . . . . 11
⊢
((((log‘𝑍) /
(log‘𝐾)) / 2) ∈
ℝ → (((log‘𝑍) / (log‘𝐾)) / 2) ≤
((⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) + 1)) |
108 | 44, 107 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ≤
((⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) + 1)) |
109 | 36 | oveq1i 7281 |
. . . . . . . . . 10
⊢ (𝑁 + 1) =
((⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) + 1) |
110 | 108, 109 | breqtrrdi 5121 |
. . . . . . . . 9
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ≤ (𝑁 + 1)) |
111 | 70, 44, 72, 106, 110 | letrd 11132 |
. . . . . . . 8
⊢ (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ≤ (𝑁 + 1)) |
112 | 68, 111 | eqbrtrd 5101 |
. . . . . . 7
⊢ (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) + 1) ≤ (𝑁 + 1)) |
113 | 50, 52 | readdcld 11005 |
. . . . . . . 8
⊢ (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ∈ ℝ) |
114 | 113, 51, 5 | leadd1d 11569 |
. . . . . . 7
⊢ (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁 ↔ (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) + 1) ≤ (𝑁 + 1))) |
115 | 112, 114 | mpbird 256 |
. . . . . 6
⊢ (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁) |
116 | | leaddsub 11451 |
. . . . . . 7
⊢
(((((log‘𝑍) /
(log‘𝐾)) / 4) ∈
ℝ ∧ 𝑀 ∈
ℝ ∧ 𝑁 ∈
ℝ) → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁 ↔ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁 − 𝑀))) |
117 | 50, 52, 51, 116 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁 ↔ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁 − 𝑀))) |
118 | 115, 117 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁 − 𝑀)) |
119 | 47, 50, 53, 64, 118 | letrd 11132 |
. . . 4
⊢ (𝜑 → 0 ≤ (𝑁 − 𝑀)) |
120 | 51, 52 | subge0d 11565 |
. . . 4
⊢ (𝜑 → (0 ≤ (𝑁 − 𝑀) ↔ 𝑀 ≤ 𝑁)) |
121 | 119, 120 | mpbid 231 |
. . 3
⊢ (𝜑 → 𝑀 ≤ 𝑁) |
122 | | eluz2 12587 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
123 | 35, 46, 121, 122 | syl3anbrc 1342 |
. 2
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
124 | 34, 123, 118 | 3jca 1127 |
1
⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁 − 𝑀))) |