MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemg Structured version   Visualization version   GIF version

Theorem pntlemg 26744
Description: Lemma for pnt 26760. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑀 is j^* and 𝑁 is ĵ. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
Assertion
Ref Expression
pntlemg (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
Distinct variable group:   𝐸,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝐵(𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑅(𝑎)   𝑈(𝑎)   𝐹(𝑎)   𝐾(𝑎)   𝐿(𝑎)   𝑀(𝑎)   𝑁(𝑎)   𝑊(𝑎)   𝑋(𝑎)   𝑌(𝑎)   𝑍(𝑎)

Proof of Theorem pntlemg
StepHypRef Expression
1 pntlem1.m . . 3 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
2 pntlem1.x . . . . . . . . 9 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
32simpld 495 . . . . . . . 8 (𝜑𝑋 ∈ ℝ+)
43rpred 12771 . . . . . . 7 (𝜑𝑋 ∈ ℝ)
5 1red 10977 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
6 pntlem1.y . . . . . . . . . 10 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
76simpld 495 . . . . . . . . 9 (𝜑𝑌 ∈ ℝ+)
87rpred 12771 . . . . . . . 8 (𝜑𝑌 ∈ ℝ)
96simprd 496 . . . . . . . 8 (𝜑 → 1 ≤ 𝑌)
102simprd 496 . . . . . . . 8 (𝜑𝑌 < 𝑋)
115, 8, 4, 9, 10lelttrd 11133 . . . . . . 7 (𝜑 → 1 < 𝑋)
124, 11rplogcld 25782 . . . . . 6 (𝜑 → (log‘𝑋) ∈ ℝ+)
13 pntlem1.r . . . . . . . . . 10 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
14 pntlem1.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ+)
15 pntlem1.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ+)
16 pntlem1.l . . . . . . . . . 10 (𝜑𝐿 ∈ (0(,)1))
17 pntlem1.d . . . . . . . . . 10 𝐷 = (𝐴 + 1)
18 pntlem1.f . . . . . . . . . 10 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
19 pntlem1.u . . . . . . . . . 10 (𝜑𝑈 ∈ ℝ+)
20 pntlem1.u2 . . . . . . . . . 10 (𝜑𝑈𝐴)
21 pntlem1.e . . . . . . . . . 10 𝐸 = (𝑈 / 𝐷)
22 pntlem1.k . . . . . . . . . 10 𝐾 = (exp‘(𝐵 / 𝐸))
2313, 14, 15, 16, 17, 18, 19, 20, 21, 22pntlemc 26741 . . . . . . . . 9 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
2423simp2d 1142 . . . . . . . 8 (𝜑𝐾 ∈ ℝ+)
2524rpred 12771 . . . . . . 7 (𝜑𝐾 ∈ ℝ)
2623simp3d 1143 . . . . . . . 8 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
2726simp2d 1142 . . . . . . 7 (𝜑 → 1 < 𝐾)
2825, 27rplogcld 25782 . . . . . 6 (𝜑 → (log‘𝐾) ∈ ℝ+)
2912, 28rpdivcld 12788 . . . . 5 (𝜑 → ((log‘𝑋) / (log‘𝐾)) ∈ ℝ+)
3029rprege0d 12778 . . . 4 (𝜑 → (((log‘𝑋) / (log‘𝐾)) ∈ ℝ ∧ 0 ≤ ((log‘𝑋) / (log‘𝐾))))
31 flge0nn0 13538 . . . 4 ((((log‘𝑋) / (log‘𝐾)) ∈ ℝ ∧ 0 ≤ ((log‘𝑋) / (log‘𝐾))) → (⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℕ0)
32 nn0p1nn 12272 . . . 4 ((⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℕ0 → ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) ∈ ℕ)
3330, 31, 323syl 18 . . 3 (𝜑 → ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) ∈ ℕ)
341, 33eqeltrid 2845 . 2 (𝜑𝑀 ∈ ℕ)
3534nnzd 12424 . . 3 (𝜑𝑀 ∈ ℤ)
36 pntlem1.n . . . 4 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
37 pntlem1.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
38 pntlem1.w . . . . . . . . . 10 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
39 pntlem1.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝑊[,)+∞))
4013, 14, 15, 16, 17, 18, 19, 20, 21, 22, 6, 2, 37, 38, 39pntlemb 26743 . . . . . . . . 9 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
