MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemg Structured version   Visualization version   GIF version

Theorem pntlemg 26651
Description: Lemma for pnt 26667. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑀 is j^* and 𝑁 is ĵ. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
Assertion
Ref Expression
pntlemg (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
Distinct variable group:   𝐸,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝐵(𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑅(𝑎)   𝑈(𝑎)   𝐹(𝑎)   𝐾(𝑎)   𝐿(𝑎)   𝑀(𝑎)   𝑁(𝑎)   𝑊(𝑎)   𝑋(𝑎)   𝑌(𝑎)   𝑍(𝑎)

Proof of Theorem pntlemg
StepHypRef Expression
1 pntlem1.m . . 3 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
2 pntlem1.x . . . . . . . . 9 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
32simpld 494 . . . . . . . 8 (𝜑𝑋 ∈ ℝ+)
43rpred 12701 . . . . . . 7 (𝜑𝑋 ∈ ℝ)
5 1red 10907 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
6 pntlem1.y . . . . . . . . . 10 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
76simpld 494 . . . . . . . . 9 (𝜑𝑌 ∈ ℝ+)
87rpred 12701 . . . . . . . 8 (𝜑𝑌 ∈ ℝ)
96simprd 495 . . . . . . . 8 (𝜑 → 1 ≤ 𝑌)
102simprd 495 . . . . . . . 8 (𝜑𝑌 < 𝑋)
115, 8, 4, 9, 10lelttrd 11063 . . . . . . 7 (𝜑 → 1 < 𝑋)
124, 11rplogcld 25689 . . . . . 6 (𝜑 → (log‘𝑋) ∈ ℝ+)
13 pntlem1.r . . . . . . . . . 10 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
14 pntlem1.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ+)
15 pntlem1.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ+)
16 pntlem1.l . . . . . . . . . 10 (𝜑𝐿 ∈ (0(,)1))
17 pntlem1.d . . . . . . . . . 10 𝐷 = (𝐴 + 1)
18 pntlem1.f . . . . . . . . . 10 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
19 pntlem1.u . . . . . . . . . 10 (𝜑𝑈 ∈ ℝ+)
20 pntlem1.u2 . . . . . . . . . 10 (𝜑𝑈𝐴)
21 pntlem1.e . . . . . . . . . 10 𝐸 = (𝑈 / 𝐷)
22 pntlem1.k . . . . . . . . . 10 𝐾 = (exp‘(𝐵 / 𝐸))
2313, 14, 15, 16, 17, 18, 19, 20, 21, 22pntlemc 26648 . . . . . . . . 9 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
2423simp2d 1141 . . . . . . . 8 (𝜑𝐾 ∈ ℝ+)
2524rpred 12701 . . . . . . 7 (𝜑𝐾 ∈ ℝ)
2623simp3d 1142 . . . . . . . 8 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
2726simp2d 1141 . . . . . . 7 (𝜑 → 1 < 𝐾)
2825, 27rplogcld 25689 . . . . . 6 (𝜑 → (log‘𝐾) ∈ ℝ+)
2912, 28rpdivcld 12718 . . . . 5 (𝜑 → ((log‘𝑋) / (log‘𝐾)) ∈ ℝ+)
3029rprege0d 12708 . . . 4 (𝜑 → (((log‘𝑋) / (log‘𝐾)) ∈ ℝ ∧ 0 ≤ ((log‘𝑋) / (log‘𝐾))))
31 flge0nn0 13468 . . . 4 ((((log‘𝑋) / (log‘𝐾)) ∈ ℝ ∧ 0 ≤ ((log‘𝑋) / (log‘𝐾))) → (⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℕ0)
32 nn0p1nn 12202 . . . 4 ((⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℕ0 → ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) ∈ ℕ)
3330, 31, 323syl 18 . . 3 (𝜑 → ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) ∈ ℕ)
341, 33eqeltrid 2843 . 2 (𝜑𝑀 ∈ ℕ)
3534nnzd 12354 . . 3 (𝜑𝑀 ∈ ℤ)
36 pntlem1.n . . . 4 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
37 pntlem1.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
38 pntlem1.w . . . . . . . . . 10 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
39 pntlem1.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝑊[,)+∞))
4013, 14, 15, 16, 17, 18, 19, 20, 21, 22, 6, 2, 37, 38, 39pntlemb 26650 . . . . . . . . 9 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
4140simp1d 1140 . . . . . . . 8 (𝜑𝑍 ∈ ℝ+)
4241relogcld 25683 . . . . . . 7 (𝜑 → (log‘𝑍) ∈ ℝ)
4342, 28rerpdivcld 12732 . . . . . 6 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ)
4443rehalfcld 12150 . . . . 5 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℝ)
4544flcld 13446 . . . 4 (𝜑 → (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) ∈ ℤ)
4636, 45eqeltrid 2843 . . 3 (𝜑𝑁 ∈ ℤ)
47 0red 10909 . . . . 5 (𝜑 → 0 ∈ ℝ)
48 4nn 11986 . . . . . 6 4 ∈ ℕ