4140simp1d 1141 . . . . . . . 8 (𝜑𝑍 ∈ ℝ+)
4241relogcld 25776 . . . . . . 7 (𝜑 → (log‘𝑍) ∈ ℝ)
4342, 28rerpdivcld 12802 . . . . . 6 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ)
4443rehalfcld 12220 . . . . 5 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℝ)
4544flcld 13516 . . . 4 (𝜑 → (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) ∈ ℤ)
4636, 45eqeltrid 2845 . . 3 (𝜑𝑁 ∈ ℤ)
47 0red 10979 . . . . 5 (𝜑 → 0 ∈ ℝ)
48 4nn 12056 . . . . . 6 4 ∈ ℕ
49 nndivre 12014 . . . . . 6 ((((log‘𝑍) / (log‘𝐾)) ∈ ℝ ∧ 4 ∈ ℕ) → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ)
5043, 48, 49sylancl 586 . . . . 5 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ)
5146zred 12425 . . . . . 6 (𝜑𝑁 ∈ ℝ)
5234nnred 11988 . . . . . 6 (𝜑𝑀 ∈ ℝ)
5351, 52resubcld 11403 . . . . 5 (𝜑 → (𝑁𝑀) ∈ ℝ)
5441rpred 12771 . . . . . . . . 9 (𝜑𝑍 ∈ ℝ)
5540simp2d 1142 . . . . . . . . . 10 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
5655simp1d 1141 . . . . . . . . 9 (𝜑 → 1 < 𝑍)
5754, 56rplogcld 25782 . . . . . . . 8 (𝜑 → (log‘𝑍) ∈ ℝ+)
5857, 28rpdivcld 12788 . . . . . . 7 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ+)
59 4re 12057 . . . . . . . 8 4 ∈ ℝ
60 4pos 12080 . . . . . . . 8 0 < 4
6159, 60elrpii 12732 . . . . . . 7 4 ∈ ℝ+
62 rpdivcl 12754 . . . . . . 7 ((((log‘𝑍) / (log‘𝐾)) ∈ ℝ+ ∧ 4 ∈ ℝ+) → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ+)
6358, 61, 62sylancl 586 . . . . . 6 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ+)
6463rpge0d 12775 . . . . 5 (𝜑 → 0 ≤ (((log‘𝑍) / (log‘𝐾)) / 4))
6550recnd 11004 . . . . . . . . 9 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℂ)
6634nncnd 11989 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
67 1cnd 10971 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
6865, 66, 67addassd 10998 . . . . . . . 8 (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) + 1) = ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)))
6952, 5readdcld 11005 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ ℝ)
7050, 69readdcld 11005 . . . . . . . . 9 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ∈ ℝ)
71 peano2re 11148 . . . . . . . . . 10 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
7251, 71syl 17 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ ℝ)
7329rpred 12771 . . . . . . . . . . . . 13 (𝜑 → ((log‘𝑋) / (log‘𝐾)) ∈ ℝ)
74 2re 12047 . . . . . . . . . . . . . 14 2 ∈ ℝ
7574a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℝ)
7673, 75readdcld 11005 . . . . . . . . . . . 12 (𝜑 → (((log‘𝑋) / (log‘𝐾)) + 2) ∈ ℝ)
77 reflcl 13514 . . . . . . . . . . . . . . . . 17 (((log‘𝑋) / (log‘𝐾)) ∈ ℝ → (⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℝ)
7873, 77syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℝ)
7978recnd 11004 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘((log‘𝑋) / (log‘𝐾))) ∈ ℂ)
8079, 67, 67addassd 10998 . . . . . . . . . . . . . 14 (𝜑 → (((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) + 1) = ((⌊‘((log‘𝑋) / (log‘𝐾))) + (1 + 1)))
811oveq1i 7281 . . . . . . . . . . . . . 14 (𝑀 + 1) = (((⌊‘((log‘𝑋) / (log‘𝐾))) + 1) + 1)
82 df-2 12036 . . . . . . . . . . . . . . 15 2 = (1 + 1)
8382oveq2i 7282 . . . . . . . . . . . . . 14 ((⌊‘((log‘𝑋) / (log‘𝐾))) + 2) = ((⌊‘((log‘𝑋) / (log‘𝐾))) + (1 + 1))
8480, 81, 833eqtr4g 2805 . . . . . . . . . . . . 13 (𝜑 → (𝑀 + 1) = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 2))
85 flle 13517 . . . . . . . . . . . . . . 15 (((log‘𝑋) / (log‘𝐾)) ∈ ℝ → (⌊‘((log‘𝑋) / (log‘𝐾))) ≤ ((log‘𝑋) / (log‘𝐾)))
8673, 85syl 17 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘((log‘𝑋) / (log‘𝐾))) ≤ ((log‘𝑋) / (log‘𝐾)))
8778, 73, 75, 86leadd1dd 11589 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘((log‘𝑋) / (log‘𝐾))) + 2) ≤ (((log‘𝑋) / (log‘𝐾)) + 2))
8884, 87eqbrtrd 5101 . . . . . . . . . . . 12 (𝜑 → (𝑀 + 1) ≤ (((log‘𝑋) / (log‘𝐾)) + 2))
8940simp3d 1143 . . . . . . . . . . . . 13 (𝜑 → ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
9089simp2d 1142 . . . . . . . . . . . 12 (𝜑 → (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4))
9169, 76, 50, 88, 90letrd 11132 . . . . . . . . . . 11 (𝜑 → (𝑀 + 1) ≤ (((log‘𝑍) / (log‘𝐾)) / 4))
9269, 50, 50, 91leadd2dd 11590 . . . . . . . . . 10 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ≤ ((((log‘𝑍) / (log‘𝐾)) / 4) + (((log‘𝑍) / (log‘𝐾)) / 4)))
9343recnd 11004 . . . . . . . . . . . . . 14 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℂ)
94 2cnd 12051 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℂ)
95 2ne0 12077 . . . . . . . . . . . . . . 15 2 ≠ 0
9695a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 0)
9793, 94, 94, 96, 96divdiv1d 11782 . . . . . . . . . . . . 13 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 2) / 2) = (((log‘𝑍) / (log‘𝐾)) / (2 · 2)))
98 2t2e4 12137 . . . . . . . . . . . . . 14 (2 · 2) = 4
9998oveq2i 7282 . . . . . . . . . . . . 13 (((log‘𝑍) / (log‘𝐾)) / (2 · 2)) = (((log‘𝑍) / (log‘𝐾)) / 4)
10097, 99eqtrdi 2796 . . . . . . . . . . . 12 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 2) / 2) = (((log‘𝑍) / (log‘𝐾)) / 4))
101100oveq2d 7287 . . . . . . . . . . 11 (𝜑 → (2 · ((((log‘𝑍) / (log‘𝐾)) / 2) / 2)) = (2 · (((log‘𝑍) / (log‘𝐾)) / 4)))
10244recnd 11004 . . . . . . . . . . . 12 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℂ)
103102, 94, 96divcan2d 11753 . . . . . . . . . . 11 (𝜑 → (2 · ((((log‘𝑍) / (log‘𝐾)) / 2) / 2)) = (((log‘𝑍) / (log‘𝐾)) / 2))
104652timesd 12216 . . . . . . . . . . 11 (𝜑 → (2 · (((log‘𝑍) / (log‘𝐾)) / 4)) = ((((log‘𝑍) / (log‘𝐾)) / 4) + (((log‘𝑍) / (log‘𝐾)) / 4)))
105101, 103, 1043eqtr3d 2788 . . . . . . . . . 10 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) = ((((log‘𝑍) / (log‘𝐾)) / 4) + (((log‘𝑍) / (log‘𝐾)) / 4)))
10692, 105breqtrrd 5107 . . . . . . . . 9 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ≤ (((log‘𝑍) / (log‘𝐾)) / 2))
107 fllep1 13519 . . . . . . . . . . 11 ((((log‘𝑍) / (log‘𝐾)) / 2) ∈ ℝ → (((log‘𝑍) / (log‘𝐾)) / 2) ≤ ((⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) + 1))
10844, 107syl 17 . . . . . . . . . 10 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ≤ ((⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) + 1))
10936oveq1i 7281 . . . . . . . . . 10 (𝑁 + 1) = ((⌊‘(((log‘𝑍) / (log‘𝐾)) / 2)) + 1)
110108, 109breqtrrdi 5121 . . . . . . . . 9 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 2) ≤ (𝑁 + 1))
11170, 44, 72, 106, 110letrd 11132 . . . . . . . 8 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + (𝑀 + 1)) ≤ (𝑁 + 1))
11268, 111eqbrtrd 5101 . . . . . . 7 (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) + 1) ≤ (𝑁 + 1))