49 nndivre 11944 . . . . . 6 ((((log‘𝑍) / (log‘𝐾)) ∈ ℝ ∧ 4 ∈ ℕ) → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ)
5043, 48, 49sylancl 585 . . . . 5 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ)
5146zred 12355 . . . . . 6 (𝜑𝑁 ∈ ℝ)
5234nnred 11918 . . . . . 6 (𝜑𝑀 ∈ ℝ)
5351, 52resubcld 11333 . . . . 5 (𝜑 → (𝑁𝑀) ∈ ℝ)
5441rpred 12701 . . . . . . . . 9 (𝜑𝑍 ∈ ℝ)
5540simp2d 1141 . . . . . . . . . 10 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
5655simp1d 1140 . . . . . . . . 9 (𝜑 → 1 < 𝑍)
5754, 56rplogcld 25689 . . . . . . . 8 (𝜑 → (log‘𝑍) ∈ ℝ+)
5857, 28rpdivcld 12718 . . . . . . 7 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ+)
59 4re 11987 . . . . . . . 8 4 ∈ ℝ
60 4pos 12010 . . . . . . . 8 0 < 4
6159, 60elrpii 12662 . . . . . . 7 4 ∈ ℝ+
62 rpdivcl 12684 . . . . . . 7 ((((log‘𝑍) / (log‘𝐾)) ∈ ℝ+ ∧ 4 ∈ ℝ+) → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ+)
6358, 61, 62sylancl 585 . . . . . 6 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ+)
6463rpge0d 12705 . . . . 5 (𝜑 → 0 ≤ (((log‘𝑍) / (log‘𝐾)) / 4))
6550recnd 10934 . . . . . . . . 9 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℂ)
6634nncnd 11919 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
67 1cnd 10901 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
6865, 66, 67addassd 10928 . . . . . . . 8 (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) + 1) = ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)))
6952, 5readdcld 10935 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ ℝ)
7050, 69readdcld 10935 . . . . . . . . 9 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ∈ ℝ)
71 peano2re 11078 . . . . . . . . . 10 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
7251, 71syl 17 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℝ)
7329rpred 12701 . . . . . . . . . . . . 13 (𝜑 → ((log‘𝑋) / (log‘𝐾)) ∈ ℝ)
74 2re 11977 . . . . . . . . . . . . . 14 2 ∈ ℝ
7574a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℝ)
7673, 75readdcld 10935 . . . . . . . . . . . 12 (𝜑 → (((log‘𝑋) / (log‘𝐾)) + 2) ∈ ℝ)
77 reflcl 13444 . . . . . . . . . . . . . . . . 17 (((log‘𝑋) / (log‘𝐾)) ∈ ℝ → (⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℝ)
7873, 77syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℝ)
7978recnd 10934 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℂ)
8079, 67, 67addassd 10928 . . . . . . . . . . . . . 14 (𝜑 → (((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) + 1) = ((⌊‘((log‘𝑋) / (log‘𝐾))) + (1 + 1)))
811oveq1i 7265 . . . . . . . . . . . . . 14 (𝑀 + 1) = (((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) + 1)
82 df-2 11966 . . . . . . . . . . . . . . 15 2 = (1 + 1)
8382oveq2i 7266 . . . . . . . . . . . . . 14 ((⌊‘((log‘𝑋) / (log‘𝐾))) + 2) = ((⌊‘((log‘𝑋) / (log‘𝐾))) + (1 + 1))
8480, 81, 833eqtr4g 2804 . . . . . . . . . . . . 13 (𝜑 → (𝑀 + 1) = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 2))
85 flle 13447 . . . . . . . . . . . . . . 15 (((log‘𝑋) / (log‘𝐾)) ∈ ℝ → (⌊‘((log‘𝑋) / (log‘𝐾))) ≤ ((log‘𝑋) / (log‘𝐾)))
8673, 85syl 17 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘((log‘𝑋) / (log‘𝐾))) ≤ ((log‘𝑋) / (log‘𝐾)))
8778, 73, 75, 86leadd1dd 11519 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘((log‘𝑋) / (log‘𝐾))) + 2) ≤ (((log‘𝑋) / (log‘𝐾)) + 2))
8884, 87eqbrtrd 5092 . . . . . . . . . . . 12 (𝜑 → (𝑀 + 1) ≤ (((log‘𝑋) / (log‘𝐾)) + 2))
8940simp3d 1142 . . . . . . . . . . . . 13 (𝜑 → ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
9089simp2d 1141 . . . . . . . . . . . 12 (𝜑 → (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4))
9169, 76, 50, 88, 90letrd 11062 . . . . . . . . . . 11 (𝜑 → (𝑀 + 1) ≤ (((log‘𝑍) / (log‘𝐾)) / 4))
9269, 50, 50, 91leadd2dd 11520 . . . . . . . . . 10 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ≤ ((((log‘𝑍) / (log‘𝐾)) / 4) + (((log‘𝑍) / (log‘𝐾)) / 4)))
9343recnd 10934 . . . . . . . . . . . . . 14 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℂ)