11350, 52readdcld 11005 . . . . . . . 8 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ∈ ℝ)
114113, 51, 5leadd1d 11569 . . . . . . 7 (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁 ↔ (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) + 1) ≤ (𝑁 + 1)))
115112, 114mpbird 256 . . . . . 6 (𝜑 → ((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁)
116 leaddsub 11451 . . . . . . 7 (((((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁 ↔ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
11750, 52, 51, 116syl3anc 1370 . . . . . 6 (𝜑 → (((((log‘𝑍) / (log‘𝐾)) / 4) + 𝑀) ≤ 𝑁 ↔ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
118115, 117mpbid 231 . . . . 5 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀))
11947, 50, 53, 64, 118letrd 11132 . . . 4 (𝜑 → 0 ≤ (𝑁𝑀))
12051, 52subge0d 11565 . . . 4 (𝜑 → (0 ≤ (𝑁𝑀) ↔ 𝑀𝑁))
121119, 120mpbid 231 . . 3 (𝜑𝑀𝑁)
122 eluz2 12587 . . 3 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
12335, 46, 121, 122syl3anbrc 1342 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
12434, 123, 1183jca 1127 1 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀) ∧ (((log‘𝑍) / (log‘𝐾)) / 4) ≤ (𝑁𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945   class class class wbr 5079  cmpt 5162  cfv 6432  (class class class)co 7271  cr 10871  0cc0 10872  1c1 10873   + caddc 10875   · cmul 10877  +∞cpnf 11007   < clt 11010  cle 11011  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  3c3 12029  4c4 12030  0cn0 12233  cz 12319  cdc 12436  cuz 12581  +crp 12729  (,)cioo 13078  [,)cico 13080  cfl 13508  cexp 13780  csqrt 14942  expce 15769  eceu 15770  logclog 25708  ψcchp 26240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-addf 10951  ax-mulf 10952
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-er 8481  df-map 8600  df-pm 8601  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-fi 9148  df-sup 9179  df-inf 9180  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-ioo 13082  df-ioc 13083  df-ico 13084  df-icc 13085  df-fz 13239  df-fzo 13382  df-fl 13510  df-mod 13588  df-seq 13720  df-exp 13781  df-fac 13986  df-bc 14015  df-hash 14043  df-shft 14776  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-limsup 15178  df-clim 15195  df-rlim 15196  df-sum 15396  df-ef 15775  df-e 15776  df-sin 15777  df-cos 15778  df-pi 15780  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-hom 16984  df-cco 16985  df-rest 17131  df-topn 17132  df-0g 17150  df-gsum 17151  df-topgen 17152  df-pt 17153  df-prds 17156  df-xrs 17211  df-qtop 17216  df-imas 17217  df-xps 17219  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-mulg 18699  df-cntz 18921  df-cmn 19386  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-fbas 20592  df-fg 20593  df-cnfld 20596  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-cld 22168  df-ntr 22169  df-cls 22170  df-nei 22247  df-lp 22285  df-perf 22286  df-cn 22376  df-cnp 22377  df-haus 22464  df-tx 22711  df-hmeo 22904  df-fil 22995  df-fm 23087  df-flim 23088  df-flf 23089  df-xms 23471  df-ms 23472  df-tms 23473  df-cncf 24039  df-limc 25028  df-dv 25029  df-log 25710
This theorem is referenced by:  pntlemh  26745  pntlemq  26747  pntlemr  26748  pntlemj  26749  pntlemf  26751
  Copyright terms: Public domain W3C validator