94 2cnd 11981 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℂ)
95 2ne0 12007 . . . . . . . . . . . . . . 15 2 ≠ 0
9695a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 0)
9793, 94, 94, 96, 96divdiv1d 11712 . . . . . . . . . . . . 13 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 2) / 2) = (((log‘𝑍) / (log‘𝐾)) / (2 · 2)))
98 2t2e4 12067 . . . . . . . . . . . . . 14 (2 · 2) = 4
9998oveq2i 7266 . . . . . . . . . . . . 13 (((log‘𝑍) / (log‘𝐾)) / (2 · 2)) = (((log‘𝑍) / (log‘𝐾)) / 4)
10097, 99eqtrdi 2795 . . . . . . . . . . . 12 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 2) / 2) = (((log‘𝑍) / (log‘𝐾)) / 4))
101100oveq2d 7271 . . . . . . . . . . 11 (𝜑 → (2 · ((((log‘𝑍) / (log‘𝐾)) / 2) / 2)) = (2 · (((log‘𝑍) / (log‘𝐾)) / 4)))
10244recnd 10934 . . . . . . . . . . . 12 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℂ)
103102, 94, 96divcan2d 11683 . . . . . . . . . . 11 (𝜑 → (2 · ((((log‘𝑍) / (log‘𝐾)) / 2) / 2)) = (((log‘𝑍) / (log‘𝐾)) / 2))
104652timesd 12146 . . . . . . . . . . 11 (𝜑 → (2 · (((log‘𝑍) / (log‘𝐾)) / 4)) = ((((log‘𝑍) / (log‘𝐾)) / 4) + (((log‘𝑍) / (log‘𝐾)) / 4)))
105101, 103, 1043eqtr3d 2786 . . . . . . . . . 10 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) = ((((log‘𝑍) / (log‘𝐾)) / 4) + (((log‘𝑍) / (log‘𝐾)) / 4)))
10692, 105breqtrrd 5098 . . . . . . . . 9 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ≤ (((log‘𝑍) / (log‘𝐾)) / 2))
107 fllep1 13449 . . . . . . . . . . 11 ((((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℝ → (((log‘𝑍) / (log‘𝐾)) / 2) ≤ ((⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) + 1))
10844, 107syl 17 . . . . . . . . . 10 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ≤ ((⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) + 1))
10936oveq1i 7265 . . . . . . . . . 10 (𝑁 + 1) = ((⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) + 1)
110108, 109breqtrrdi 5112 . . . . . . . . 9 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ≤ (𝑁 + 1))
11170, 44, 72, 106, 110letrd 11062 . . . . . . . 8 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ≤ (𝑁 + 1))
11268, 111eqbrtrd 5092 . . . . . . 7 (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) + 1) ≤ (𝑁 + 1))
11350, 52readdcld 10935 . . . . . . . 8 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ∈ ℝ)
114113, 51, 5leadd1d 11499 . . . . . . 7 (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁 ↔ (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) + 1) ≤ (𝑁 + 1)))
115112, 114mpbird 256 . . . . . 6 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁)
116 leaddsub 11381 . . . . . . 7 (((((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁 ↔ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
11750, 52, 51, 116syl3anc 1369 . . . . . 6 (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁 ↔ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
118115, 117mpbid 231 . . . . 5 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀))
11947, 50, 53, 64, 118letrd 11062 . . . 4 (𝜑 → 0 ≤ (𝑁𝑀))
12051, 52subge0d 11495 . . . 4 (𝜑 → (0 ≤ (𝑁𝑀) ↔ 𝑀𝑁))
121119, 120mpbid 231 . . 3 (𝜑𝑀𝑁)
122 eluz2 12517 . . 3 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
12335, 46, 121, 122syl3anbrc 1341 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
12434, 123, 1183jca 1126 1 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  3c3 11959  4c4 11960  0cn0 12163  cz 12249  cdc 12366  cuz 12511  +crp 12659  (,)cioo 13008  [,)cico 13010  cfl 13438  cexp 13710  csqrt 14872  expce 15699  eceu 15700  logclog 25615  ψcchp 26147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-e 15706  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617
This theorem is referenced by:  pntlemh  26652  pntlemq  26654  pntlemr  26655  pntlemj  26656  pntlemf  26658
  Copyright terms: Public domain W3C validator